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Theme of this Lecture
What is Estimation?

I You give me a set of data points
I I make a guess of the parameters
I E.g., Mean, Variance, etc

What is Confidence Interval?
I You estimate the mean
I How good is your estimation?
I Accurate with large variance 6= good
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Mean and Variance

Two Parameters of Gaussian

I Mean: µ — Where is the center of the Gaussian?

I Variance: σ2 — How wide is the Gaussian?

I Standard Deviation σ is the the square root of variance.

I Question: When σ decreases, why does the Gaussian become
“taller”?
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Expectation and Variance

Definition (Expectation)

The expectation of a random variable X is

E[X ] =
∑
x

x pX (x), or E[X ] =

∫ ∞
−∞

xpX (x)dx .

Definition (Variance)

The variance of a random variable X is

Var[X ] =
∑
x

(x−µ)2 pX (x), or E[X ] =

∫ ∞
−∞

(x−µ)2pX (x)dx .

Usually denote E[X ] = µ, Var[X ] = σ2.
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Sample Mean and Sample Variance

Given data points X1, . . . ,XN , what to estimate the mean and
variance?

X =
1

N

N∑
i=1

Xi

S2 =
1

N

N∑
i=1

(Xi − X )2.
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True Mean and Sample Mean

True Mean E[X ]

I A statistical property of a random variable.

I A deterministic number.

I Often unknown, or is the center question of estimation.

I You have to know X in order to find E[X ]; Top down.

Sample Mean X

I A numerical value. Calculated from data.

I Itself is a random variable.

I It has uncertainty.

I Uncertainty reduces as more samples are used.

I We use sample mean to estimate the true mean.

I You do not need to know X in order to find X ; Bottom up.
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Distribution of X

I X is the sample mean of one experiment.

I X has a distribution! (If you repeat N experiments.)
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Distribution of X
What is the distribution of X?

I Gaussian!!! (Thanks to something called the “Central Limit
Theorem”.)

I Why Gaussian? Second order approximation of the Moment
Generating Function MX (s) = E[esX ].

I See ECE 302 Lecture 25.
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Influence of N
Assume X1, . . . ,XN are independent random variables with
identical distributions. And E[Xi ] = µ, Var[Xi ] = σ2.

E[X ] = E

[
1

N

N∑
i=1

Xi

]
=

1

N

N∑
i=1

E[Xi ] =
1

N

N∑
i=1

µ = µ

Var[X ] = Var

[
1

N

N∑
i=1

Xi

]
=

1

N2

N∑
i=1

Var[Xi ] =
1

N2

N∑
i=1

σ2 =
σ2

N
.
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Outlier Tool 1: Likelihood
I Assume we have a Gaussian. Call it N (µ, σ2).
I You have a data point X = xj .
I What is the probability that X = xj will show up for this

Gaussian?
I The probability is called the likelihood:

p(xj) =
1√

2πσ2
exp

{
−

(xj − µ)2

2σ2

}
def
= N (xj |µ, σ2).
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Outlier Tool 1: Likelihood

Here is a way to determine an outlier

I Start with your distribution, say N (µ, σ2).

I Find the likelihood of your data point X .

I If the likelihood is extremely small, then X is an outlier.

I How small? You set the tolerance level, maybe 0.05.
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Outlier Tool 2: p-value
p-value is an alternative tool.

I Instead of comparing the likelihood, we check how far X is
from the center. “far”, “close” in terms of σ

I If X is 3σ away, then very unlikely.
I Typically we set a tolerance level for the tail area α.
I The corresponding “distance” is called the p-value.
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Outlier Tool 2: p-value
Standardized Gaussian

I Before we have computers, calculating the likelihood is hard.

I One easy solution: Shift N (µ, σ2) to N (0, 1).

I Can build a look-up table for N (0, 1).

I The process of turning N (µ, σ2) to N (0, 1) is called
standardization.

I Quite useful: Instead of checking 3σ, just check 3.

I Also useful for theoretical analysis

Standardization: Given X ∼ N (µ, σ2), the standardized Gaussian
is:

Z =
X − µ
σ

We can show that Z ∼ N (0, 1).
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Outlier Tool 2: p-value
Example: You have a dataset µ = 5, σ = 1; check data point
xj = 2.2.

I zj =
xj−µ
σ = −2.8.

