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Data Fitting

I You give me data, I find the trend.
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Data Fitting
Once I find the trend, I can

I Predict values where I previously did not measure
I Extrapolate outside the range
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Problem Formulation

First, we need a model!
Let’s start with this:

yn = axn + b + en, n = 1, . . . ,N

This is a linear equation.
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What is the error?

I yn = true measured value

I axn + b = estimated value

I en measures the difference yn − (axn + b)
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What is “best”?

We need solve this optimization problem:

(
â, b̂
)

= argmin
(a,b)

N∑
n=1

(yn − (axn + b))2.

I argmin = find the values of the variables that can minimize
the function.

I
∑N

n=1(yn − (axn + b))2: sum of all the errors

I You don’t have to choose (·)2. You can use | · |, or max(·) or
whatever.

I (·)2 is just easier.

I How to solve this optimization?

I Take derivative, set it to zero.
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Main Result

Theorem
The solution of the problem

(
â, b̂
)

= argmin
(a,b)

N∑
n=1

(yn − (axn + b))2

is the solution to the following system of linear equations
N∑

n=1
x2n

N∑
n=1

xn

N∑
n=1

xn n

[âb̂
]

=


N∑

n=1
xnyn

N∑
n=1

yn

 (1)
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Solution
First, let us define

ϕ(a, b) =
N∑

n=1

(yn − (axn + b))2.

Taking derivatives on both sides with respect to a and b yields

∂

∂a
ϕ(a, b) = 2

(
N∑

n=1

xnyn − a
N∑

n=1

x2n − b
N∑

n=1

xn

)
= 0

∂

∂b
ϕ(a, b) = 2

(
N∑

n=1

yn − a
N∑

n=1

xn − nb

)
= 0

Rearranging the terms, this is equivalent to
N∑

n=1
x2n

N∑
n=1

xn

N∑
n=1

xn n

[ab
]

=


N∑

n=1
xnyn

N∑
n=1

yn


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Matrix-Vector Representation

This is a 2× 2 system of linear equations
N∑

n=1
x2n

N∑
n=1

xn

N∑
n=1

xn n

[ab
]

=


N∑

n=1
xnyn

N∑
n=1

yn


This is equivalent to

XTXβ = XTy , (2)

where

X =

x1 1
...

...
xN 1

 , y =

y1...
yN

 , β =

[
a
b

]
, (3)
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Solution in Matrix-Vector Representation

I The equation
XTXβ = XTy (4)

is called the normal equation of a linear system Xx = β.

I To determine the vector β, we take inverse (assuming XTX

is invertible):
β̂ = (XTX )−1XTy (5)

I The matrix XTX is invertible when there is no dependent
columns of XTX , which in turn holds when there is no
dependent columns of X .

I If the matrix XTX is close to non-invertible (i.e., having a
very large condition number), then we can perturb the
solution as

β̂ = (XTX + λI )−1XTy (6)

where λ > 0 is a constant.
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General Least Squares Minimization

The normal equation can also be derived from an optimization:

β̂ = argmin
β

‖Xβ − y‖2 (7)

Here, ‖u‖2 denotes the `2-norm square of a vector u:

‖u‖2 =
n∑

i=1

u2i .

Derivation of the optimal solution: (Need some matrix-calculus)

d

dβ
‖Xβ − y‖2 = 0 ⇒ XT (Xβ − y) = 0

⇒ XTXβ = XTβ,

so we obtain the same normal equation.
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Example 1: Quadratic Fitting

Problem: Find the linear least squares solution for

yn = ax2n + bxn + c

Extension: This idea can be extended high order polynomials.

Solution:

X =

x
2
1 x1 1
...

...
...

x2N xN 1

 , y =

y1...
yN

 , β =

ab
c

 ,
The solution is

β̂ = (XTX )−1XTy .
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Example 2: Auto-Regressive Model

Problem: Find the linear least squares solution for

yn = ayn−1 + byn−2

Application: Stock-prediction: We have sample yn−1 and yn−2,
we want to predict yn.

Solution:

X =


y2 y1
y3 y2
...

...
yN−1 yN−2

 , y =


y3
y4
...
yN

 , β =

[
a
b

]
,

The solution is
β̂ = (XTX )−1XTy .
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Interpreting the Results

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

X =


1 40 74 11 31 20
1 32 72 11 43 18

...
1 66 67 26 18 16

 , y =


478
494

...
940

 , β =


β0
β1
...
β5

 ,
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Interpreting the Results

Run regression analysis (with λ = 1000). Here is the result:

I β1 = 10.9934: police funding

I β2 = 1.1451: high school

I β3 = 10.1812: no high school

I β4 = 2.7386: college

I β5 = −0.7781: college at least 4 years

That means:

I Crime rate is more influenced by police funding

I and number of residents without high school

I Other factors are not quite relevant

The term β0 is known as the bias, or the DC term in circuit
terminology.
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Solution Trajectory
Recall that β̂ = (XTX )−1XTy is equivalent to

β̂ = argmin
β

‖Xβ − y‖2.

We can show that β̂ = (XTX + λI )−1XTy is equivalent to

β̂ = argmin
β

‖Xβ − y‖2 + λ‖β‖2. (8)

Why?

d

dβ
(·) = 0 ⇒ XT (Xβ − y) + λβ = 0

⇒ (XTX + λI )β = XTy .

Now, consider β̂ as a function of λ:

β̂λ = (XTX + λI )−1XTy
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Solution Trajectory
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Beyond Least Squares
It is possible to use other forms of optimization, e.g.,

β̂ = argmin
β

‖Xβ − y‖2 + λ‖β‖1, (9)

where ‖ · ‖1 is called the `1-norm:

‖u‖1 =
n∑

i=1

|ui |.

This is called the Least Absolute Shrinkage and Selection
Operation (LASSO).

I Solving the LASSO problem is beyond the scope of this
course. (See ECE 695 Sparse Modeling and Algorithms)

I It requires convex optimization algorithms.

I LASSO makes β̂ sparse.

I Essential if X is short and fat. (XTX is not invertible.)
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