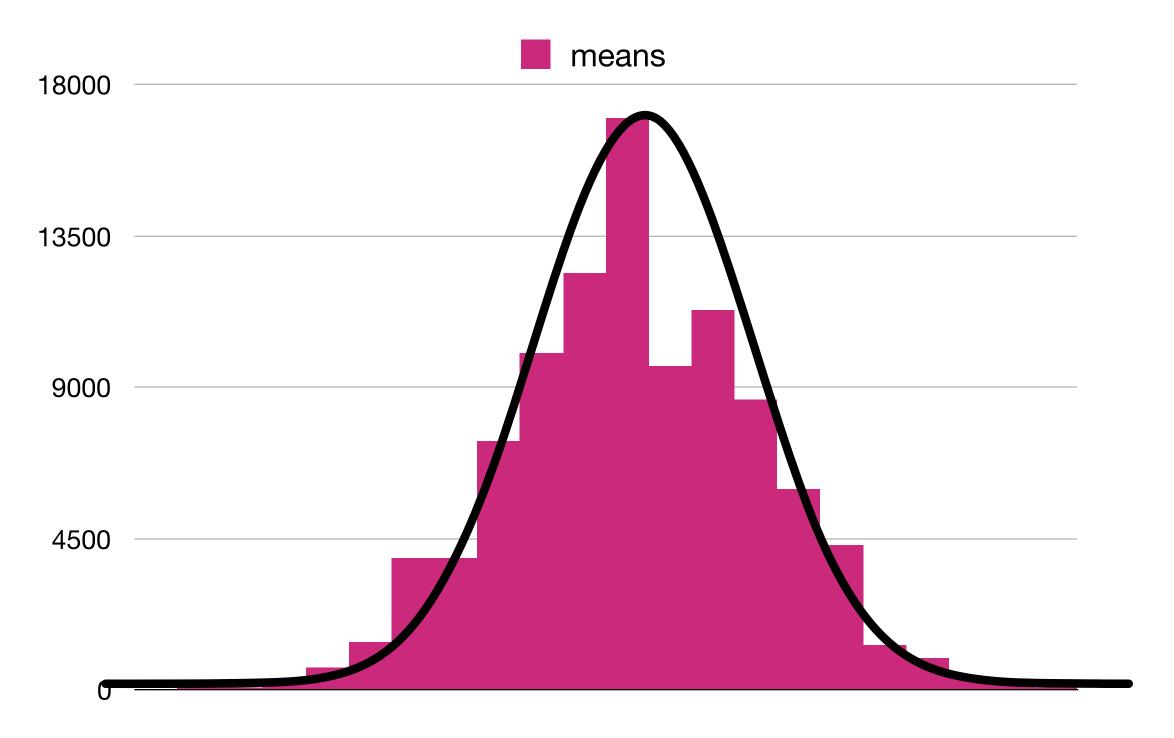
ECE 20875 Python for Data Science

Milind Kulkarni and Chris Brinton

confidence intervals and hypothesis testing

sampling distribution



Each data point is the \bar{x} of one experiment

- Recall that by the central limit theorem, sample means approach a normal distribution
- Can we use this to draw conclusions about our data?

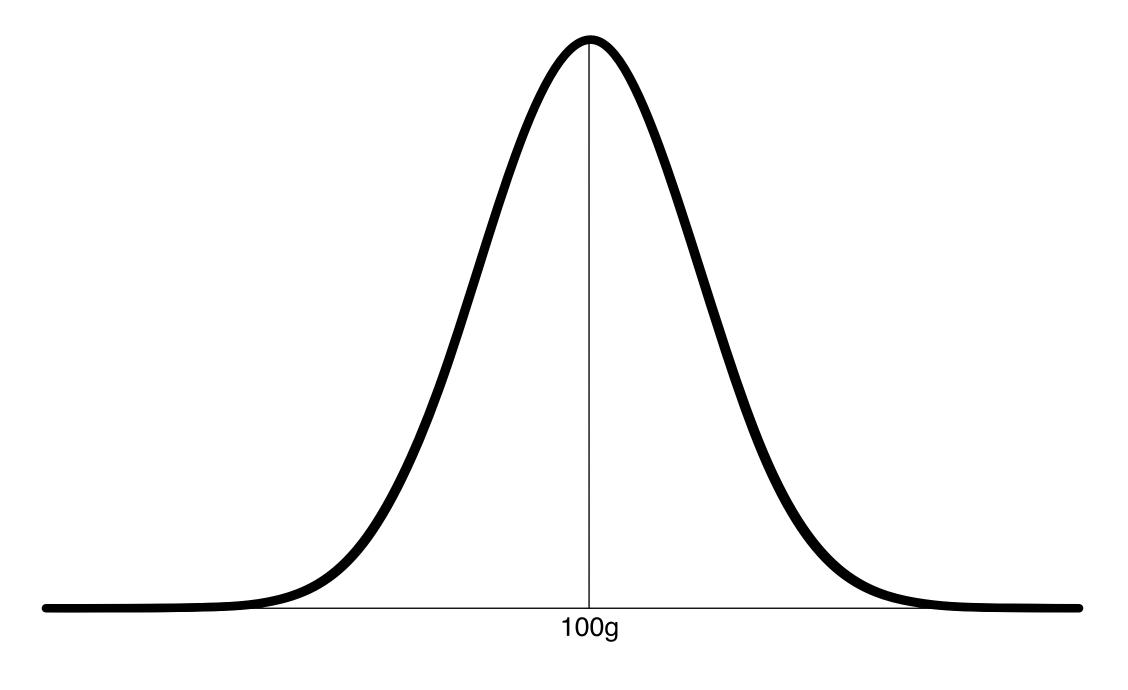
asking questions about data

- Suppose a factory claims to produce widgets with an average weight of 100g and a standard deviation of 22g
- We receive a new shipment of widgets which seem off, and we want to see whether the factory has shifted
- Form two hypotheses:
 - Null hypothesis (H_0): The factory is producing according to specification, i.e., $\mu = 100g$.
 - Alternative hypothesis (H_1): The factory is not producing according to specification, i.e., $\mu \neq 100g$.
- Suppose we weigh 100 of the new widgets (i.e., sample n=100 widgets) and find their average weight is $\bar{x}=95g$
 - What can we conclude?

asking questions about data

- Are the widgets in spec?
- Not as simple as it seems!
- We have picked one sample of widgets, but it could just be a bad sample!
- Can we use our sampling distribution to help?

