
Optimizing the LULESH Stencil Code using Concurrent
Collections

Chenyang Liu
Purdue University

465 Northwestern Avenue
West Lafayette, Indiana
Liu441@Purdue.edu

Milind Kulkarni
Purdue University

465 Northwestern Avenue
West Lafayette, Indiana
Milind@purdue.edu

ABSTRACT
Writing scientific applications for modern multicore ma-
chines is a challenging task. There are a myriad of hard-
ware solutions available for many different target appli-
cations, each having their own advantages and trade-offs.
An attractive approach is Concurrent Collections (CnC),
which provides a programming model that separates the
concerns of the application expert from the performance ex-
pert. CnC uses a data and control flow model paired with
philosophies from previous data-flow programming models
and tuple-space influences. By following the CnC program-
ming paradigm, the runtime will seamlessly exploit avail-
able parallelism regardless of the platform; however, there
are limitations to its effectiveness depending on the algo-
rithm. In this paper, we explore ways to optimize the per-
formance of the proxy application, Livermore Unstructured
Lagrange Explicit Shock Hydrodynamics (LULESH), writ-
ten using Concurrent Collections. The LULESH algorithm
is expressed as a minimally-constrained set of partially-
ordered operations with explicit dependencies. However,
performance is plagued by scheduling overhead and synchro-
nization costs caused by the fine granularity of computation
steps. In LULESH and similar stencil-codes, we show that
an algorithmic CnC program can be tuned by coalescing
CnC elements through step fusion and tiling to become a
well-tuned and scalable application running on multi-core
systems. With these optimizations, we achieve up to 38x
speedup over the original implementation with good scala-
bility for up to 48 processor machines.

Keywords
Concurrent Collections, LULESH, Tiling

1. INTRODUCTION
Effectively programming scientific applications is a very

challenging task. There are many research fields dedicated
to producing new models and methods for simulating real

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WOLFHPC2015 November 15-20 2015, Austin, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM
978-1-4503-4016-8/15/11 ...$15.00.
http://dx.doi.org/10.1145/2830018.2830024..

world phenomenon. However, the domain scientists who de-
velop these models require expertise in parallel programming
to effectively run their applications in order to take advan-
tage of modern and future architectures. An intuitive way
to solve this problem is to use an architecture-agnostic pro-
gramming language that separates the responsibilities of the
domain scientist from the programming expert. This can be
achieved using Concurrent Collections (CnC), a parallel pro-
gramming model that combines ideas from previous work in
tuple-spaces, streaming languages, and dataflow languages
[2, 7, 13].
In CnC, algorithmic programs are expressed as a set of

partially-ordered operations with explicitly defined depen-
dencies. The CnC runtime exploits potential parallelism,
so long as it satisfies the dependencies set by the program-
mer. The responsibility of the programmer is minimal, only
requiring them to provide the basic semantic scheduling
constraints of their problem. The advantages of simpli-
fied programmability comes at the expense of sub-optimal
fine-grained parallelism for these programs. In this paper,
we explore how to rewrite CnC programs to make specific
equivalent-state transformations to boost parallel perfor-
mance. We investigate the effects of these transformation
techniques on the Livermore Unstructured Lagrange Ex-
plicit Shock Hydro (LULESH) mini-app, a hydrodynamics
code created in the DARPA UHPC program [9, 11].
We discover that there are many opportunities to tune

complex CnC programs. Algorithms with many unique com-
putational steps can be transformed to alter the working-
set granularity through step fusion or distribution. These
transformations are similar to classic loop fusion and dis-
tribution, providing benefits through computation reorder-
ing while preserving execution semantics. Furthermore, we
look at tiling the computation steps to increase the working
set size and reduce the amount of fine-grained parallelism.
These techniques help reduce scheduling overhead and im-
prove data locality for stencil codes such as LULESH. In our
experiments, we show that step fusion and tiling greatly im-
pact performance and scalability in the mini-app, giving up
to 38x speedup over the sequential baseline implementation
on 48 cores for a moderate (603) simulation size.

