Control flow graphs and loop optimizations

Agenda

- Building control flow graphs
- Low level loop optimizations
 - Code motion
 - Strength reduction
 - Unrolling
- High level loop optimizations
 - Loop fusion
 - Loop interchange
 - Loop tiling

Moving beyond basic blocks

- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
 - Whole procedures?
 - Whole program?
- Idea: capture control flow of a program
 - How control transfers between basic blocks due to:
 - Conditionals
 - Loops

Representation

- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of targets of jump statements
 - Any statement whose execution may immediately follow execution of jump statement
 - Explicit targets: targets mentioned in jump statement
 - Implicit targets: statements that follow conditional jump statements
 - The statement that gets executed if the branch is not taken

Running example

```
A = 4
A = 4
1  A = 4
2  t1 = A * B
3  L1: t2 = t1 / C
4     if (t2 ≥ W) {
5         M = t1 * k
6         t3 = M + I
7     }
8  L2: H = I
9  M = t3 - H
10  goto L1
11  L3: halt
```
Control flow graphs

- Divides statements into basic blocks
- Basic block: a maximal sequence of statements \(I_0, I_1, I_2, \ldots, I_n \) such that if \(I_j \) and \(I_{j+1} \) are two adjacent statements in this sequence, then
 - The execution of \(I_j \) is always immediately followed by the execution of \(I_{j+1} \)
 - The execution of \(I_{j+1} \) is always immediately preceded by the execution of \(I_j \)
- Edges between basic blocks represent potential flow of control

Running example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A = 4</td>
</tr>
<tr>
<td>2</td>
<td>t1 = A * B</td>
</tr>
<tr>
<td>L1:</td>
<td>t2 = t1 / C</td>
</tr>
<tr>
<td>4</td>
<td>if t2 < W goto L2</td>
</tr>
<tr>
<td>5</td>
<td>M = t1 * k</td>
</tr>
<tr>
<td>6</td>
<td>t3 = M + I</td>
</tr>
<tr>
<td>7</td>
<td>L2: H = I</td>
</tr>
<tr>
<td>8</td>
<td>M = t3 - H</td>
</tr>
<tr>
<td>9</td>
<td>if t3 ≥ 0 goto L3</td>
</tr>
<tr>
<td>10</td>
<td>goto L1</td>
</tr>
<tr>
<td>11</td>
<td>L3: halt</td>
</tr>
</tbody>
</table>

Leaders = {1, 3, 5, 7, 10, 11}
Basic blocks = { {1, 2}, {3, 4, 5, 6}, {7, 8, 9}, {10} }
Putting edges in CFG

- There is a directed edge from B_1 to B_2 if
 - There is a branch from the last statement of B_1 to the first statement (leader) of B_2
 - B_2 immediately follows B_1 in program order and B_1 does not end with an unconditional branch
- Input: block, a sequence of basic blocks
- Output: The CFG

\[
\begin{align*}
\text{for } i &= 1 \text{ to |block|} \\
x &= \text{last statement of block}(i) \\
\text{if } \text{stat}(x) \text{ is a branch, then} \\
&\text{for each explicit target } y \text{ of stat}(x) \\
&\text{create edge from block } i \text{ to block } y \\
\text{end for} \\
\text{if } \text{stat}(x) \text{ is not unconditional then} \\
&\text{create edge from block } i \text{ to block } i+1 \\
\text{end for}
\end{align*}
\]

Discussion

- Some times we will also consider the statement-level CFG, where each node is a statement rather than a basic block
- Either kind of graph is referred to as a CFG
- In statement-level CFG, we often use a node to explicitly represent merging of control
- Control merges when two different CFG nodes point to the same node
- Note: if input language is structured, front-end can generate basic block directly
- “GOTO considered harmful”

Statement level CFG

\[
\begin{align*}
A &= 4 \\
t1 &= A \times B \\
L1: & t2 = t1/c \\
&\text{if } t2 < W \text{ goto L2} \\
M &= t1 \times k \\
t3 &= M + I \\
L2: & H = I \\
M &= t3 - H \\
&\text{if } t3 \neq 0 \text{ goto L3} \\
L3: & \text{halt}
\end{align*}
\]

Loop optimization

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling
- High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling

Low level loop optimizations

- Affect a single loop
- Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
- Low level representation doesn't have loop statements!
Identifying loops

- First, we must identify dominators
 - Node a dominates node b if every possible execution path that gets to b must pass through a
- Many different algorithms to calculate dominators – we will not cover how this is calculated
- A back edge is an edge from b to a when a dominates b
- The target of a back edge is a loop header

Natural loops

- Will focus on natural loops – loops that arise in structured programs
- For a node n to be in a loop with header h
 - n must be dominated by h
 - There must be a path in the CFG from n to h through a back-edge to h
- What are the back edges in the example to the right? The loop headers? The natural loops?

Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are loop invariant
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?

Identifying loop invariant code

- To determine if a statement s: $t = a \ op \ b$
 - is loop invariant, find all definitions of a and b that reach s
 - s is loop invariant if both a and b satisfy one of the following
 - it is constant
 - all definitions that reach it are from outside the loop
 - only one definition reaches it and that definition is also loop invariant

Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!
 - $a = b + c$
 - for (\ldots)
 - $a = 5$
 - if (\ast)
 - $c = d$
 - else
 - $a = 6$
 - for (\ldots)
 - $a = 5$
 - for (\ldots)
 - $a = 6$

 - We can move a loop invariant statement $t = a \ op \ b$
 - The statement dominates all loop exits where t is live
 - There is only one definition of t in the loop
 - t is not live before the loop
 - Move instruction to a preheader, a new block put right before loop header

Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a * 2$ with a cheap one, addition
 - Applies to uses of an induction variable
 - Opportunity: array indexing
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a * 2$ with $a << 1$
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```c
i = 0; k = 8A;
L2: if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
    goto L2
L1:
```

Induction variables

- A basic induction variable is a variable j
- whose only definition within the loop is an assignment of the form $j = j \pm c$, where c is loop invariant
- Intuition: the variable which determines number of iterations is usually an induction variable
- A mutual induction variable i may be
 - defined once within the loop, and its value is a linear function of some other induction variable j such that
 $i = c_1 \cdot j + c_2$ or $i = j / c_1 + c_2$
 where c_1, c_2 are loop invariant
- A family of induction variables include a basic induction variable and any related mutual induction variables

Strength reduction algorithm

- Let i be an induction variable in the family of the basic induction variable j, such that $i = c_1 \cdot j + c_2$
- Create a new variable i'
- Initialize in preheader $i' = c_1 \cdot j + c_2$
- Track value of j. After $j = j + c_3$, perform $i' = i' + (c_1 \cdot c_3)$
- Replace definition of i with $i = i'$
- Key: c_1, c_2, c_3 are all loop invariant (or constant), so computations like $(c_1 \cdot c_3)$ can be moved outside loop

Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable j
- Can now eliminate induction variable altogether
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

```c
for (i = 0; i < N; i++)
    A[i] = ...;
```

```c
for (i = 0; i < N; i += 4)
    A[i] = ...;
    A[i+1] = ...;
    A[i+2] = ...;
    A[i+3] = ...;
```

High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (loop fusion)
- Switching the order of a nested loop (loop interchange)
- Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase spatial or temporal locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality

Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

```
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j]
```

Loop interchange

- Change the order of a nested loop
- This is not always legal — it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j]
```

Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j]
```
In a real (Itanium) compiler

Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like unimodular transform framework and polyhedral framework