hypothesis testing

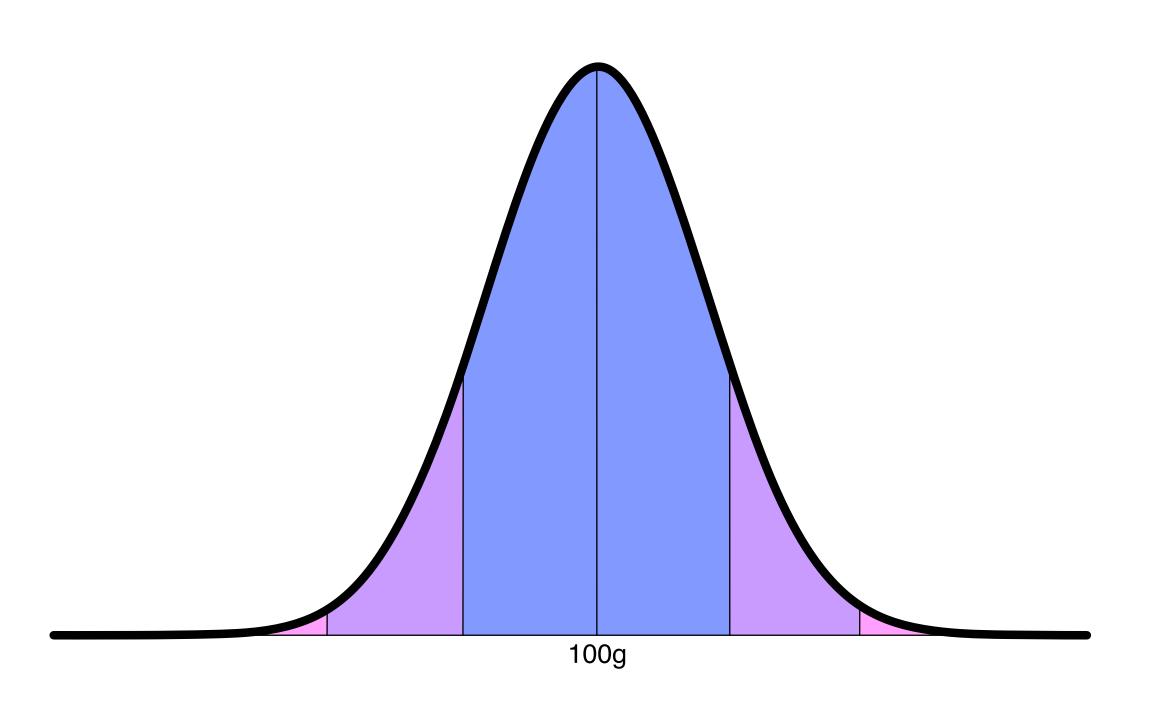


- Suppose the null hypothesis is true (new widgets are from the same distribution as the original widgets)
- Then the sampling distribution should have its mean at 100g
- And the sampling distribution should have a standard deviation of:

$$\frac{\sigma}{\sqrt{N}} = \frac{22}{10} = 2.2$$

- This is called the standard error (SE)
- Remember, σ is from the population, which we sometimes have to estimate with s (and use a different distribution)

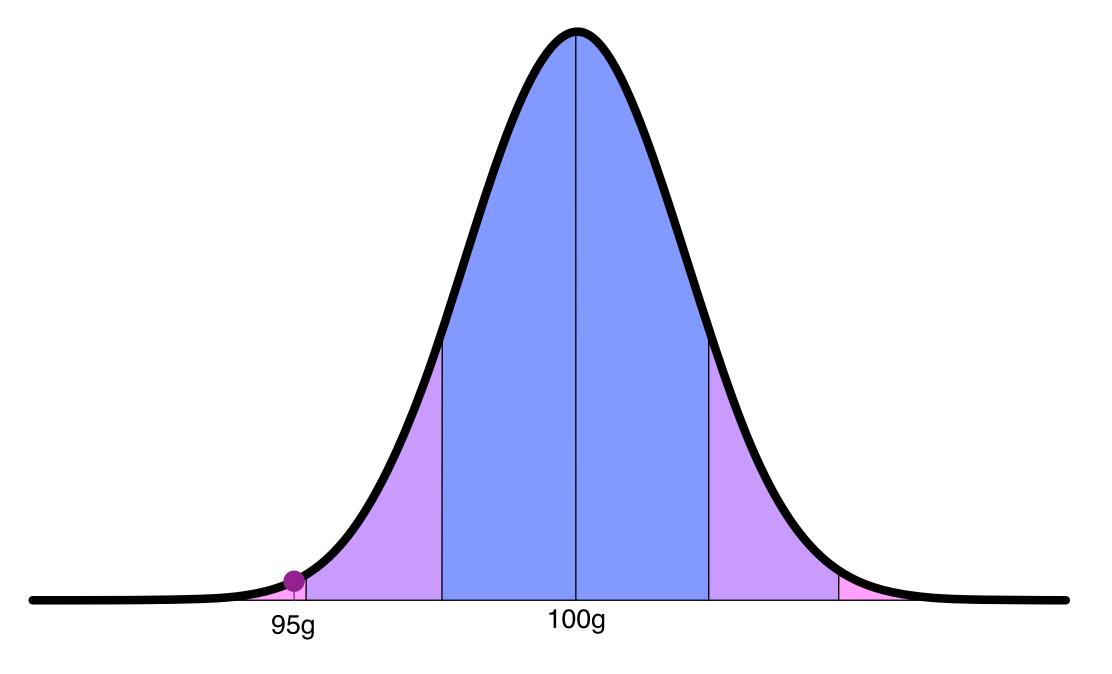
hypothesis testing



- Remember properties of normal distribution:
 - ~68% of points within one σ of μ
 - ~95% of points within two σ of μ
 - ~99.7% of points within three σ of μ

hypothesis testing

• So what about our sample \bar{x} of 95g?



