ECE 573 – Final Exam
December 14, 2009

Name: __

Purdue Email: __________________________________

Please sign the following:

I affirm that the answers given on this test are mine and mine alone.
I did not receive help from any person or material (other than those explicitly allowed).

X ________________________________

<table>
<thead>
<tr>
<th>Part</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/30</td>
</tr>
<tr>
<td>2</td>
<td>/30</td>
</tr>
<tr>
<td>3</td>
<td>/15</td>
</tr>
<tr>
<td>4</td>
<td>/25</td>
</tr>
<tr>
<td>Total:</td>
<td>/100</td>
</tr>
</tbody>
</table>
Part 1: Dataflow analysis (30 pts)

In this problem, you will design a dataflow analysis that performs a sign analysis. A sign analysis determines at each program point whether a variable is definitely positive (+), definitely negative (−), definitely zero (0), or could be anything (?)..

Problem 1 (10 pts): Provide a lattice for this dataflow analysis. A few things to keep in mind: (i) don’t forget that having no information is different from a variable being “anything”; (ii) if a variable is 0, it also counts as both + and −; (iii) ? means that a variable might be positive or might be negative.
Problem 2 (1 pts): Should this analysis be forward or backward?

Problem 3 (1 pts): Does this analysis use meet or join at merge points?

Problem 4: For each statement, define the transfer function. Each subproblem shows one or more tables (except part (D)). The column headers give the value of y_{in} and the row headers (if they exist) give the value of z_{in}. For each subproblem, fill in the table with the value of x_{out} (i.e., the value that x takes after the statement is processed) given the input values.

A) $x := y * z$ (4.5 pts)

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>−</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B) $x := y - z$ (4.5 pts)

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>−</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C) $x := y * y$ (2 pts)

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>−</th>
<th>0</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D) if (x < 0) then { ... } else { ... } (1 pt)

For this subproblem, give the values of x along the true branch and the false branch:

x_{true}:

x_{false}:
Problem 5 (6 pts): For the following CFG, fill in the boxes with the value of x and y that you get after performing your dataflow analysis (assume that x and y are arguments to the function, and hence could have any value at the beginning).
Part 2: Dependence analysis and loop optimization (30 pts)

For the next four problems, consider the following loop:

```java
for (int i = 1; i < 6; i++) {
    for (int j = 1; j < 6; j++) {
        A[2i][j] = A[i+1][j-1];
    }
}
```

Problem 1 (10 pts): Below is the iteration space graph for the loop nest (i along the x-axis, j along the y-axis). Draw the dependence arrows that arise from analyzing the loop.

```
      5  O  O  O  O  O
      4  O  O  O  O  O
      3  O  O  O  O  O
      2  O  O  O  O  O
      1  O  O  O  O  O
```

Problem 2 (2 pts): List the distance vectors that arise from this loop nest.

Problem 3 (2 pts): List the direction vectors that arise from this loop nest.

Problem 4 (2 pts): Can the loops in this nest be interchanged? Why or why not?
Problem 5 (2 pts): Give an example of a direction vector which prevents loop interchange.

For the next two problems, consider the following loop:

```c
for (int i = 0; i < N; i++) {
}
```

Problem 6 (2 pts): Give an informal (1-2 sentence) argument for why there would be no loop-carried dependences in this loop.

Problem 7 (8 pts): Use the GCD test to *prove* there are no dependences in this loop (show your work!)

Problem 8 (2 pts): Why might the GCD test say that there is a dependence in a loop even when there isn’t?
Part 3: Pointer analysis (15 pts)

Problem 1 (2 pts): What is the difference between a weak update and a strong update when doing pointer analysis?

Problem 2 (5 pts): Why does \(\star x = y \) require a \textit{weak} update when doing flow-sensitive pointer analysis?

Problem 3 (8 pts): Consider a flow-sensitive analysis where \textit{all} strong updates have been replaced with weak updates. Will this analysis produce different results from a flow-\textit{insensitive} analysis like Andersen’s? Why or why not? (Hint: consider applying both analyses to a function with no branching control flow—\textit{i.e.}, a single basic block).
Part 4: Review (25 pts)

Problem 1 (5 pts): Give the grammar for a language that *cannot* be parsed by an LL(1) parser, but *can* be parsed by an LL(2) parser.

Problem 2 (10 pts): Fill in the CFSM for the following grammar (label lines with their transitions, fill in any missing boxes):

\[
S \rightarrow Aab$
\]
\[
A \rightarrow aA
\]
\[
A \rightarrow c
\]

$$S \rightarrow \cdot A \cdot a b \cdot$

$$A \rightarrow \cdot a A$$

$$A \rightarrow \cdot a c$$

$$S \rightarrow A \cdot a b \cdot$$

$$A \rightarrow a c \cdot$$
Consider the problem of allocating temporaries to registers for the following piece of code:

\[
\begin{align*}
T1 &= A + B; \\
T2 &= C + D; \\
T3 &= T2 + E; \\
T4 &= T1 + T2; \\
T5 &= F + T2; \\
T6 &= T1 + T4; \\
T7 &= T6 + T5;
\end{align*}
\]

Problem 3 (5 pts): How many registers do you need to allocate temporaries to registers without spilling?

Problem 4 (5 pts): Draw the interference graph for the code.