2. OVERVIEW OF CNC
In this section, we provide a brief overview of Concur-

rent Collections (CnC). We summarize the basic concepts
and highlight the important aspects that make CnC a com-
pelling programming model for scientific applications such
as LULESH. A more in-depth description of CnC can be

found from previous related work [2, 3, 14].
The CnC programming model separates the algorithmic

semantics of a program from how the program is executed.
This is an attractive solution for a domain scientist, whose
primary concern is focused on algorithmic correctness and
stability. CnC relies on a tuning expert, whose expertise is
in performance, to properly map the application to a specific
platform. This separation of concerns simplifies the roles of
each party. The domain scientist can program without need-
ing to reason about parallelism or architecture constraints,
while the tuning expert can focus on performance given the
maximum freedom to map the execution onto the hardware.
The restrictions are that CnC programs must adhere to

a certain set of rules. Firstly, computation units (steps) in
CnC must execute statelessly, so they cannot modify any
global data. Instead, the language uses built-in put/get
operations to store and retrieve data items, which assist
the runtime with scheduling dependencies. Secondly, all
data items exhibit the dynamic single-assignment property,
meaning they are immutable once they are written to. This
requirement prevents data races during parallel execution
and helps resolve data dependencies during runtime. In the
following section, we give a brief overview of the CnC pro-
gramming model.

CnC Programming Model
We describe the CnC language using a simple example of a
reduction routine. Assume that we wish to sum values from
four different sources, F =

4∑
i=1

xi. Figure 1 shows a CnC

representation of how a domain expert may represent the
computation and its dependencies.

Figure 1: Reduction Operation in CnC

There are three types of nodes in this figure: computa-
tion steps, data items, and control tags. The solid directed
edges between nodes specify producer-consumer data depen-
dencies in the program, while the dotted edge corresponds to
a control dependency. The computational units in CnC are
steps, represented as ovals in Figure 1. Steps are organized
in step collections, which contains distinct stateless oper-
ations that need to be scheduled and executed. In CnC,
steps are dynamically created when control tags are pre-
scribed in the program. The set of control tags are saved

in the tag collection. In our example, a tag is created for
every reduction step that is needed to execute and is rep-
resented as the yellow triangle. Finally, the program data
is stored in the (data) item collection, shown in Figure 1
by the rectangular nodes. The item collection contains in-
stances of data that steps use as input or outputs. Each
data item is dynamic and is atomically assigned once in its
lifetime (dynamic single-assignment) in order to provide the
runtime with definitive information and prevent race condi-
tions. These data items are also important during execution
for scheduling; many steps consume data from previous steps
as well as produce them, indicating program dependencies.
In a typical CnC program, the step collection will be de-

fined similarly to a traditional C function, except it can-
not hold any state and must receive data from other steps
through data items. For our reduction, the program will
first prescribe the reduction computation step using a con-
trol tag ti. Once prescribed, the step will be scheduled to
run once all data dependencies are resolved. In the example,
the reduction step waits to get 4 values, x1 to x4, indicat-
ing the function will consume those values produced from a
previous computation. Just as the get construct indicates
a consumer dependence, the producers of the data will pro-
duce those values by initiating a put. Once the computation
is performed in the reduction step, it will also store the re-
sult F by initiating a put to its respective data item using a
tag for future retreival. The get and put constructs assists
the runtime in scheduling steps and resolving dependencies.
A step collection can only be associated with a single tag

collection/space; however, a single tag collection can pre-
scribe multiple step collections. Steps are created when a
control tag prescribes a particular instance of the step col-
lection. While the existence of a tag prescribed for a specific
step means that instance of a step will execute, it does not
specify when that step executes. Execution of that step
depends on the availability of data items (consumer depen-
dencies) as well as the CnC scheduler which determines how
tasks are handled. How and when tags are assigned is left up
to the programmer. CnC allows for prescribing tags in ad-
vance, leaving the scheduler manage dormant tags, as well as
dynamically prescribing tags for each step instance as their
data becomes ready. Previous work shows tradeoffs exist for
each implementation, but it is a flexible parameter that can
be tuned [4].
Tasks are scheduled as the program executes, with steps

producing data and sometimes prescribing tags. A step be-
comes available as soon as its tag is prescribed, and pro-
duced data items become ready once they are atomically
written. Whenever item dependencies are ready and the
tag has been prescribed, a step becomes enabled and may
be executed. The runtime exploits parallelism by scheduling
the available step instances as soon as they become enabled.
Once all prescribed steps have been executed, the CnC pro-
gram completes.
In principle, CnC programs should be well-tailored to run

on both shared memory or distributed systems [5]. Fur-
thermore, there is support for various different schedulers
for the CnC runtime. We focus on using the Intel CnC
Thread Building Blocks (TBB) work-stealing implementa-
tion, which uses Cilk style work stealing on top of the default
work queues [6, 15]. Although alternative schedulers exist,
we find that the TBB scheduler consistently outperforms or
performs almost as well as the best schedule for most cases.

Our work uses the Intel CnC implementation, being one of
the more mature and robust versions of CnC [5]. In this
version, there is an additional speculation mechanism built
into the runtime. As threads are assigned steps to execute,
sometimes a step will begin execution before all inputs are
ready. In this scenario, the runtime will requeue the step
and tries it again at a later time. We discuss the effects of
requeuing later in the results.

