ECE 20875 Python for Data Science Milind Kulkarni and Chris Brinton

classification: naive bayes

what is classification?

- Given a data point, tell me what class it falls into
 - Is this animal a mammal, a bird, a fish, ...
 - Is this picture a cat, a horse, a car, ...
- Generally, we want to *learn* a classifier
 - Given a bunch of data points: x₁, x₂, x₃, etc. where each data point is *labeled* with its class
 - Classifier should be able to tell which class a new datapoint belongs to
 - Because we start with labeled data, this is an example of supervised learning

classification

- Consider datapoints in a *d*-dimensional space, i.e., each data point being defined by d features a_1, a_2, \ldots, a_d
- Each datapoint is from one of k possible classes $C_0, C_1, \ldots, C_{k-1}$
- A classifier is a function $f(a_1, a_2, \ldots, a_d) = C_x$, where $C_x \in \{C_0, C_1, \dots\}$
- We will focus on learning classifiers for two classes, i.e., k = 2

four different strategies

- Like regression, there are many different flavors of classification algorithms
- We will talk about four different, yet common and representative strategies:
 - Naïve Bayes: Simple model to use. But is *parametric* requires assumptions about data
 - k-nearest neighbor (kNN): Very easy model to understand. Expensive model to evaluate. But is *non-parametric* — requires few assumptions about data
 - Support Vector Machine (SVM): Another non-parametric model which is harder to interpret than kNN but may have more explanatory power
 - Neural networks: Trendy approach! Essentially cascading nonlinear functions together to maximize potential predictive power

- Basic idea: Each class of data can be described by a distribution (histogram) showing how likely different data points are
 - If I have a new data point x, which distribution is it more likely to come from?
- Example: Two classes of cars sports cars and minivans
 - Each car can be described by its average speed, and the two classes have different distributions of speeds (e.g., sports cars have a higher average speed than minivans)
 - I see a new speed reading. Is it a sports car or a minivan?

- Basic idea: each class of data can be described by a distribution (histogram) showing how likely different data points are
 - If I have a new data point x, which distribution is it more likely to come from?
- Use the posterior distributions (conditional probabilities):

• Problem: How do we actually infer these probabilities?

- for (i.e., prior knowledge)
- models

$$P(C_0 | x) = \frac{P(x | C_0)P(C_0)}{P(x)}$$

 Bayes' theorem tells us how to compute the posterior probability (which we do not necessarily know) using probabilities we have good estimates

• We have seen this "trick" before, most recently with Gaussian mixture

$$P(C_1 | x) = \frac{P(x | C_1)P(C_1)}{P(x)}$$

 $P(C_0 | x)$ **vs** $P(C_1 | x)$

- for (i.e., prior knowledge)
- models

$$P(C_0 | x) = \frac{P(x | C_0)P(C_0)}{P(x)}$$

 $P(x \mid C_0) P(C_0$

P(x)

 Bayes' theorem tells us how to compute the posterior probability (which we do not necessarily know) using probabilities we have good estimates

$$P(C_1 | x) = \frac{P(x | C_1)P(C_1)}{P(x)}$$

$$\frac{P(x \mid C_1)P(C_1)}{P(x)} \ge \frac{P(x \mid C_1)P(C_1)}{P(x)}$$

- for (i.e., prior knowledge)
- models

$$P(C_0 | x) = \frac{P(x | C_0)P(C_0)}{P(x)}$$

$$P(x \mid C_0) P(C_0) \stackrel{?}{>} P(x \mid C_1) P(C_1)$$

 Bayes' theorem tells us how to compute the posterior probability (which we do not necessarily know) using probabilities we have good estimates

$$P(C_1 | x) = \frac{P(x | C_1)P(C_1)}{P(x)}$$

- for (i.e., prior knowledge)
- models

$$P(C_0 | x) = \frac{P(x | C_0)P(C_0)}{P(x)}$$

$$P(x \mid C_0) \frac{P(C_0)}{P(C_1)} \stackrel{?}{>} P(x \mid C_1)$$

 Bayes' theorem tells us how to compute the posterior probability (which we do not necessarily know) using probabilities we have good estimates

$$P(C_1 | x) = \frac{P(x | C_1)P(C_1)}{P(x)}$$

- for (i.e., prior knowledge)
- models

$$P(C_0 | x) = \frac{P(x | C_0)P(C_0)}{P(x)}$$

 Bayes' theorem tells us how to compute the posterior probability (which we do not necessarily know) using probabilities we have good estimates

$$P(C_1 | x) = \frac{P(x | C_1)P(C_1)}{P(x)}$$

$$\frac{P(C_0)}{P(C_1)} \stackrel{?}{>} P(x \mid C_1)$$

- for (i.e., prior knowledge)
- models

$$P(C_0 | x) = \frac{P(x | C_0)P(C_0)}{P(x)}$$

$$P(x \mid C_0) \frac{P}{P}$$

 Bayes' theorem tells us how to compute the posterior probability (which we do not necessarily know) using probabilities we have good estimates

$$P(C_1 | x) = \frac{P(x | C_1)P(C_1)}{P(x)}$$

- for (i.e., prior knowledge)
- models

$$P(C_0 | x) = \frac{P(x | C_0)P(C_0)}{P(x)}$$

 Bayes' theorem tells us how to compute the posterior probability (which we do not necessarily know) using probabilities we have good estimates

