estimation and sampling
why sample?

• Most analysis problems do not let you work with the whole population, e.g.,

• *How many engines have a defect*? Cannot take apart every engine to find out

• *What is the average height of people in Indiana*? Would be nearly impossible to measure every person in the state

• *What is the difference in commute times between people in Indianapolis and people in Chicago*? Again, cannot ask everyone in both cities

• We are often left trying to learn facts about a population by only studying a subset of that population, i.e., a sample
how to sample?

• Many strategies. Some common techniques:

 • **Simple Random Sampling** (SRS): Select S elements from a population P so that each element of P is equally likely to appear in S. *Easiest to analyze*, but *can make it hard to represent rare samples* (rare groups won’t show up).

 • **Stratified Sampling**: Subdivide population P into subgroups P_1, P_2, etc. where each subgroup represents a distinct attribute (e.g., breaking a population up by cities). Do SRS within the subgroups, and combine the result. *Ensures representation of each subgroup*, but *can be hard to set up*.

 • **Cluster Sampling**: Group population into random clusters (not specific subgroups like in stratified sampling). Select clusters at random, add all elements from selected clusters to sample. *Easier to conduct* than SRS, but *adds more variability*.

• We will focus mainly on SRS in this course
We differentiate between attributes of the population and the sample.

Numbers which summarize a population are called **parameters**
- Population mean (μ), variance (σ^2), median, etc.

Numbers which summarize a sample are called **statistics**
- Sample mean (\bar{x}), variance (s^2), median, etc.
- The statistics are not guaranteed to be close to the parameters (why?)

Estimation is the problem of making educated guesses for parameters given sample data.
- Key question: How close is our estimate to the true parameter?
Let’s consider a population of 1000 people whose heights we have measured.
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample \(n = 50 \) of them at random?

Don’t get exactly the same distribution.
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample $n = 50$ of them at random?

Don’t get exactly the same distribution.

What if we sample again?
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample $n = 50$ of them at random?

Don’t get exactly the same distribution.

What if we sample again?

And again?
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample $n = 50$ of them at random?

Don’t get exactly the same distribution.

What if we sample again?

And again?
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample \(n = 50 \) of them at random?

Don’t get exactly the same distribution.

What if we sample again?

And again?
estimate the mean

• What if we want to estimate the mean (μ) of a population?

• Can sample

$\bar{x} = 69.42$
estimate the mean

- What if we want to estimate the mean (μ) of a population?
- Can sample, and repeat the experiment

$\bar{x} = 69.42$

$\bar{x} = 70.02$

$\bar{x} = 69.14$

$\bar{x} = 69.04$

$\bar{x} = 69.48$
estimate the mean

• What if we want to estimate the mean (μ) of a population?

• Can sample, and repeat the experiment

$\bar{x} = 69.42$

$\bar{x} = 70.02$

$\bar{x} = 69.14$

$\bar{x} = 69.04$

$\bar{x} = 69.48$

$\mu = 69.436$
• What if we want to estimate the mean (μ) of a population?

• Can sample, and repeat the experiment

• Estimate μ of population using the sample \bar{x}

• How good is this estimate?
how good is our estimate?

• What if we want to estimate the mean (μ) of a population?

• Can sample, and repeat the experiment

\[\bar{x} = 69.42 \]
\[\bar{x} = 70.02 \]
\[\bar{x} = 69.14 \]
\[\bar{x} = 69.04 \]
\[\bar{x} = 69.48 \]

Population $\mu = 69.436$

\[
\text{MSE} = \frac{1}{N} \sum_{i} (\bar{x}_i - \mu)^2
\]

MSE of estimates: 0.118
how good is our estimate?

- What about with smaller samples, e.g., \(n = 10 \)?
- Some \(\bar{x} \)'s: [68.6, 67.3, 68.7, 68.9, 69.0, 71.5, 69.8, 67.4, 70.0, 70.8]
- Still pretty good estimates, but not quite as good

Population \(\mu = 69.436 \)

\[
\text{MSE} = \frac{1}{N} \sum_i (\bar{x}_i - \mu)^2
\]

MSE of estimates: 1.70
other useful statistics

- Sample variance \(s^2 \) and standard deviation \(s \):
 \[
 s^2 = \frac{1}{N-1} \sum_{i} (x_i - \bar{x})^2, \quad s = \sqrt{s^2}
 \]

 - Quantifies the dispersion of the dataset around the mean
 - Why divide by \(N - 1 \) instead of \(N \)?
 - Only \(N - 1 \) degrees of freedom when we are using \(\bar{x} \) as the estimate of \(\mu \)
 - For large \(N \) this does not matter much though
 - Typically, \(s^2 \) is a better estimate of \(\sigma^2 \) than \(s \) is of \(\sigma \). There are several tricks to improve the estimates, but we’ll usually just use \(s \) directly.
Empirically, we have observed that \bar{x} can be a good estimator for μ.

What we are observing is the law of large numbers:

If X_1, X_2, \ldots, X_n are independent and identically distributed (iid) random variables, then $\bar{x}_n \to \mu$ as $n \to \infty$.

In other words, the average of a large number of samples should be close to the population mean.

But any single sample X_i may still be a bad estimate.

What can I say about how good my estimate is?
sampling distribution

- We can also look at the distribution of a sample statistic, e.g., the mean \bar{x}
- This is called a **sampling distribution**

![Histogram with data points]

- Average of \bar{x}'s = 69.437
- Standard deviation of \bar{x}'s = 1.17

Each data point is the \bar{x} of one experiment
We can also look at the distribution of a sample statistic, e.g., the mean \bar{x}.

This is called a **sampling distribution**.

- Average of \bar{x}'s = 69.437
- Standard deviation of \bar{x}'s = 1.17

Sample means appear to be **normally distributed**!
The sampling distribution of the sample mean is approximately normal

This is crystalized as the **central limit theorem**

- If X_1, X_2, \ldots, X_n are iid random variables, then $\bar{x}_n \to \mathcal{N}(\mu, \sigma^2/n)$

- If I take multiple samples from the same distribution, the means tend toward a normal distribution centered on the population mean

- There are some other convergence conditions that we won’t get into here
in the limit

- Let’s reason directly about the sampling distribution, as if we could repeat the experiment an infinite number of times
- Mean of sampling distribution: μ (the mean of the population)
- Variance of sampling distribution: σ^2/n (population variance decaying with n)
 - We can approximate the population variance σ^2 by the sample variance s^2 when n is large
how does this help us?

- Variance of sampling distribution: \(\sigma^2/n \)

- The bigger the \(n \) (the bigger the samples used to generate the means), the smaller the variance of the sampling distribution (the more tightly clustered the means are)

- In other words, the bigger your sample, the closer your sample mean is likely to be to the true mean

- Implication: if we have a sample mean (or means), we can use properties of the sampling distribution to let us judge ...
 - how good the estimates are (confidence intervals)
 - how likely a sample is to be an outlier (hypothesis testing)