Higher Order Functions

Recall that in Python, functions that we define are just objects like anything else:

In [1]: def meaningOfLife(x)
return 42 * x

type (meaningOfLife)

Out[1l]: function

This means that we can assign functions to variables, and then treat those variables as functions

In [2]: f = meaningOfLife
print £(2)

84

This is sort of like function pointers in C, but much cleaner (because Python doesn't force you to be super
precise about types). Note that in the same way that we can bind functions to variables, we can pass
functions in to other functions. For example, the function myApply below takes a function as its first
argument, and calls that function on its second argument:

In [3]: def myApply(fun, x)
return fun(x)

myApply(meaningOfLife, 3)

out[3]: 126

A function that takes other functions as arguments (or returns a function) is called a higher order function.
Note that we called our example myApply above, because Python already has a higher order function called
apply that does basically the same thing, but in a more robust way:

In [4]: apply(meaningOfLife, [3])

Out[4]: 126

So why are higher order functions useful? Let's take a simple example, where we want to filter an input list,
say to discard values that are too high or too low:

In [5]: import numpy as np
data = np.loadtxt('math scores.txt')
print len(data), data[:10]

50000 [67.2 42.3 33.1 59. 41.3 38.3 44.3 50.4 53.5 43.5]

In [6]: def simpleFilter(data)
res = []
for d in data
if d >= 40 and d <= 60
res.append(d)
return res

filteredl = simpleFilter(data)
print len(filteredl), filteredl[:10]

31582 [42.3, 59.0, 41.3, 44.3, 50.4, 53.5, 43.5, 53.4, 52.2, 56.3]

But now if we want to change the range we filter out, we have to write a new filter function to do it. Instead,
we can turn filter into a higher order function that takes as an argument a new function p that returns True if
we want to keep the datum, and False if we don't:

In [7]: def myFilter(p, data)
res = []
for d in data
if p(d)
res.append(d)
return res

Two things to note: First, we calling the test p for "predicate." Second, our filtering function is called
myFilter because Python has a built-in function called £ilter that does more or less the same thing.

Now all we need to do is define a new function to find things in range, then pass it to myFilter:

In [8]: def inRange(d)
return True if d >= 40 and d <= 60 else False

filtered2 = myFilter(inRange, data)

print len(filtered2), filtered2[:10]

31582 [42.3, 59.0, 41.3, 44.3, 50.4, 53.5, 43.5, 53.4, 52.2, 56.3]

Great! Now we can write arbitrary filter functions. Here's one that filters out any element where floor(element)
is odd:

In [9]: def isEven(d)
return True if (int(d) % 2 == 0) else False

onlyEven = myFilter(isEven, data)

print len(onlyEven), onlyEven[:10]

24936 [42.3, 38.3, 44.3, 50.4, 52.2, 56.3, 44.4, 58.8, 90.1, 52.0]

But let's go back to our range function. It's annoying that we have to write a brand new predicate function p
every time we want a new range to filter. So we can take advantage of another trick of higher order
functions: the ability to return functions from other functions.

Returning Functions and Closures

Python lets you define nested functions: functions that are defined inside of other functions. Because
function definitions are just objects, these newly defined functions can be returned. The trick to these
functions is that variables you use inside the nested functions take on their values from the enclosing
function. In programming languages terminology, this is a closure: a function that "captures" the values of its
surrounding environment, and "keeps them around" for the next time you call the function.

Let's define a function that creates a predicate function for filtering out a range:

In [10]: def createRangeP(minimum, maximum)
def p(d)
return True if d >= float(minimum) and d <= maximum else False
return p

pl = createRangeP (45, 55)
p2 createRangeP (45, 60)
print pl(40)

print pl(50)

print pl(60)

print

print p2(40)

print p2(50)

print p2(60)

False
True
False

False
True
True

Let's unpack what happened here. The function p is declared as an inner function. It takes one argument, d.
Inside this definition, it uses two variables minimum and maximum that don't exist inside p's local scope.
Instead, p captures those variables from its enclosing scope: the values of minimum and maximum passed
in to createRangeP. Importantly, p "remembers" these values even after it has been returned, for when it is

called later!

This new function, in combination with myFilter lets us easily filter arbitrary ranges:

In [11]: filtered3 = myFilter(createRangeP (20, 80), data)

print len(filtered3d), filtered3[:10]

41051 [(67.2, 42.3, 33.1, 59.0, 41.3, 38.3, 44.3, 50.4, 53.5, 43.5]

Lambdas

Python provides a shortcut for quickly defining functions that compute an expression and return it, called
lambdas (called this because lambda is the symbol used for functions in lambda calculus). We can use this
anywhere we need to define and use a function just once, but don't need to assign this function to a
variable/name so we can use it again later (for this reason, these functions are often called anonymous

functions)

In [12]: filtered4 = myFilter(lambda x : True if x >= 20 and x <= 80 else False
, data)

print len(filtered4), filtered4[:10]

41051 [67.2, 42.3, 33.1, 59.0, 41.3, 38.3, 44.3, 50.4, 53.5, 43.5]

We could have also written createRange using lambdas:

In [13]: def createRangeP lambda(minimum, maximum)
return lambda d : True if d >= float(minimum) and d <= maximum els

e False

filtered5 = myFilter(createRangeP lambda(20, 80), data)

print len(filtered5), filtered5[:10]

41051 [(67.2, 42.3, 33.1, 59.0, 41.3, 38.3, 44.3, 50.4, 53.5, 43.5]

Map and Reduce

Two of the most common higher order functions are map and reduce (sometimes called fold). map takes
an input list and a function £ of one argument, and returns a new list. The ith element of the output list is £
applied to the ith element of the input list.

reduce takes a list and a function of two arguments, and returns a single value. That value is computed by
applying the funciton £ to the first two elements of the list, then applying the result of that to the third
element, then the result of that to the fourth element, and soon: £(£f(£f(inp[0], inp[l]), inp[2]),

inp[3])

These are built in functions in Python, but we'll write our own versions using higher order functions:

In [27]: def myMap(f, inp)
res = []
for i in inp :
res.append(£f(i))
return res

def myReduce(f, inp, init = None)

if (init == None)
res = inp[0]
else
res = f(init, inp[0])
for i in range(l, len(inp))
res = f(res, inp[i])

return res

Let's use myReduce to compute the average of our input data:

In [28]: total myReduce(lambda x, y : x + y, data)
count = myReduce(lambda x, y : x + 1, data, 0)
avg = total / count

print total, count, avg

2850713.8999999915 50000 57.014277999999834

We can then use myMap and myReduce together to compute the variance:

In [29]: sgerr = myMap(lambda x : (x - avg) ** 2, data)
var = myReduce(lambda X, v : y + X, sgerr) / count

print var

250.58829593871462

We can compare these to the average and variance computed by the NumPy functions:

In [30]: print avg, np.mean(data)

57.014277999999834 57.014278

In [31]: print var, np.var(data)

250.58829593871462 250.58829593871602

