
ECE 573 — Midterm 1
September 29, 2009

Name: ______________________________________

Purdue email: ______________________________________

Please sign the following:
I affirm that the answers given on this test are mine and mine alone. I did not receive
help from any person or material (other than those explicitly allowed).

 X ___

Part Points Score
1 8

2 15

3 10

4 22

5 25

6 20

Total 100

Part 1: Short answers (8 points)

1) Place the following parts of a compiler in order and identify which are part of
the front-end, and which are part of the back-end. Parser, Code generator,
Scanner, Optimizer (of IR), Semantic routines (2 points)

2) Name two (of four) different types of compilers, and provide a real-world
example for each that you name (2 points)

3) Explain (briefly—you shouldnʼt need more than one sentence) the difference
between the syntax of a language and its semantics (1 point)

4) Explain the difference between a context-free grammar and a context-sensitive
grammar (1 point)

5) Why do semantic routines need to be placed at the end of productions in LR
grammars? (2 points)

Part 2: Regular expressions, finite automata and scanners (15 points)

1) Describe, in one sentence, the strings captured by the following regular
expression (2 points):

2) Give a finite automaton that accepts languages defined by the following regular
expression (this should be a non-deterministic FA) (6 points):

3) Give the deterministic equivalent of the NFA you created in problem 2 (7 points)

(ab)+c∗

((xy∗z)|(x∗yz))

Part 3: Grammars (10 points)

Let G be the grammar:

Using this grammar, answer the following questions.

1) What are the terminals and non-terminals of this grammar? (1 point)

2) Give 4 examples of strings in the language defined by this grammar. (2 points)

3) Draw the parse tree for the following partial derivation (i.e., some of the leaves
of your parse tree may be non-terminals) (4 points)

4) Did this partial derivation get produced by left-derivation or right-derivation? (1
points)

5) Give an example of a partial derivation produced from S in 2 steps by right
derivation (2 points)

S → AB
A → xB | λ
B → yA | zB

S ⇒ xyyA

Part 4: LL parsers (22 points)

Answer the questions in this part using the following grammar:

1) Define the following sets: (8 points)

First(A b)

First ((b a b))

First ((A b))

Follow (A)

2) Give the predict sets for the productions: (8 points)

Predict(1)

Predict(2)

Predict(3)

Predict(4)

3) Fill in the LL(1) parse table based on your predict sets (4 points)

() b $

S

A

4) Is this an LL(1) grammar? Why or why not? (2 points)

S → Ab$
A → (bAb)
A → (Ab)
A → λ

Part 5: LR(0) Parsers (25 points)

Use the following grammar for the next two questions:

1) Fill in the missing states for the for the following CFSM (12 points) and fill in
the missing edge labels (1 point)

State 0

S ! • Ab $
A ! • (bA)
A ! • (A)
A ! • x

State 1

S ! A • b $

State 2

S ! Ab • $

State 3

S ! Ab$ •

State 4

A ! x •

State 5

State 6

State 7 State 8

A ! (bA •)

State 9

State 10

x

)
(

x

b

x

2) List the actions the parser will take when parsing the following string. For shift
actions, indicate which state the parser will go to; for reduce actions, indicate
which rule is being reduced and which state the parser will go to after
reducing. (You do not have to show the parse stack or the remaining input—
though it may help. Assume the parser accepts when it gets to state 2) (12
points)

(b (x)) b $

S → Ab$
A → (bA)
A → (A)
A → x

Part 6: LR(1) Parsers (20 points)

Consider the grammar:

1) Is this grammar LR(0)? Why or why not? (1 points)

2) Fill in the missing states in the partial LR(1) machine given below (13 points)

State 0

S ! • Ab $, {!}
A ! • (bA), {b}
A ! • (A), {b}
A ! ! •, {b}

State 5 State 6

State 7

(

(

b

State 1

S ! A•b $, {!}

A

3) Fill in the action and goto tables for State 0 (4 points)
Action tableAction tableAction tableAction table Goto tableGoto tableGoto tableGoto tableGoto tableGoto table

b $ () b $ () S A

4) How would an SLR parser differ from this LR(1) parser? (1 point) An LALR
parser? (1 point)

S → Ab$
A → (bA)
A → (A)
A → λ

