ECE 20875
Python for Data Science
Milind Kulkarni and Chris Brinton

Probability and
Random Variables
what is a probability?

• Measure of likelihood that an event occurs
• A number between 0 and 1
• The higher the number, the more likely the event occurs
• A probability of 0 means the event never occurs, and a probability of 1 means the event always occurs
• Example: What is the probability of the event “heads” when flipping a coin?

\[P(H) = \]
elements of a probability model

• Conduct an **experiment**, which results in an **outcome**
• Each outcome has a probability between 0 and 1
• Set of all possible outcomes is the **sample space** Ω
• Sum of probability of all outcomes is 1
• An **event** is a set of possible outcomes
• Probability of event is the sum of the probabilities of individual outcomes

$\Omega = \{1,\ldots,5\}$

$P(3) = \frac{3}{8}$

$P(\{1, 3, 5\}) = \frac{5}{8}$
Probability

Here is a picture about probability:

I You do an experiment.
I You collect outcomes, a point in the sample space.
I A sub-collection of outcomes is called an event.
I Then you assign different events to probability.

Figure courtesy Stanley Chan
what does probability mean?

- Lots of different interpretations

- All outcomes are equally probable (e.g., roll a die, each number has the same chance). Probability of an event is number of outcomes in event divided by total number of outcomes.

- **Frequentist**: Repeat an experiment over and over again, probability of an event is fraction of the time the event happens during the experiment.

- **Bayesian**: Probability is a reflection of your belief about the likelihood of something happening (e.g., based on prior knowledge).
from histogram to probability
One loose definition: A histogram when …

(i) the number of datapoints goes to infinity

(ii) the bin width approaches zero

When this happens, the estimate \(\hat{p}_k \) approaches \(p_k \) of the population

More formal definition: \(f_X(x) \) is the **probability density function** (PDF) for \(X \) if

\[
P[a \leq X \leq b] = \int_a^b f_X(x) \, dx
\]

\(X \) is a random variable
random variables

• A **random variable** \(X \) is a function that assigns an outcome to a number

 • A way of letting us treat outcomes, which may not be numbers, in a mathematical way

 • E.g., in flipping a coin, \(X \) could map Heads to 0 and Tails to 1

• A random variable has a probability distribution which tells us the probability of its values

 • E.g., in flipping a coin, \(P[X = 0] = 0.5, \ P[X = 1] = 0.5 \)

• Informal intuition: The random variable is the horizontal value on the histogram, with the height being the probability

• Random variables can be **continuous** or **discrete**
The cumulative distribution function (CDF) of a random variable X is

$$F_X(x) = P[X \leq x]$$

For a continuous random variable, CDF is easier to estimate from data than PDF.
If X is a discrete random variable, it has a **probability mass function** (PMF). The PMF is defined directly from the probabilities of events (essentially a histogram with bars interpreted as frequencies):

$$f_X(x) = P[X = x]$$

If X is a continuous random variable, it has a PDF, which is a little trickier to define since the probability of any single number is actually 0. As a result, we typically define the PDF in terms of the CDF:

$$f_X(x) = \frac{dF_X(x)}{dx}$$
bernoulli distribution

- Two states: $X = 0$ or $X = 1$
- Think flipping a coin, or a single “bit” of information
- But it doesn’t have to be a fair coin!
- PMF:

$$P[X = x] = \begin{cases}
1 - p & x = 0 \\
p & x = 1
\end{cases}$$

- Here, $p \in [0,1]$ is the probability of “success” (i.e., $X = 1$)
binomial distribution

- Bernoulli trials repeated \(n \) times
- Think flipping a coin \(n \) times and counting the number of heads, or transmitting \(n \) bits and counting the number of 1’s
- PMF:

\[
P[X = x] = \binom{n}{x} p^x (1 - p)^{n-x}
\]

- Here, \(\binom{n}{x} = \frac{n!}{x!(n-x)!} \) is the binomial coefficient

\[
\begin{align*}
\text{Graph showing binomial distributions for different values of } p \text{ and } n
\end{align*}
\]
gaussian distribution

- Also called the **normal** distribution, or the bell curve
- Very common distribution in natural processes
- The sum of many independent processes is often normal (more on this later)
- PDF:

\[
\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
- Its parameters are the **mean** \(\mu\) and the **variance** \(\sigma^2\)
gaussian distribution

• The PDF of the normal distribution has several useful properties

• The **3-sigma rule**
 • ~68% of points within ±σ of μ
 • ~95% of points within ±2σ of μ
 • ~99.7% of points within ±3σ of μ

• Useful in constructing confidence intervals and hypothesis testing (more on this later)
exponential distribution

• Useful for modeling decay processes, inter-arrival times, and occurrences of events

• Probability of a radioactive item decaying

• Time between arrival of visitors to a website, or customers to a store

• PDF:

\[f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} \]

• \(\lambda > 0 \) is the rate parameter
many more!

• Geometric: “How many times do I need to flip a coin to get heads?”
• Uniform: Every event in an interval is equally likely
• Student’s t: Behavior of normal distribution with fewer samples
• Poisson: Discrete version of the exponential distribution
• …

• See more here: https://docs.scipy.org/doc/numpy-1.14.1/reference/routines.random.html
picking a distribution

• Common problem in data science
• You have (empirical) data, and you need to choose how to (analytically) model it
• What distribution is your data coming from?
• What distribution is most likely to predict future samples?
• Important choice because distribution often determines how your model works
qq plots

• Basic idea: Compare the CDF of your data to the CDF of a proposed model
• Use quantiles to do this
 • Quantile \(q \) is the value of \(x \) such that \(P[X \leq x] = q \)
 • Sometimes expressed in terms of percentiles, e.g., scoring in the 95th percentile on a test
• For each datapoint in your sample, find:
 • The quantile with respect to the dataset, \(q_1 \)
 • The quantile with respect to the model, \(q_2 \)
• Add each point \((q_1, q_2)\) to a scatter plot
 • If the distributions are similar, the quartiles will line up
• See scipy.stats.probplot
qq plots

If straight line, then actual fits ideal
That means your candidate model is good

Bad fit:
This type of plot is called the QQ-plot.