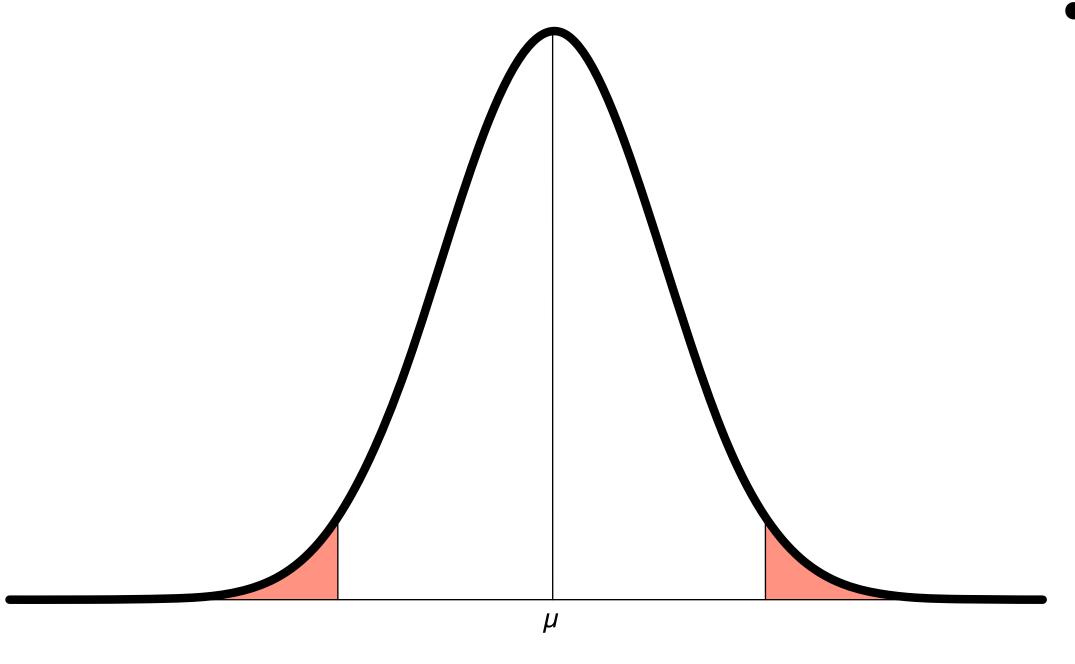
 Very unlikely for it to have come from this distribution!

- Remember properties of normal distribution:
 - ~68% of points within one σ of μ
 - ~95% of points within two σ of μ
 - ~99.7% of points within three σ of μ

z-test

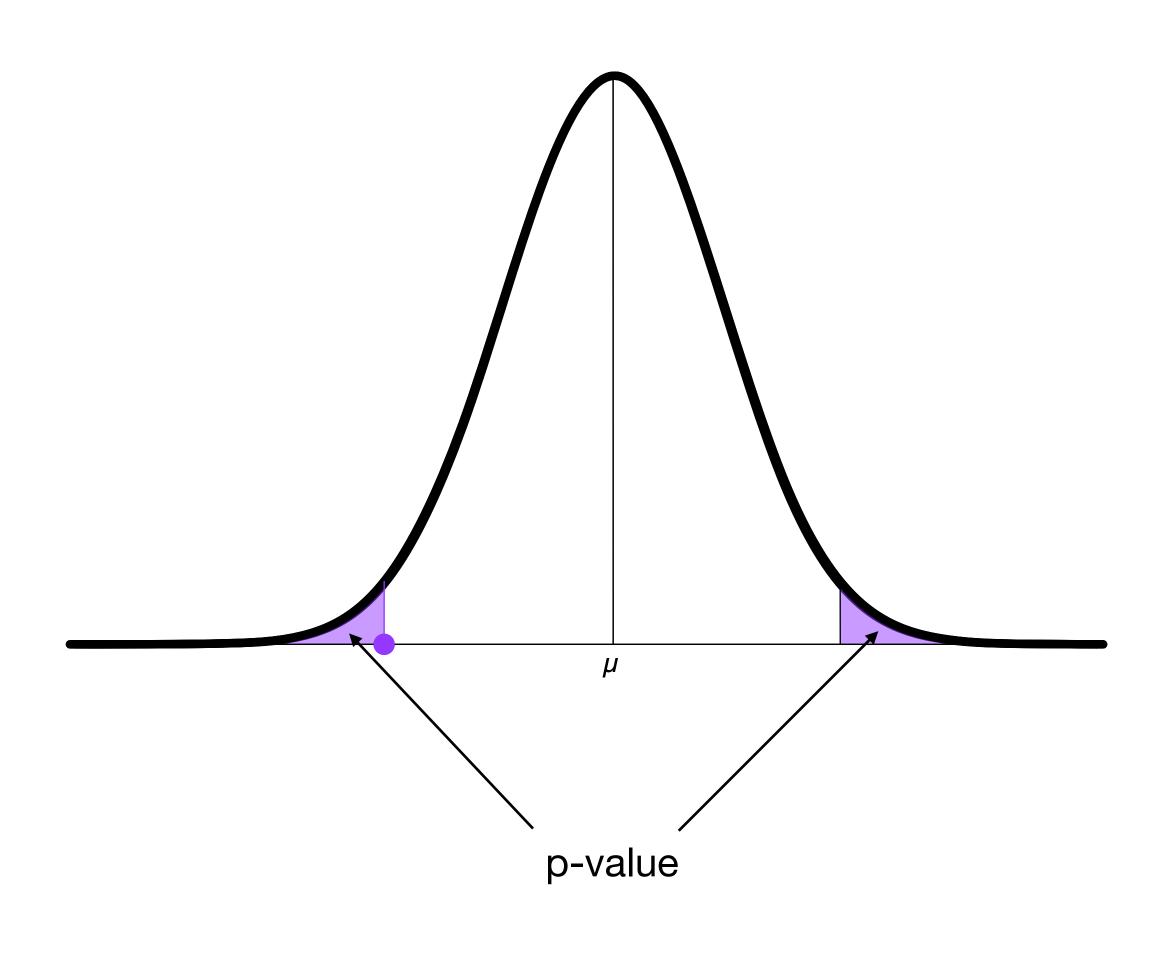
- Common way of dealing with these types of hypotheses is the z-test
 - Reasoning about μ
 - When we know σ or if n is large enough (if we don't know σ and n is large enough, we can estimate with s)
 - Can construct sampling distribution assuming null hypothesis is true
- Set a significance level α for the test
 - Fraction of distribution in "tails" considered anomalous is 2α
 - See whether sample \bar{x} falls in that tail
 - If so, **reject** null hypothesis H_0 in favor of alternative H_1 ; otherwise, **do not reject** (but this does not prove that H_0 is true)

