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classification: naive bayes



what i1s classification?

e Given a data point, tell me what class it falls into
e |s this animal a mammal, a bird, a fish, ...
e |s this picture a cat, a horse, a car, ...
 Generally, we want to learn a classifier

* Given a bunch of data points: x1, X2, X3, etc. where
each data point is labeled with its class

e (Classifier should be able to tell which class a new
datapoint belongs to

« Because we start with labeled data, this is an
example of supervised learning




classification

Consider datapoints in a d-dimensional space, Ii.e.,
each data point being defined by d features

A, Ay, ... A

Each datapoint is from one of k possible classes

C,,C,...,C,_,

A classifier is a function f(a, a,, ..., a,;) = C,,
where C. € {C,, Cy, ... }

We will focus on learning classifiers for two classes,
e, k=2




four different strategies

e Like regression, there are many different flavors of classification algorithms
 We will talk about four different, yet common and representative strategies:

 Naive Bayes: Simple model to use. But is parametric — requires assumptions
about data

* k-nearest neighbor (KNN): Very easy model to understand. Expensive model
to evaluate. But is non-parametric — requires few assumptions about data

e Support Vector Machine (SVM): Another non-parametric model which is
harder to interpret than KNN but may have more explanatory power

* Neural networks: Trendy approach! Essentially cascading nonlinear functions
together to maximize potential predictive power



naive bayes

 Basic idea: Each class of data can be described by a distribution
(histogram) showing how likely different data points are

e If | have a new data point x, which distribution is it more likely to come
from?

« Example: Two classes of cars — sports cars and minivans

 Each car can be described by its average speed, and the two classes
have different distributions of speeds (e.g., sports cars have a higher

average speed than minivans)

* | see a new speed reading. Is it a sports car or a minivan?



naive bayes

Basic idea: each class of data can be described by a distribution
(histogram) showing how likely different data points are

* If | have a new data point x, which distribution is it more likely to come
from?

Use the posterior distributions (conditional probabilities):

P(Cy|x) vs P(C|x)

d N\

Probability that | am a minivan given that | have Probability that | am a sports car given that | have
average speed x average speed x

Problem: How do we actually infer these probabilities?



bayes’ theorem to the rescue

 Bayes’ theorem tells us how to compute the posterior probability (which
we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

* \We have seen this “trick” before, most recently with Gaussian mixture
models

P(Cy|x) = P(x\}f?))cl)f’(Co) P(Cy|x) = P(x‘g(l));(cﬁ

P(Cy|x) vs P(C,|x)
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bayes’ theorem to the rescue

 Bayes’ theorem tells us how to compute the posterior probability (which
we do not necessarily know) using probabilities we have good estimates
for (i.e., prior knowledge)

* \We have seen this “trick” before, most recently with Gaussian mixture
models

P(Cy|x) = P(x\}f?))cl)f’(Co) P(Cy|x) = P(x‘g(l));(cﬁ

P(Cy)| 2
B > P ()C ‘ Cl)
( 1) How much more common Class 0

Is than Class 1

P(X‘Co)



how does this help?

 Once we’ve applied Bayes’ theorem, we can estimate
the necessary probabillities

» P(Cy)/P(C,) : Comes from prior knowledge

 Given all cars, how much more common are minivans
than sports cars?

* |f we have no prior knowledge, we may assume that
both classes are equally likely, i.e., P(Cy)/P(C,) = 1 >

« P(x|Cy) & P(x|C,): Comes from estimates of
distributions

* Estimate the distributions of the two classes given
the labeled datal!

Naive Bayes Model



estimating distribution

e Can always fall back on empirical distributions

» Use datasets to build histograms, use histograms as > >
estimators (recall the histogram lecture) ° o
o .00

 Parametric is more common with Naive Bayes —_ _ —_ /

 Use some prior knowledge to choose a model for your
data, estimate the parameters of that model

« Common choice: Gaussian Naive Bayes >chec the likelihood

 Estimate mean and variance from data sets N (p1,071) N (p2,03)

* Given a Gaussian, can directly “read off” likelihoods
given x



naive bayes with gaussian

 Estimate parameters of sports cars
and minivans by using mean and
variance of training data

* Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed
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naive bayes with gaussian

 Estimate parameters of sports cars
and minivans by using mean and
variance of training data . /\
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* Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other °*-
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Note: here we are assuming that P(minivan) = P(sports car)



naive bayes with gaussian

 Estimate parameters of sports cars
and minivans by using mean and
variance of training data . /\

» Use resulting normal distributions to ¢
compute likelihoods of new data o
point being in one class or the other
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naive bayes with gaussian
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naive bayes with gaussian
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naive bayes in Python

* The sklearn.naive_bayes library (https://
scikit-learn.org/stable/modules/
classes.html#module-sklearn.naive bayes)

 Two main types of interest

 (Gaussian: from sklearn.naive_bayes
import GaussianNB

* Bernoulli: from sklearn.naive_bayes
import BernoulliNB

from sklearn.datasets import load_iris
iris = load_iris()

X = Iris.data
y = iris.target

from sklearn.model_selection import
train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,
y, test_size=0.4, random_state=1)

from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, y_train)

y_pred = gnb.predict(X_test)
from sklearn import metrics

print("Gaussian Naive Bayes model accuracy(in
%):", metrics.accuracy_score(y_test, y_pred)*100)


https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes

what about higher dimensions?

e Suppose we have d features for each datapoint instead of just one

e Can use a multivariable Gaussian

* |Instead of defining in terms of mean and variance, define in terms of
mean (of each dimension) and covariance matrix (cov command in
numpy computes covariance)

* Mean is d x 1 vector u, covariance is d x d matrix 2 with determinant

Py 1 -
N (X|p, 2) = o~ 7= X7 (x—p)
V(2| L]

See: scipy.stats.multivariate_normal




what about multiple classes?

 We just compare more cases

0.15

» For k classes, the predicted class
for datapoint x Is

0.10

arg max P(x|C)P(C)
i=0,....k—1

0.05
I

e |ssue with more classes is we have
less data with which to infer each

0.00

class’ P(x| C)) T ' ' !



pPros vs cons

Easy to build classifier (once you have a model)

Easy to compute likelihood
Robust to outliers (don’t shift distribution much)

Good for missing data (distribution lets you estimate behaviors of data points
you don’t have)

- Need to choose a model for the data (get it wrong, classifier will not be
reliable)

- Need prior knowledge to build classifier (relative likelihood of classes)



