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classification: naive bayes



what is classification? 
• Given a data point, tell me what class it falls into


• Is this animal a mammal, a bird, a fish, …


• Is this picture a cat, a horse, a car, …


• Generally, we want to learn a classifier


• Given a bunch of data points: x1, x2, x3, etc. where 
each data point is labeled with its class


• Classifier should be able to tell which class a new 
datapoint belongs to


• Because we start with labeled data, this is an 
example of supervised learning



classification
• Consider datapoints in a d-dimensional space, i.e., 

each data point being defined by d features 



• Each datapoint is from one of k possible classes 



• A classifier is a function , 
where 


• We will focus on learning classifiers for two classes, 
i.e., 

a1, a2, . . . , ad

C0, C1, . . . , Ck−1

f(a1, a2, . . . , ad) = Cx
Cx ∈ {C0, C1, . . . }

k = 2



four different strategies 
• Like regression, there are many different flavors of classification algorithms


• We will talk about four different, yet common and representative strategies:


• Naïve Bayes: Simple model to use. But is parametric — requires assumptions 
about data


• k-nearest neighbor (kNN): Very easy model to understand. Expensive model 
to evaluate. But is non-parametric — requires few assumptions about data


• Support Vector Machine (SVM): Another non-parametric model which is 
harder to interpret than kNN but may have more explanatory power


• Neural networks: Trendy approach! Essentially cascading nonlinear functions 
together to maximize potential predictive power



naïve bayes
• Basic idea: Each class of data can be described by a distribution 

(histogram) showing how likely different data points are


• If I have a new data point x, which distribution is it more likely to come 
from?


• Example: Two classes of cars — sports cars and minivans 

• Each car can be described by its average speed, and the two classes 
have different distributions of speeds (e.g., sports cars have a higher 
average speed than minivans)


• I see a new speed reading. Is it a sports car or a minivan?



naïve bayes
• Basic idea: each class of data can be described by a distribution 

(histogram) showing how likely different data points are


• If I have a new data point x, which distribution is it more likely to come 
from?


• Use the posterior distributions (conditional probabilities):


• Problem: How do we actually infer these probabilities?

P(C0 |x) vs P(C1 |x)

Probability that I am a minivan given that I have 
average speed x

Probability that I am a sports car given that I have 
average speed x



bayes’ theorem to the rescue
• Bayes’ theorem tells us how to compute the posterior probability (which 

we do not necessarily know) using probabilities we have good estimates 
for (i.e., prior knowledge)


• We have seen this “trick” before, most recently with Gaussian mixture 
models

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(C0 |x) vs P(C1 |x)
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for (i.e., prior knowledge)


• We have seen this “trick” before, most recently with Gaussian mixture 
models

bayes’ theorem to the rescue

P(x |C0)P(C0)
?
> P(x |C1)P(C1)

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)
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• Bayes’ theorem tells us how to compute the posterior probability (which 
we do not necessarily know) using probabilities we have good estimates 
for (i.e., prior knowledge)


• We have seen this “trick” before, most recently with Gaussian mixture 
models

bayes’ theorem to the rescue

Likelihood of x in 
Class 0

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(x |C0)
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bayes’ theorem to the rescue

Likelihood of x 
in Class 1

• Bayes’ theorem tells us how to compute the posterior probability (which 
we do not necessarily know) using probabilities we have good estimates 
for (i.e., prior knowledge)


• We have seen this “trick” before, most recently with Gaussian mixture 
models

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)



bayes’ theorem to the rescue

How much more common Class 0 
Is than Class 1

• Bayes’ theorem tells us how to compute the posterior probability (which 
we do not necessarily know) using probabilities we have good estimates 
for (i.e., prior knowledge)


• We have seen this “trick” before, most recently with Gaussian mixture 
models

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)



• Once we’ve applied Bayes’ theorem, we can estimate 
the necessary probabilities


•  : Comes from prior knowledge


• Given all cars, how much more common are minivans 
than sports cars?