z-test



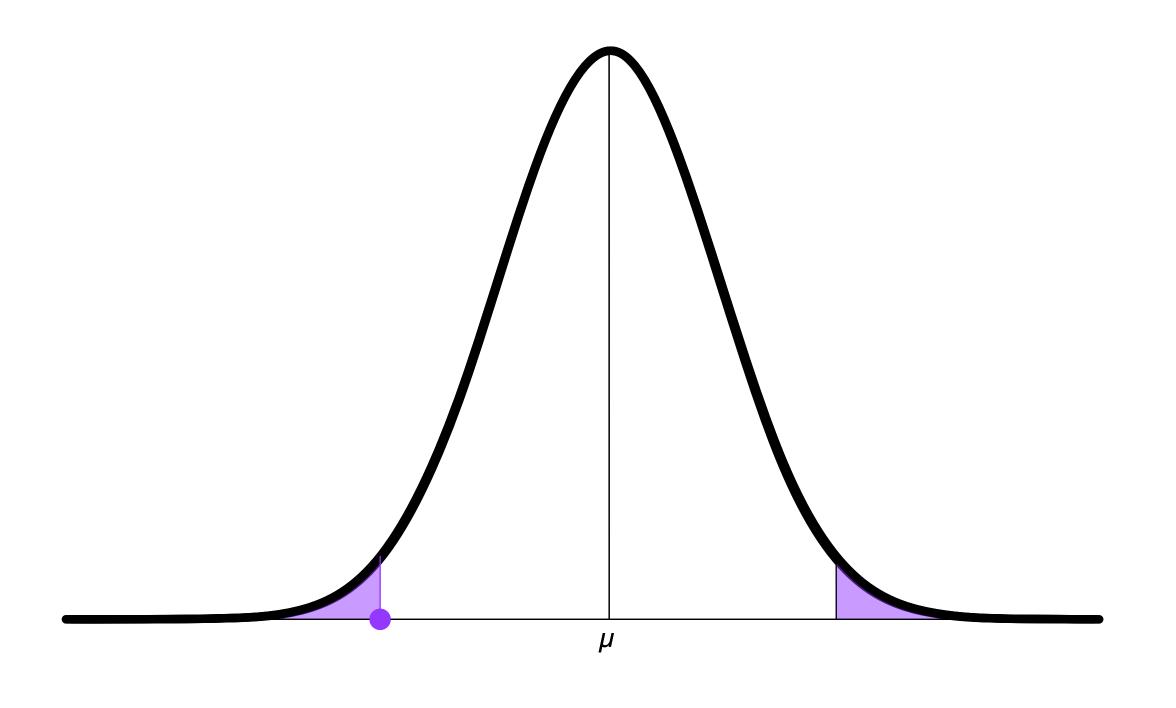
- Set a significance level α for the test
 - Fraction of distribution in "tails" considered anomalous is 2α
 - See whether sample \bar{x} falls in that tail
 - If so, **reject** null hypothesis H_0 in favor of alternative H_1 ; otherwise, **do not reject** (but this does not prove that H_0 is true)

p-value for z-test



- Slightly different way of thinking about the problem
- Place sample \bar{x} on distribution
- Ask what fraction of distribution is farther from the mean μ than the sample \bar{x}
- This is your **p-value**
 - Usually ask for p-value < 0.05 or 0.01
 - Sometimes p-value < 0.1 is OK

p-value for z-test



- Procedure:
 - Compute sample mean \bar{x}
 - Compute standard deviation of sampling distribution (standard error)

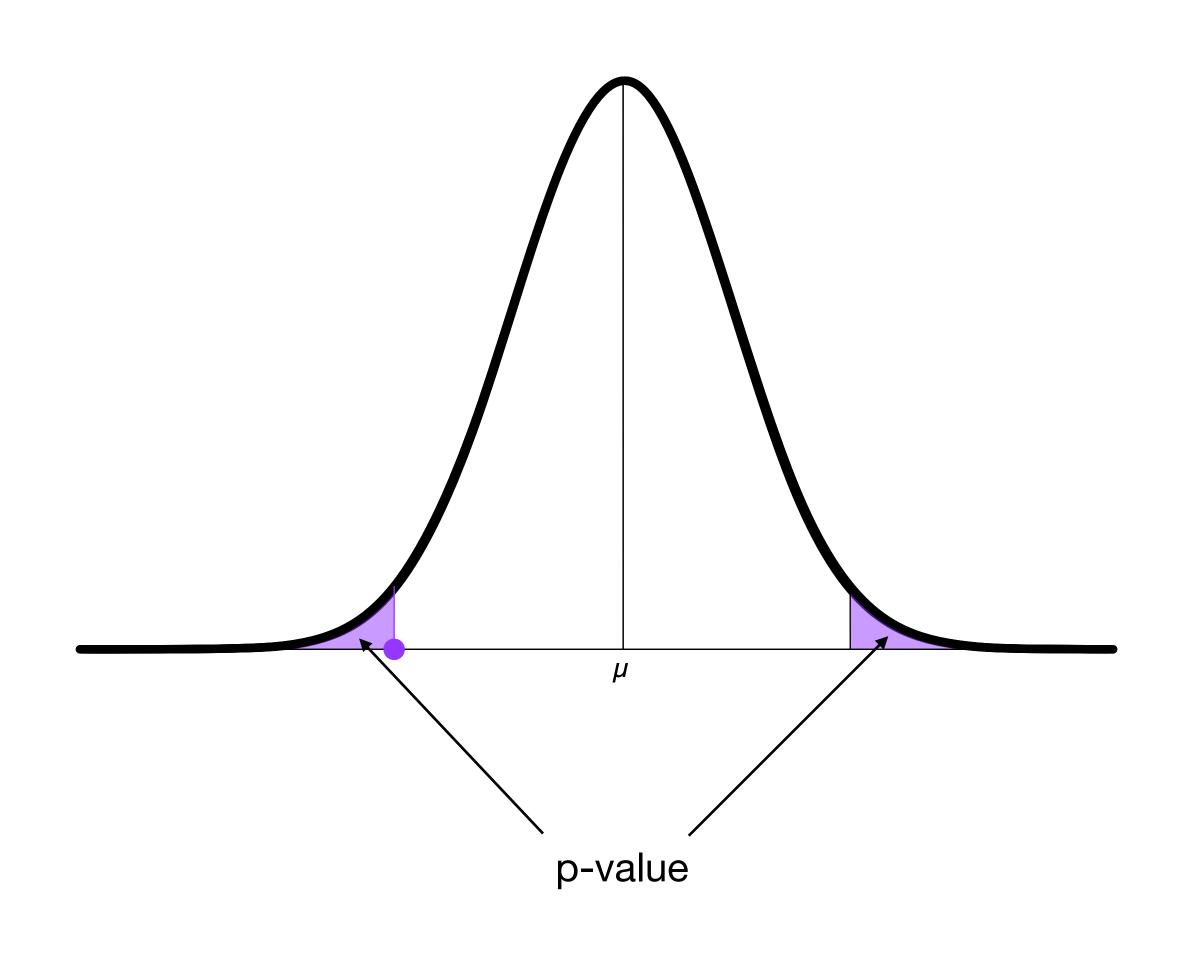
$$SE = \frac{\sigma}{\sqrt{n}}$$

• Compute **z-score**

$$z = \frac{\bar{x} - \mu}{SE}$$

- Normalizing the sample to the standard normal distribution $\mathcal{N}(0,1)$
- Compute p-value from z-score

