Lecture notes: January 25, 2017

Topics:
1. Pointers (continued)
Using pointers

We saw that we can use pointers to store addresses of locations in memory. How can we use
them?

The trick to pointers is that the operator * (the dereference operator) lets us access the memory
location that the pointer points to (i.e., it lets us access the memory location at the address that
is stored in the pointer):

int x = 7;

int * p = &x; //p now points to x

*p = 10; //this is the same as x = 10
int y = *p; //this 1is the same as y = X

The expression *p acts just like x wherever we use it. In fact, one way to think about pointers is
they let you give alternate names to locations in memory. If a pointer p stores an address, *p is
a name for that address in exactly the same way that a variable is a name for an address!
Pointers to things other than basic data types

Pointers don’t have to point to ints or floats or doubles. They can also point to data types you
create!

typedef struct {

float x;
float y;
} Point;
Point p = {.x = 1.5, .y = 2.5},
Point * g = &p; //now you can use * g anywhere you use p

Why is this useful?

With regular variables, once you create them, you hame a memory location, but you can never
change what memory location you’re talking about. Pointers give you a way of creating a
“dynamic” name — a name that you can use to talk about a memory location that can change
depending on what you need to use it for:

int x = 7;
int * p = &x; //*p is now another name for x
int y =* p; //like saying y = X

p = &y; //*p is now another name for y
*p = 8; //1like saying y = 8

One place this is especially useful is in writing functions. C functions are pass by value: when
you pass an argument to a function, inside the function you are working on a copy of that
argument. If you try to change the data inside the function, you’re changing the copy, not the
original data. The following implementation of a swap function doesn’t work:

int a
int b

8;
10;

void swap(int x, int y) {
int tmp = x;
X =y;
y = tmp;

}

void main() {
swap(a, b); //a is still 8, b is still 10
}

Because inside swap, x and y are names for new memory locations that are holding copies of
the data in a and b. When we swap them, a and b don’t change. But we can use pointers to get
around this problem. What if x and y held the addresses of a and b? Then *x and *y would be
names for the same memory locations that a and b are. Changing them would change the
values of a and b!

int a
int b

8;
10;

void swap(int * x, int * y) {
int tmp = *x; //tmp = whatever is in the location x points to
'y = tmp;

}

void main() {
//remember, we have to pass in addresses now, not ints
swap(&a, &b); //a is now 10, b is now 8

}

Chains of pointers
Pointers can point to any data type — even pointers!

int x

:7’
int * p =

&x; //p points to x; *p is the same as x

int * * q; //q is a pointer to a pointer to an int
g = &p; //q points to p

In this example, *q isthesameas p. *(*q) isthe same as *p which is the same as x.