• If we have no prior knowledge, we may assume that 
both classes are equally likely, i.e., 


•  : Comes from estimates of 
distributions


• Estimate the distributions of the two classes given 
the labeled data!

P(C0)/P(C1)

P(C0)/P(C1) = 1

P(x |C0) & P(x |C1)

how does this help?



estimating distribution
• Can always fall back on empirical distributions


• Use datasets to build histograms, use histograms as 
estimators (recall the histogram lecture)


• Parametric is more common with Naive Bayes


• Use some prior knowledge to choose a model for your 
data, estimate the parameters of that model


• Common choice: Gaussian Naive Bayes


• Estimate mean and variance from data sets


• Given a Gaussian, can directly “read off” likelihoods 
given x



naïve bayes with gaussian
• Estimate parameters of sports cars 

and minivans by using mean and 
variance of training data


• Use resulting normal distributions to 
compute likelihoods of new data 
point being in one class or the other 
based on observed speed



naïve bayes with gaussian
• Estimate parameters of sports cars 

and minivans by using mean and 
variance of training data


• Use resulting normal distributions to 
compute likelihoods of new data 
point being in one class or the other 
based on observed speed


• If speed is high, more likely to be 
sports car

Note: here we are assuming that P(minivan) = P(sports car)



naïve bayes with gaussian
• Estimate parameters of sports cars 

and minivans by using mean and 
variance of training data


• Use resulting normal distributions to 
compute likelihoods of new data 
point being in one class or the other 
based on observed speed


• If speed is low, more likely to be 
minivan

Note: here we are assuming that P(minivan) = P(sports car)



naïve bayes with gaussian
• Estimate parameters of sports cars 

and minivans by using mean and 
variance of training data


• Use resulting normal distributions to 
compute likelihoods of new data 
point being in one class or the other 
based on observed speed


• Note that it is possible to 
misclassify!

Note: here we are assuming that P(minivan) = P(sports car)
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naïve bayes in Python
• The sklearn.naive_bayes library (https://

scikit-learn.org/stable/modules/
classes.html#module-sklearn.naive_bayes)


• Two main types of interest


• Gaussian: from sklearn.naive_bayes 
import GaussianNB

• Bernoulli: from sklearn.naive_bayes 
import BernoulliNB

from sklearn.datasets import load_iris 
iris = load_iris() 

X = iris.data 
y = iris.target 

from sklearn.model_selection import 
train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, 
y, test_size=0.4, random_state=1) 

from sklearn.naive_bayes import GaussianNB 
gnb = GaussianNB() 
gnb.fit(X_train, y_train) 

y_pred = gnb.predict(X_test) 

from sklearn import metrics 
print("Gaussian Naive Bayes model accuracy(in 
%):", metrics.accuracy_score(y_test, y_pred)*100)

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes


what about higher dimensions?
• Suppose we have d features for each datapoint instead of just one


• Can use a multivariable Gaussian


• Instead of defining in terms of mean and variance, define in terms of 
mean (of each dimension) and covariance matrix (cov command in 
numpy computes covariance)


• Mean is d x 1 vector , covariance is d x d matrix  with determinant μ Σ
|Σ |

𝒩(x |μ, Σ) =
1

(2π)d |Σ |
e− 1

2 (x−μ)TΣ−1(x−μ)

See: scipy.stats.multivariate_normal



what about multiple classes?
• We just compare more cases


• For  classes, the predicted class 
for datapoint  is


• Issue with more classes is we have 
less data with which to infer each 
class’ 

k
x

P(x |Ci)

arg max
i=0,...,k−1

P(x |Ci)P(Ci)



pros vs cons
+ Easy to build classifier (once you have a model)


+ Easy to compute likelihood


+ Robust to outliers (don’t shift distribution much)


+ Good for missing data (distribution lets you estimate behaviors of data points 
you don’t have)


- Need to choose a model for the data (get it wrong, classifier will not be 
reliable)


- Need prior knowledge to build classifier (relative likelihood of classes)