computing p-value from z-score



- One way: look up in a standard table
- In Python:

```
import scipy as sp
# compute z = (x - mu) / SE
p = 2 * sp.stats.norm.cdf(z)
```

comparing two means

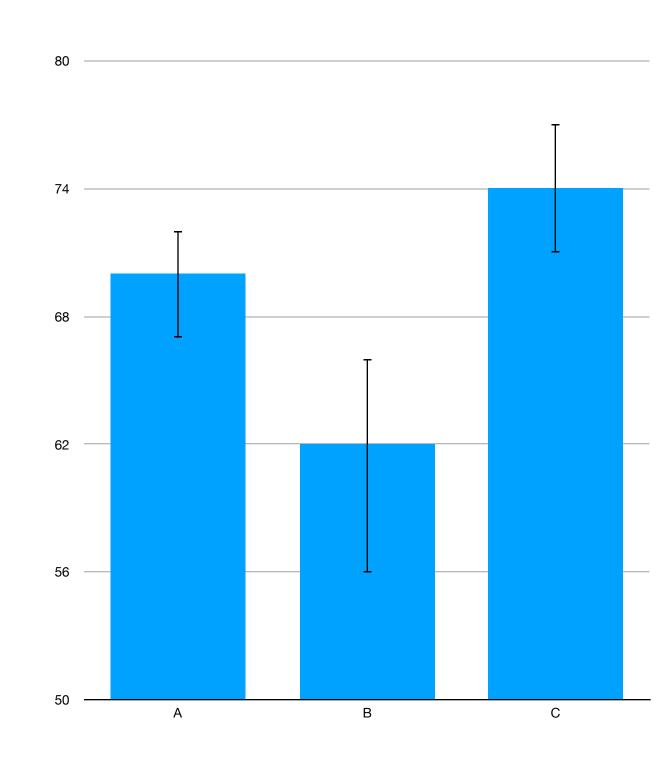
- What if you have *two* sample means and you want to know if their difference is statistically significant?
 - Sample 1: Sample size n_0 , mean μ_0 , variance σ_0
 - Sample 2: Sample size n₁, mean μ₁, variance σ₁
- Hypotheses
 - H_0 : The means are the same, i.e., $\mu_0=\mu_1$
 - H_1 : The means are different, i.e., $\mu_0 \neq \mu_1$
- Can use two-sample z-test
- Sampling distribution of difference between two means has:

$$\mu = \mu_0 - \mu_1 \qquad \qquad \sigma = \sqrt{\frac{\sigma_0^2}{n_0} + \frac{\sigma_1^2}{n_1}}$$

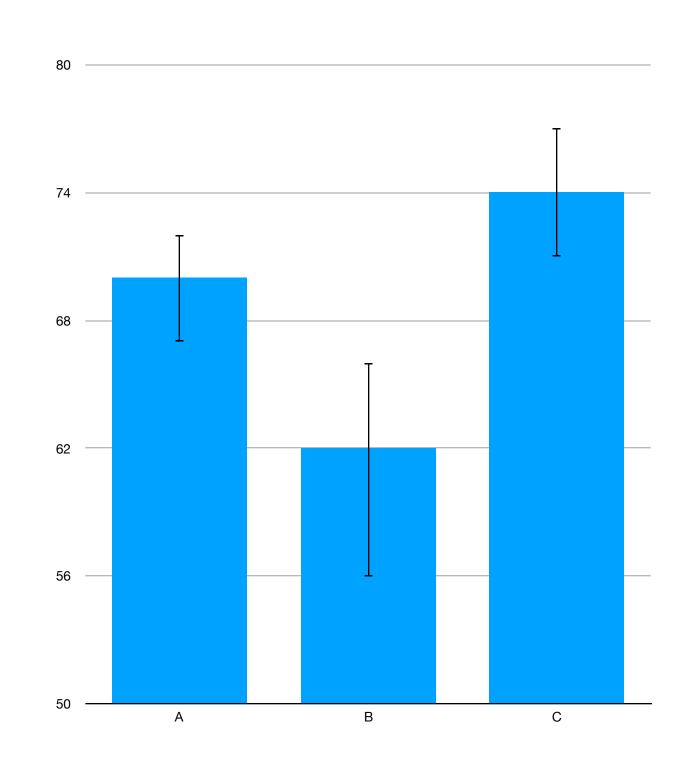
• Test point is
$$\bar{x} = \bar{x}_0 - \bar{x}_1$$

• z-score is
$$(\bar{x} - \mu)/\sigma$$

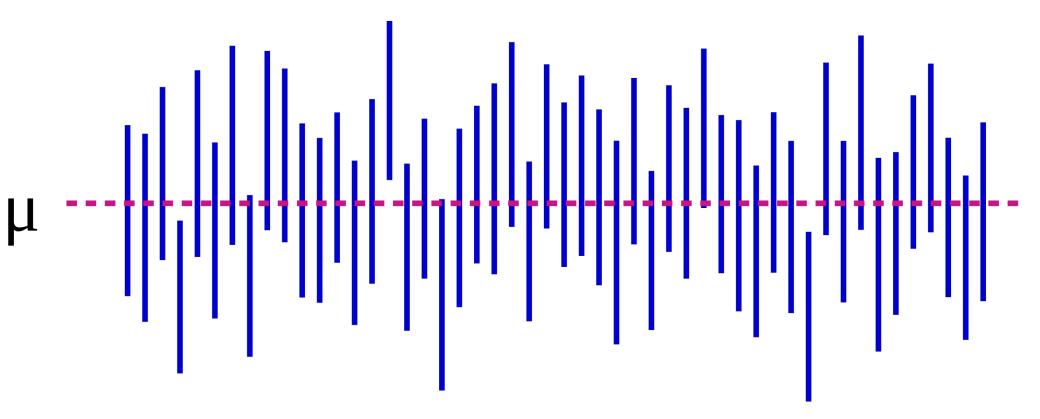
- We see these a lot: ranges above and below values
 - What do they mean?
- Surprisingly tricky question to answer



- A confidence interval is a range around the mean which says something about how "good" your estimation procedure is
 - How "good" is your choice of number of samples, given the variance in the population
- Interpretation of a confidence interval:
 - if I were to repeat the experiment a large number of times,
 95 percent of confidence intervals would contain the population mean or
 - when I run the experiment, there is a 95 percent chance that the population mean will fall within the confidence interval or
 - if the population mean is inside the confidence interval, it would not be statistically significant (informally, you wouldn't be surprised!)