• We have seen this "trick" before, most recently with Gaussian mixture

$$P(C_1 | x) = \frac{P(x | C_1)P(C_1)}{P(x)}$$

 $P(x \mid C_0) \xrightarrow{P(C_0)} \stackrel{?}{\stackrel{?}{\stackrel{}{\succ}} P(x \mid C_1)$ How much more common Class 0 Is than Class 1

how does this help?

- Once we've applied Bayes' theorem, we can estimate the necessary probabilities
- $P(C_0)/P(C_1)$: Comes from prior knowledge
 - Given all cars, how much more common are minivans than sports cars?
 - If we have no prior knowledge, we may assume that both classes are equally likely, i.e., $P(C_0)/P(C_1) = 1$
- $P(x \mid C_0) \& P(x \mid C_1)$: Comes from estimates of distributions
 - Estimate the distributions of the two classes given the labeled data!

estimating distribution

- Can always fall back on empirical distributions
 - estimators (recall the histogram lecture) data, estimate the parameters of that model check the likelihood
- Use datasets to build histograms, use histograms as Parametric is more common with Naive Bayes Use some prior knowledge to choose a model for your Common choice: Gaussian Naive Bayes

- $\mathcal{N}(\mu_1, \sigma_1^2)$ $\mathcal{N}(\mu_2, \sigma_2^2)$ Estimate mean and variance from data sets
 - Given a Gaussian, can directly "read off" likelihoods given x

- Estimate parameters of **sports cars** and minivans by using mean and variance of training data
- Use resulting normal distributions to compute likelihoods of new data point being in one class or the other based on observed speed

- Estimate parameters of **sports cars** and minivans by using mean and variance of training data
- Use resulting normal distributions to compute likelihoods of new data point being in one class or the other based on observed speed
- If speed is high, more likely to be sports car

- Estimate parameters of **sports cars** and minivans by using mean and variance of training data
- Use resulting normal distributions to compute likelihoods of new data point being in one class or the other based on observed speed
- If speed is low, more likely to be minivan

- Estimate parameters of **sports cars** and minivans by using mean and variance of training data
- Use resulting normal distributions to compute likelihoods of new data point being in one class or the other based on observed speed
- Note that it is possible to misclassify!

- Estimate parameters of **sports cars** and minivans by using mean and variance of training data
- Use resulting normal distributions to compute likelihoods of new data point being in one class or the other based on observed speed
- Note that it is possible to misclassify!

naïve bayes in Python

- The sklearn.naive_bayes library (<u>h</u> scikit-learn.org/stable/modules/ classes.html#module-sklearn.naiv
- Two main types of interest
 - Gaussian: from sklearn.naive_b import GaussianNB
 - Bernoulli: from sklearn.naive_ba import BernoulliNB

<u>nttps://</u>	from sklearn.datasets import load_iris iris = load_iris()
<u>ve_bayes)</u>	X = iris.data y = iris.target
	from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_spl y, test_size=0.4, random_state=1)
ayes	from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(X_train, y_train)
ayes	<pre>y_pred = gnb.predict(X_test)</pre>
	from sklearn import metrics print("Gaussian Naive Bayes model accuracy(%):", metrics.accuracy_score(y_test, y_pred)**

what about higher dimensions?

- Suppose we have d features for each datapoint instead of just one
- Can use a multivariable Gaussian
 - Instead of defining in terms of mean and variance, define in terms of mean (of each dimension) and covariance matrix (cov command in numpy computes covariance)
 - Mean is d x 1 vector μ , covariance is d x d matrix Σ with determinant \sum

$$\frac{1}{2\pi)^d |\Sigma|} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

See: scipy.stats.multivariate_normal

what about multiple classes?

- We just compare more cases
- For *k* classes, the predicted class for datapoint *x* is

arg max $P(x | C_i)P(C_i)$ i=0,...,k-1

• Issue with more classes is we have less data with which to infer each class' $P(x \mid C_i)$

- + Easy to build classifier (once you have a model)
- + Easy to compute likelihood
- + Robust to outliers (don't shift distribution much)
- + Good for missing data (distribution lets you estimate behaviors of data points you don't have)
- Need to choose a model for the data (get it wrong, classifier will not be reliable)
- Need prior knowledge to build classifier (relative likelihood of classes)