ECE 295: Lecture 03 Histograms

Spring 2018
Prof Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

The Era of Big Data!

http://i1.wp.com/olap.com/wp-content/uploads/2013/11/bigstock-Big-data-concept-in-word-tag-c-49922318.jpg

Statistics

The science of making sense of data!

Why study statistics?

... Using fancy tools like neural nets, boosting, and support vector machines without understanding basic statistics is like doing brain surgery before knowing how to use a band-aid...

Larry Wasserman, "All of Statistics"

Today's Plan

Histogram!

Let's do a case study first ...

The Escalator Problem

Energy efficient escalators:

- ON when there are pedestrians
- STAND-BY when there is no pedestrian for several seconds
- How much saving?

That's Easy!

- Go to the meter room, and
- Measure it!!!

But what if you have not yet built the escalator?

Let's collect data

Inter-arrival Time

Let T be the inter-arrival time.
Possible values of T : Call them $t_{1}, t_{2}, t_{3}, \ldots$,

How does the histogram of T look like?

What can be told from a histogram?

frequency

- Set of all possible state: $x_{1}, x_{2}, \ldots, x_{m}$.
- Empirical frequency of each state: $\widehat{p}_{1}, \widehat{p}_{2}, \ldots, \widehat{p}_{m}$.

Important!

$$
\widehat{p}_{1}+\widehat{p}_{2}+\ldots+\widehat{p}_{m}=1 .
$$

What can be told from a histogram?

Sample Mean:

$$
\bar{X}=\sum_{i=1}^{m} \widehat{p}_{i} x_{i}
$$

- "Average" of computed from the histogram
- Could be different if you run another experiment frequency
$\widehat{p} 2$

states

What can be told from a histogram?

Sample Variance:

$$
S^{2}=\sum_{i=1}^{m} \widehat{p}_{i}\left(x_{i}-\bar{X}\right)^{2} .
$$

- Measures the deviation
- Large S^{2} means that the histogram is wide-spread
- S is the sample standard deviation

> small variance large variance

Histogram Grows

What if we have 100 measurements?

Histogram Grows

What if we have 1000 measurements?

Histogram Grows

What if we have 10000 measurements?

Bin-width of Histogram

Bad choice of bin-width:

200 bins

5 bins

- Too many bins: Not enough data!
- Too few bins: Not descriptive!

Optimal Bin-width

Here is a method to estimate the bin-width. The method is called Cross-Validation.

Notations

- n : number of data points
- m: number of bins
- h : bin-width: n / m. (Can round off to nearest integer.)
- \widehat{p}_{j} : frequency of the j-th bin.

Cross-validation Score:

$$
J(h)=\frac{2}{(n-1) h}-\frac{n+1}{(n-1) h}\left(\widehat{p}_{1}^{2}+\widehat{p}_{2}^{2}+\ldots+\widehat{p}_{m}^{2}\right) .
$$

Optimal Bin-width

Procedure:

- Pick the number of bins m.
- Since n is fixed, we can compute $h=n / m$.
- Build a histogram of m bins.
- The heights of the histogram bars are \widehat{p}_{j}.
- Calculate the Cross-Validation Score $J(h)$.
- If $J(h)$ is high, try another m until $J(h)$ is low enough.

Optimal Bin-width

Summary

Histogram:

- The most basic tool we use to analyze data.
- Three components: states, empirical probability, bin-width.
- Bin-width can be controlled by Cross Validation.
- Sample Mean: average of computed from the histogram.
- Sample Variance: deviation found of the states in the histogram.
- High-dimensional histograms.