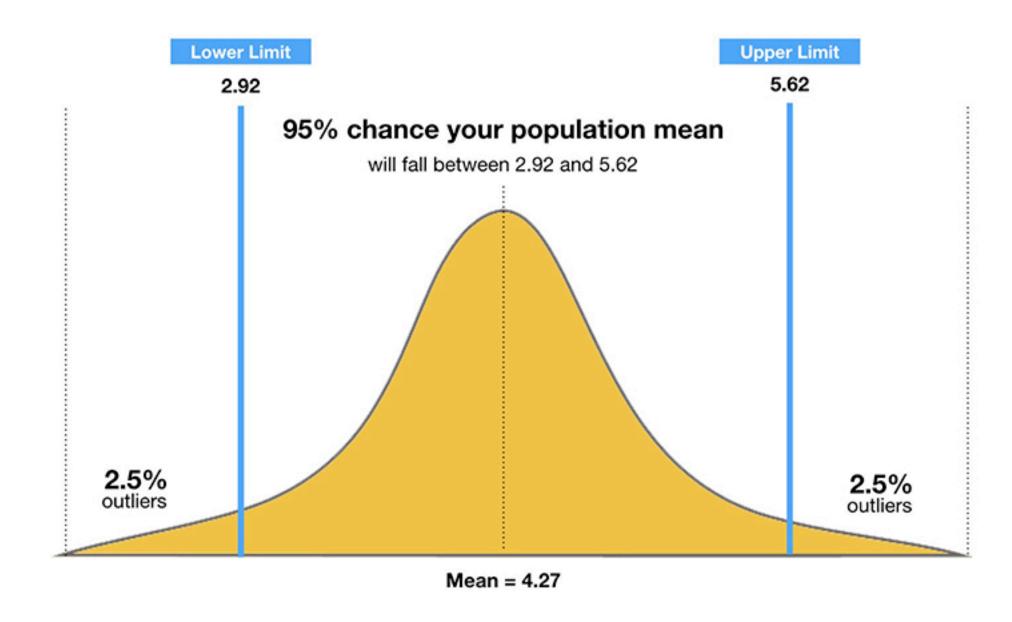


- A confidence interval is a range around the mean which says something about how "good" your estimation procedure is
 - How "good" is your choice of number of samples, given the variance in the population
- Interpretation of a confidence interval:
 - if I were to repeat the experiment a large number of times, 95 percent of confidence intervals would contain the population mean or
 - when I run the experiment, there is a 95 percent chance that the population mean will fall within the confidence interval or
 - if the population mean is inside the confidence interval, it would not be statistically significant (informally, you wouldn't be surprised!)



source: NYW-confidence-interval.svg Wikipedia user Tsyplakov

- If the population parameter is outside the c%
 confidence interval, then an event occurred that had
 a probability of less than (100 c)% of happening
- Note that we are setting c ahead of time (unlike with hypothesis testing, where we figure out how likely/ unlikely something is after the fact)
 - Wide confidence interval: The variance of your data is high (and/or your sample size is small), so we need a wide interval to make the above statement true.
 - Narrow confidence interval: The variance of your data is small (and/or your sample size is large), so we don't need a wide interval to make the above statement true.

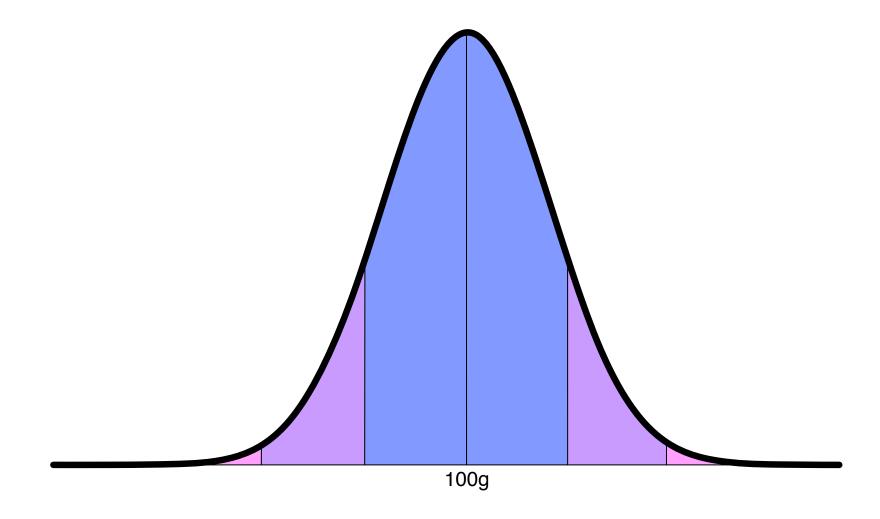


computing confidence intervals

- Conceptually similar to z-tests, except now the sampling distribution is centered around the sample mean (instead of the hypothesized population mean
- Remember definition of z-score:

$$z = \frac{\bar{X} - \mu}{\sigma / \sqrt{N}}$$

And p-value:p = 2 * sp.stats.norm.cdf(z)



