
ECE 20875
Python for Data Science

Milind Kulkarni and Chris Brinton

classification: naive bayes

what is classification?
• Given a data point, tell me what class it falls into

• Is this animal a mammal, a bird, a fish, …

• Is this picture a cat, a horse, a car, …

• Generally, we want to learn a classifier

• Given a bunch of data points: x1, x2, x3, etc. where
each data point is labeled with its class

• Classifier should be able to tell which class a new
datapoint belongs to

• Because we start with labeled data, this is an
example of supervised learning

classification
• Consider datapoints in a d-dimensional space, i.e.,

each data point being defined by d features

• Each datapoint is from one of k possible classes

• A classifier is a function ,
where

• We will focus on learning classifiers for two classes,
i.e.,

a1, a2, . . . , ad

C0, C1, . . . , Ck−1

f(a1, a2, . . . , ad) = Cx
Cx ∈ {C0, C1, . . . }

k = 2

four different strategies
• Like regression, there are many different flavors of classification algorithms

• We will talk about four different, yet common and representative strategies:

• Naïve Bayes: Simple model to use. But is parametric — requires assumptions
about data

• k-nearest neighbor (kNN): Very easy model to understand. Expensive model
to evaluate. But is non-parametric — requires few assumptions about data

• Support Vector Machine (SVM): Another non-parametric model which is
harder to interpret than kNN but may have more explanatory power

• Neural networks: Trendy approach! Essentially cascading nonlinear functions
together to maximize potential predictive power

naïve bayes
• Basic idea: Each class of data can be described by a distribution

(histogram) showing how likely different data points are

• If I have a new data point x, which distribution is it more likely to come
from?

• Example: Two classes of cars — sports cars and minivans

• Each car can be described by its average speed, and the two classes
have different distributions of speeds (e.g., sports cars have a higher
average speed than minivans)

• I see a new speed reading. Is it a sports car or a minivan?

naïve bayes
• Basic idea: each class of data can be described by a distribution

(histogram) showing how likely different data points are

• If I have a new data point x, which distribution is it more likely to come
from?

• Use the posterior distributions (conditional probabilities):

• Problem: How do we actually infer these probabilities?

P(C0 |x) vs P(C1 |x)

Probability that I am a minivan given that I have
average speed x

Probability that I am a sports car given that I have
average speed x

bayes’ theorem to the rescue
• Bayes’ theorem tells us how to compute the posterior probability (which

we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

• We have seen this “trick” before, most recently with Gaussian mixture
models

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(C0 |x) vs P(C1 |x)

• Bayes’ theorem tells us how to compute the posterior probability (which
we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

• We have seen this “trick” before, most recently with Gaussian mixture
models

bayes’ theorem to the rescue

P(x |C0)P(C0)
P(x)

?
>

P(x |C1)P(C1)
P(x)

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

• Bayes’ theorem tells us how to compute the posterior probability (which
we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

• We have seen this “trick” before, most recently with Gaussian mixture
models

bayes’ theorem to the rescue

P(x |C0)P(C0)
?
> P(x |C1)P(C1)

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

• Bayes’ theorem tells us how to compute the posterior probability (which
we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

• We have seen this “trick” before, most recently with Gaussian mixture
models

bayes’ theorem to the rescue

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

• Bayes’ theorem tells us how to compute the posterior probability (which
we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

• We have seen this “trick” before, most recently with Gaussian mixture
models

bayes’ theorem to the rescue

Likelihood of x in
Class 0

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)

bayes’ theorem to the rescue

Likelihood of x
in Class 1

• Bayes’ theorem tells us how to compute the posterior probability (which
we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

• We have seen this “trick” before, most recently with Gaussian mixture
models

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)

bayes’ theorem to the rescue

How much more common Class 0
Is than Class 1

• Bayes’ theorem tells us how to compute the posterior probability (which
we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

• We have seen this “trick” before, most recently with Gaussian mixture
models

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)

• Once we’ve applied Bayes’ theorem, we can estimate
the necessary probabilities

• : Comes from prior knowledge

• Given all cars, how much more common are minivans
than sports cars?

• If we have no prior knowledge, we may assume that
both classes are equally likely, i.e.,

• : Comes from estimates of
distributions

• Estimate the distributions of the two classes given
the labeled data!

P(C0)/P(C1)

P(C0)/P(C1) = 1

P(x |C0) & P(x |C1)

how does this help?

estimating distribution
• Can always fall back on empirical distributions

• Use datasets to build histograms, use histograms as
estimators (recall the histogram lecture)

• Parametric is more common with Naive Bayes

• Use some prior knowledge to choose a model for your
data, estimate the parameters of that model

• Common choice: Gaussian Naive Bayes

• Estimate mean and variance from data sets

• Given a Gaussian, can directly “read off” likelihoods
given x

naïve bayes with gaussian
• Estimate parameters of sports cars

and minivans by using mean and
variance of training data

• Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed

naïve bayes with gaussian
• Estimate parameters of sports cars

and minivans by using mean and
variance of training data

• Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed

• If speed is high, more likely to be
sports car

Note: here we are assuming that P(minivan) = P(sports car)

naïve bayes with gaussian
• Estimate parameters of sports cars

and minivans by using mean and
variance of training data

• Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed

• If speed is low, more likely to be
minivan

Note: here we are assuming that P(minivan) = P(sports car)

naïve bayes with gaussian
• Estimate parameters of sports cars

and minivans by using mean and
variance of training data

• Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed

• Note that it is possible to
misclassify!

Note: here we are assuming that P(minivan) = P(sports car)

naïve bayes with gaussian
• Estimate parameters of sports cars

and minivans by using mean and
variance of training data

• Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed

• Note that it is possible to
misclassify!

Note: here we are assuming that P(minivan) = P(sports car)

naïve bayes in Python
• The sklearn.naive_bayes library (https://

scikit-learn.org/stable/modules/
classes.html#module-sklearn.naive_bayes)

• Two main types of interest

• Gaussian: from sklearn.naive_bayes
import GaussianNB

• Bernoulli: from sklearn.naive_bayes
import BernoulliNB

from sklearn.datasets import load_iris
iris = load_iris()

X = iris.data
y = iris.target

from sklearn.model_selection import
train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,
y, test_size=0.4, random_state=1)

from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, y_train)

y_pred = gnb.predict(X_test)

from sklearn import metrics
print("Gaussian Naive Bayes model accuracy(in
%):", metrics.accuracy_score(y_test, y_pred)*100)

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes

what about higher dimensions?
• Suppose we have d features for each datapoint instead of just one

• Can use a multivariable Gaussian

• Instead of defining in terms of mean and variance, define in terms of
mean (of each dimension) and covariance matrix (cov command in
numpy computes covariance)

• Mean is d x 1 vector , covariance is d x d matrix with determinant μ Σ
|Σ |

𝒩(x |μ, Σ) =
1

(2π)d |Σ |
e− 1

2 (x−μ)TΣ−1(x−μ)

See: scipy.stats.multivariate_normal

what about multiple classes?
• We just compare more cases

• For classes, the predicted class
for datapoint is

• Issue with more classes is we have
less data with which to infer each
class’

k
x

P(x |Ci)

arg max
i=0,...,k−1

P(x |Ci)P(Ci)

pros vs cons
+ Easy to build classifier (once you have a model)

+ Easy to compute likelihood

+ Robust to outliers (don’t shift distribution much)

+ Good for missing data (distribution lets you estimate behaviors of data points
you don’t have)

- Need to choose a model for the data (get it wrong, classifier will not be
reliable)

- Need prior knowledge to build classifier (relative likelihood of classes)