I Set tolerance level α = 0.01 on one tail.
I Is xj outlier?
I α = 0.01 is equivalent to zα = −2.32.
I Since zj < zα, xj is an outlier.
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Compare Two Mean

I You have two classes of data: Class 1 and Class 0.

I For each class you have (µ1, σ1, n1), (µ0, σ0, n0).

I Does class 1 has a significantly different mean than class 0?

Approach:

I Pick α and hence zα
I Compute z = µ1−µ0

σ̂ or z = µ0−µ1
σ̂

I σ̂2 =
σ2
0

n0
+

σ2
1

n1

I Check whether z > zα or z < −zα

15 / 23



c©Stanley Chan 2017. All Rights Reserved.

Confidence Interval: So What?
Why care about confidence interval?

I From data, you tell me X .
I I ask you, how good is X?
I The quantification of X is the confidence interval

Bottom Line:

Whenever you report an estimate X , you also need to report the
confidence interval. Otherwise, your X is meaningless.
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Confidence Interval
I How good X is? Set α, and then find zα.
I Then we say that X has a confidence interval[

X − zα
σ√
N
, X + zα

σ√
N

]
I Two factors: N and σ. (zα is user defined.)

17 / 23



c©Stanley Chan 2017. All Rights Reserved.

Bootstrap Illustrated
A technique to estimate confidence interval for small datasets.

I Your dataset has very few data points.
I You can estimate σ; but will not be accurate.

Key idea:
I Start with a set Ω = {X1, . . . ,XN}.
I Sample with replacement N points from Ω.
I Example: Ω = {4.2, 4.8, 4.7, 4.5, 4.9}, then

Ω1 = {4.2, 4.8, 4.8, 4.7, 4.8} → X 1

...

ΩT = {4.5, 4.9, 4.2, 4.2, 4.7} → XT

I The bootstrapped standard deviation is

σ2b =
1

T

T∑
t=1

(X t − X )2.

where X = 1
N

∑
t X t .
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How good is Bootstrap?
Example.

I Ideal distribution F : N (0, 1). Let’s draw X1, . . . ,Xm.
m = 10, 000.

I Sample empirical distribution F̂ , composed of
Ω = X1, . . . ,Xn, n = 50.

The true values:
I µtrue = 0, σtrue = 1.
I True confidence interval: µtrue ± zα

σtrue√
n

= 0± 0.1414zα.

The estimated values:
I µest = −0.0416, σest = 1.0203. (one possible pair)
I Estimated confidence interval: µest ± zα

σest√
n

= 0± 0.1443zα

The bootstrap values:
I µboot = −0.0401, σboot = 0.1434.
I Bootstrap confidence interval:
µboot ± zασboot = 0± 0.1434zα

I σboot has 1/
√
n embedded
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Power of Bootstrap

Wait a minute ...

I You don’t need bootstrap for sample mean

I There is a formula for sample mean’s confidence interval

I X ± zα
σest√

n

But in reality ...

I You are not just interested in estimating the sample mean

I You may want to estimate the median

I or mode

I or high order moments

I or any functional mapping θ = g(X1, . . . ,Xn)

I Then the confidence interval is no longer X ± zα
σest√

n
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Bootstrap for Median

I Start with a set Ω = {X1, . . . ,XN}.
I Sample with replacement N points from Ω.

I Example: Ω = {4.2, 4.8, 4.7, 4.5, 4.9}, then

Ω1 = {4.2, 4.8, 4.8, 4.7, 4.8} → M1
def
= median(Ω)1

...

ΩT = {4.5, 4.9, 4.2, 4.2, 4.7} → MT
def
= median(Ω)T

I The bootstrapped standard deviation is

σ2b =
1

T

T∑
t=1

(Mt −M)2.

where M = 1
N

∑
t Mt .
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Principle behind Bootstrap

Typically:

I σtrue ≈ σest (not always small, depending on n)

I σest ≈ σboot (usually very small)
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Additional Readings

I B. Efron, “Bootstrap Methods: Another Look at the
Jackknife”, Annals of Statistics, vol. 7, no. 1, pp.1-26, 1979.

I L. Wasserman, “All of Statistics”, Springer.

I J. Friedman, R. Tibshirani, and T. Hastie, “Elements of
Statistical Learning”, Springer.
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