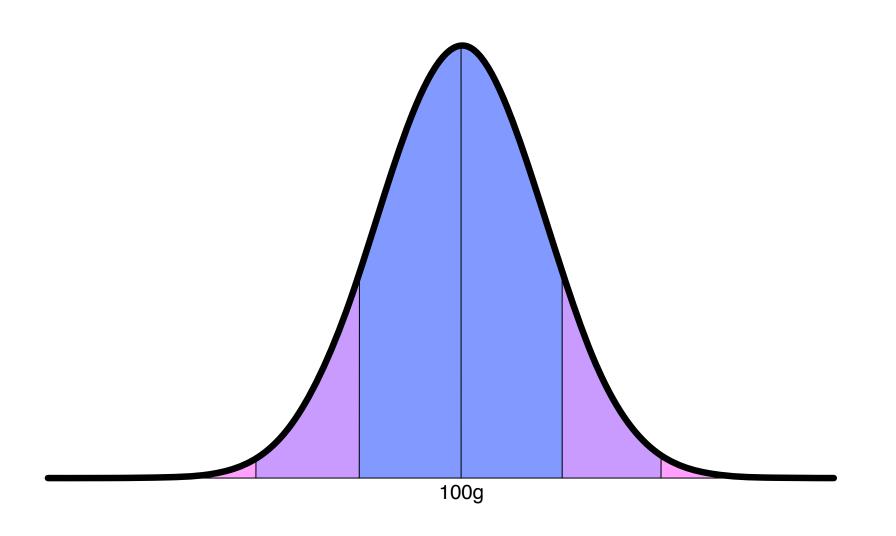
computing confidence intervals

- Conceptually very similar to z-tests, except now sampling distribution is centered around the sample mean (instead of the hypothesized population mean)
- Remember definition of z-score:

$$z = \frac{\bar{X} - \mu}{\sigma / \sqrt{N}}$$

And p-value:

• If c is the desired confidence level, what z do we need so that $p \le (1 - c)$?



what z do we need?

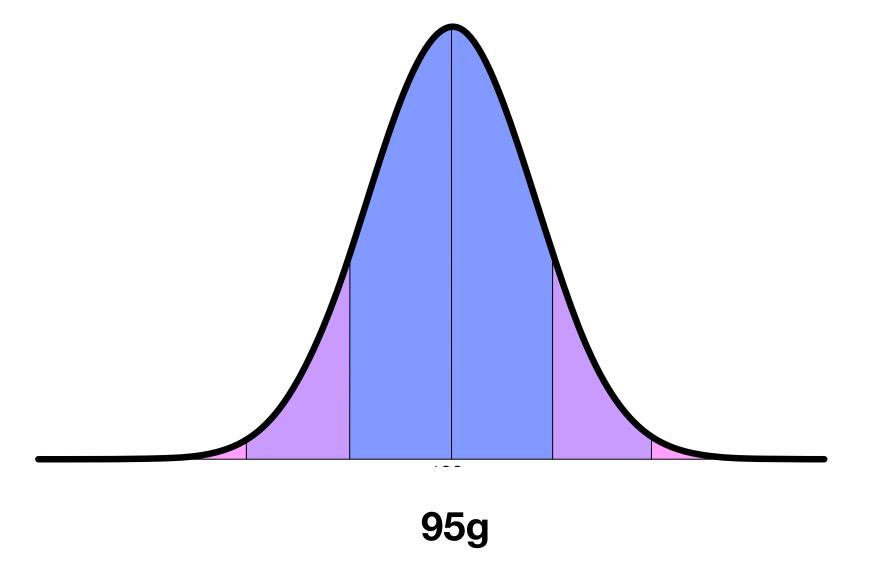
"Inverse" of the

CDF function

- Call this z_c
- Compute like so:
 z_c = sp.stats.norm.ppf(1 (1 c)/2)
- Now we can answer the question: What range of μ would be "unsurprising" at c% confidence level?

$$z_c = \frac{\bar{X} - \mu}{\sigma / \sqrt{N}} \rightarrow \mu = \bar{X} \pm \frac{z_c \cdot \sigma}{\sqrt{N}}$$

This is your c% confidence interval



Back to our original example ...

$$\bar{x} = 95g, \sigma = 22g, n = 100$$

90%: (92.42, 97.58)

95%: (91.38, 98.62)

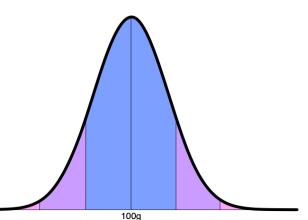
99%: (90.69, 99.31)

we've been fudging

- Recall that to use the z-distribution, we must either know σ or have large enough n
- The student's t-distribution and t-test is used when the normal approximation does not hold
 - Also used to reason about μ , including building confidence intervals
 - When we don't know σ and when n < 30

computing confidence intervals

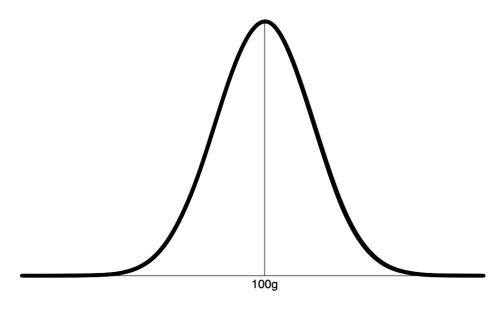
 Conceptually very similar to z-tests, except now sampling distribution is centered around the sample mean (instead of the hypothesized population mean



• Remember definition of z-score:

$$z = \frac{\bar{X} - \mu}{\sigma / \sqrt{N}}$$

hypothesis testing



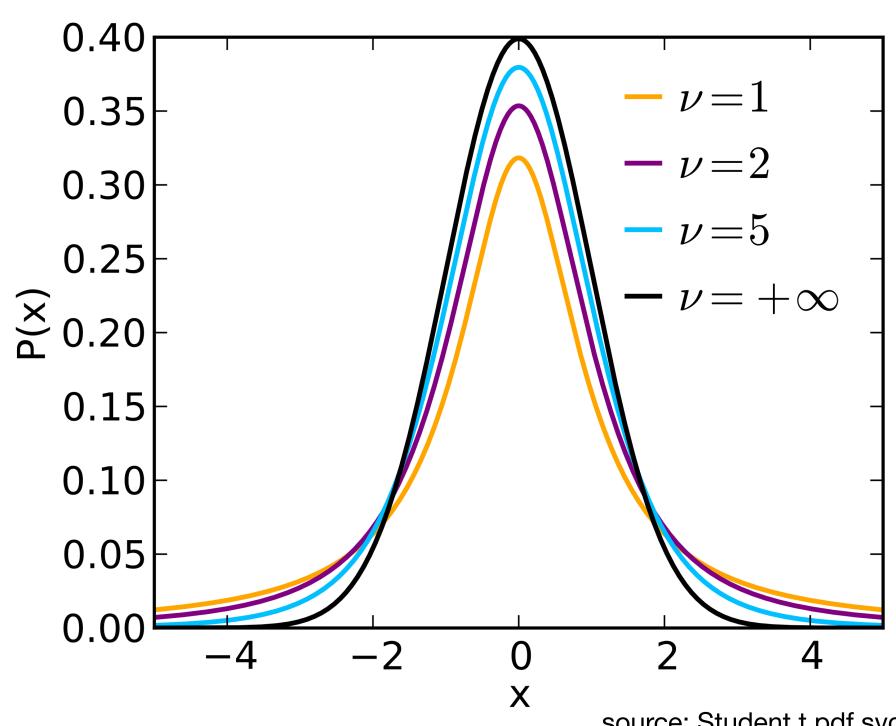
- Suppose the null hypothesis was true (new widgets are the same as the original widgets)
- Then the sampling distribution should have its mean at 100g
- And the sampling distribution should have a standard deviation of:

 $\frac{\sigma}{\sqrt{N}} = \frac{22}{10} = 2.2$

Remember: this is σ of the population Can estimate with s (or use a different distribution)

student's t distribution

- Similar to the standard normal distribution
 - Symmetric about mean
 - Bell curve shaped
- But has **fatter tails**, i.e., more weight of the distribution away from the mean
 - Accounts for outliers better
- Parameter on the distribution is the degrees of freedom v
 - v = n 1: One less than the number of samples
 - Looks more and more like the standard normal as $n \to \infty$



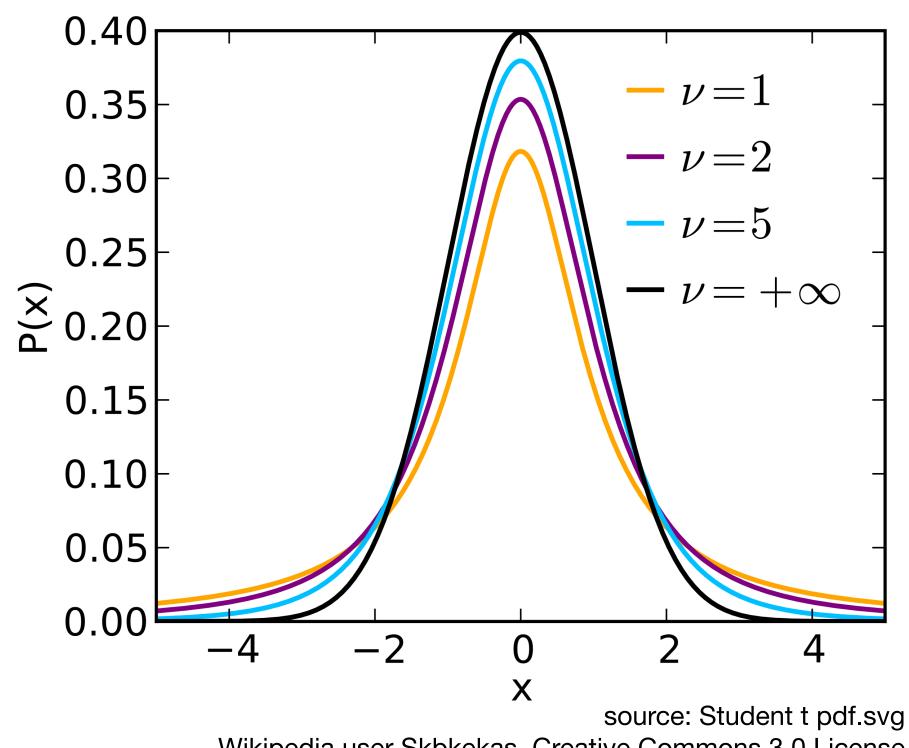
source: Student t pdf.svg Wikipedia user Skbkekas. Creative Commons 3.0 License

t-test

- Works the same as the z-test, except
 - use s instead of σ
 - compare to the t-distribution
- Computing the test statistic:

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$t = \frac{\bar{x} - \mu}{s/\sqrt{N}}$$
Compare to the formula for z



Wikipedia user Skbkekas. Creative Commons 3.0 License

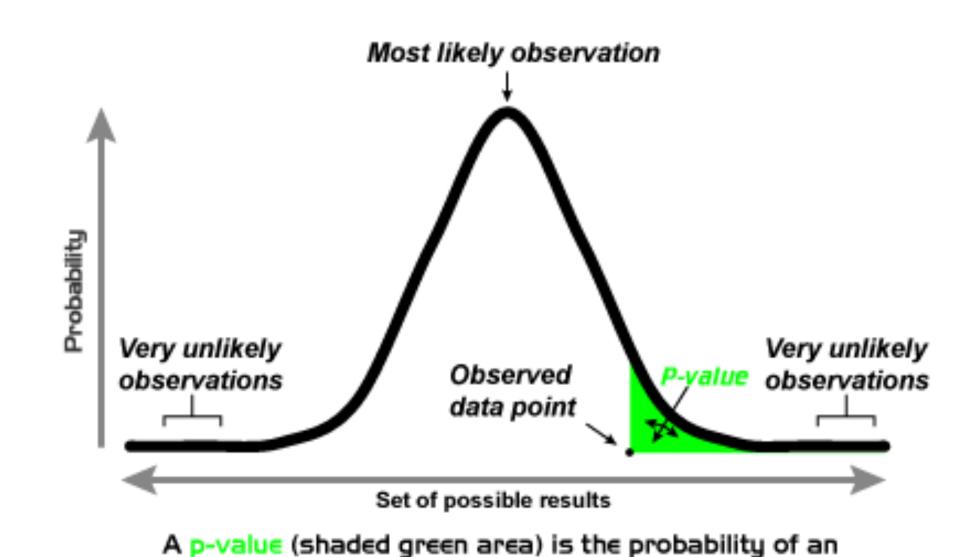
$$p = 2 * sp.stats.t.cdf(t, df)$$

$$t_c = sp.stats.t.ppf(1 - (1 - C)/2, df)$$

one-sided tests

- Sometimes we are only interested in values departing from the mean in one direction
 - This is a one-sided or one-tailed test
- For example, suppose we want to assess whether our widgets are being produced at a significantly *higher* weight:

- $H_1: \mu > 100g$
- How does the p-value compare between one and two-sided tests?



observed (or more extreme) result arising by chance

 Any given datapoint has half the p-value in a one-sided test than it does in a two-sided test

simple extensions

- What do we do in a two-sample test when one of the samples violates the normal approximation assumptions?
 - Use a two-sample t-test
- Can we build a confidence interval around a mean when the normal approximation is violated?
 - Yes, just use the t-statistic in place of the z-score
- What if we are only interested in a confidence interval on one side (e.g., a lower bound or an upper bound)?
 - Can use a **one-sided interval**, where one of the bounds is replaced by $-\infty$ or $+\infty$