ECE 295: Lecture 02 Probability

Spring 2018
Prof Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

What is Probability?

- It is a
- Always between
- Always the probability of

Example. The probability of getting a Head when tossing a coin:

$$
\mathbb{P}\left(" \mathrm{H}^{\prime}\right)=
$$

Three Elements of a Probability Model

1. Sample Space
2. Event
3. Probability Law

Probability Distribution

"Definition" of Probability Distribution:

A probability distribution is a histogram when the number of data points go to infinity.
When this happens,

$$
\text { height of histogram }=\frac{\text { number of times } x_{j} \text { happens }}{\text { number of trials }}=\mathbb{P}\left[X=x_{j}\right],
$$

So $\mathbb{P}\left[X=x_{j}\right]$ is the probability that we have a state x_{j}.
(Caution: This "definition" is not general enough to include continuous distributions.)

Random Variable

What is Random Variable?

Definition

A random variable X is a function $X: \Omega \rightarrow \mathbb{R}$ that maps an outcome $\xi \in \Omega$ to a number $X(\xi)$ on the real line.

Why need Random Variable?

- Coin flip: Head or Tail
- Vote: Republican or Democrat
- Alphabet: a, b, c, ..., z

We want to map these outcomes to numbers.

Cumulative Distribution Function

Definition

The cumulative distribution function (CDF) of a random variable X is

$$
F_{X}(x) \stackrel{\text { def }}{=} \mathbb{P}[X \leq x]
$$

Probability Density Function

Theorem

The probability density function (PDF) is the derivative of the cumulative distribution function (CDF):

$$
\begin{equation*}
p_{X}(x)=\frac{d F_{X}(x)}{d x} \tag{1}
\end{equation*}
$$

if F_{X} is differentiable at x.

If F_{X} is not differentiable at x, then $p_{X}(x)$ is defined as

$$
\begin{equation*}
p_{X}(x)=F_{X}(x)-\lim _{h \rightarrow 0} F_{X}(x-h) \tag{2}
\end{equation*}
$$

The resulting $p_{X}(x)$ is called the probability mass function (PMF).

Examples of Probability Distributions

Examples

Bernoulli Distribution:

- Two states: $X=1$ or $X=0$.
- Flip a coin.
- Probability: $p_{X}(0)$ or $p_{X}(1)$.
- We call X a Bernoulli random variable.

Example of Bernoulli Distribution

Social Network Analysis

Graph
Matrix

Gaussian Distribution

Also called the Normal distribution.

$$
p_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}=\mathcal{N}(x \mid \mu, \sigma)
$$

Two parameters:

- μ : mean of the Gaussian
- σ : standard deviation of the Gaussian

Example of Gaussian Distribution

- Noise in cameras can be modeled as Gaussian
- Also Gaussian for communication systems
- A lot of natural phenomena are Gaussian
noise

Example of Gaussian Distribution

Practical questions we can ask:

- You don't see a car, but you measure its speed
- There are only two types of cars: Mini-van and Sports car
- Given the speed, which one would you guess?

Exponential Distribution

Exponential Distribution:

$$
p_{X}(x)=\lambda \exp \{-\lambda x\}
$$

- λ is the rate
- Large λ, decay faster

Usage:

- Use to model inter-arrival time
- Use to model traffic
- Use to model decay processes

Model Selection

Model Selection

How to Select a Distribution?

- You have data
- A few candidate distributions
- How to choose?

Main Idea

Trick: Divide the candidate distribution into equal area bins

Two sets of numbers:

- Ideal area for each bin
- Actual number of samples fall into each bin

Practice

In practice, you can do this in the CDF domain.

- Equally space cut the probability (y-axis)
- Find correspondingly the value (x-axis)

Algorithm

- Given a set of N data points: x_{1}, \ldots, x_{N}.
- Sort the numbers as $x_{[1]}, \ldots, x_{[N]}$.
- Create a dummy set v_{1}, \ldots, v_{N}.
- These v_{i} 's are equally spaced in the range $[0,1]$.
- Look at your candidate CDF, say $F_{Z}(z)$.
- Compute $z_{i}=F_{Z}^{-1}\left(v_{i}\right)$.
- Plot $x_{[i]}$ VS z_{i}.

QQ-Plot

- If straight line, then actual fits ideal
- That means your candidate model is good

QQ-Plot

Bad fit:

This type of plot is called the QQ-plot.

Summary

- Probability
- Random Variable: A symbolic object. Behind each random variable is a distribution.
- Cumulative Distribution Function
- Probability Density Function
- Three Examples of Probability Distributions
- QQ-Plot