3. OVERVIEW OF LULESH
In this section, we describe the LULESH (2.0) applica-

tion and the details of the algorithm written in CnC. LU-
LESH is a fully-featured hydrodynamics mini-app developed
by Lawrence Livermore National Laboratory that simulates
the effect of a blast wave in a physical domain through ex-
plicit time-stepping. Hydrodynamics is a challenging prob-
lem, and was previously shown to account for a significant
fraction (27%) of computing resources used by the Depart-
ment of Defense [9]. We use LULESH to test optimiza-
tion techniques that can likely be applied to problems in
other domains that share the same static/dynamics proper-
ties with time-stepping execution.
The original LULESH specification is physics code that

operates on an unstructured hexahedral mesh with two cen-
terings. There is an element centering (center of the hex-
ahedral) that stores data on thermodynamic and physical
properties and a nodal centering (the corners of each hexa-
hedra) that tracks kinetic values such as position and veloc-
ity of those points. These 2 centerings are also the primary
iteration spaces involved in the program, and form the foun-
dation for the CnC tag collection.
The application begins by initializing a 3-dimensional hex-

ahedral mesh of arbitrary size, then defining the spatial co-
ordinates and neighbors of all elements and nodes in the
mesh. Surrounding boundary conditions are applied and ini-
tial values are assigned before beginning the time-stepping
algorithm. At every iteration, the time scale is computed
based on physical constraints to determine a maximum safe
time value to advance for the subsequent iteration. Once
determined, the kinetic values (force, position, velocity) are
computed for all nodal quantities, which in turn are used
to calculate the thermodynamic variables for all elements.
The cycle completes as the next time-step value is calculated
using the constraint values from the current step. More
detailed information about the LULESH mini-app can be
found in other papers [9, 11, 12].

3.1 CnC Specification
Every CnC program includes a high level skeleton called

the CnC specification, which can also be referred to as a do-
main specification. This specification contains information
regarding the item, step, and tag collections, as well as all
data produced and consumed by each step. Using this data,
a high level dependency graph can be constructed to analyze
most of the data and control flow. Initially, we believed this
information was enough to make high level program changes
by applying graph-based transformations. However, it be-
came apparent that the data available was insufficient to
apply high level transformations due to lower-level program
interactions.
The high level algorithm of LULESH can be seen Figure

2, represented in a decomposed form consisting of algorith-
mic steps. Each node in the graph represents an important

computational step involved in the LULESH algorithm, with
directed edges correspond to producer/consumer data de-
pendencies for each step. For simplicity, only dependencies
for current time steps are shown, since dependencies from
previous time steps are trivial and do not deter the algo-
rithm’s control flow. We list and give a brief summary of
each computational step.

• Compute Delta Time: Prior to every iteration, this checks all
element data from the previous iteration to determine the next
time step value. Has a separate tag space.

• Compute Stress/Hourglass Partial Force: Forces are calculated
for each element using data from the previous iteration’s ele-
ments.

• Force Reduction: Partial forces for every node are summed up
from 8 neighboring elements.

• Compute Velocity/Position: Kinetic values are computed for
each node using previous nodal forces/positions/velocities.

• Compute Volume/Derivative/Gradient/Characteristic: Physi-
cal properties are computed for each element using kinetic val-
ues.

• Compute Viscosity Terms: Neighbor gradient data is gathered
along with volume data to calculate element viscosity terms.

• Compute Energy Terms/Time Constraints: Thermodynamic-
s/Physics terms are calculated for each element using previous
element data.

Figure 2: High-level LULESH Algorithm

This information is also depicted in CnC’s textual repre-
sentation of the CnC specification for the program, as shown
in Figure 3, which contains the high level information of each
collection, including the list of steps, tag declarations, and
data items produced and consumed by each step. In CnC
programs, the user must explicitly declare all items for each
3 collections. This information is helpful for determining the
available optimizations that can be performed to transform
the code, but not sufficient to determine the legality of all
transformations. In the following sections, we describe the
different transformations that can be legally made in CnC
to optimize its performance.
The two techniques we focus on are step fusion and step

tiling. Conceptually, the ideas are similar to that of loop
fusion and tiling in classical compilers, except in the con-
text of CnC. One of the drawbacks of the CnC runtime is
its inability to efficiently handle fine-grained parallelism due
to its dynamic scheduling framework. Both step fusion and

struct lulesh_context:public
context<lulesh_context>{

// Step Collections
step_collection<compute_dt>

step_compute_dt;
step_collection<reduce_force>

step_reduce_force;
...

// Item Collections
// per node items
item_collection<pair,vector>force;
item_collection<pair,vertex>position;
item_collection<pair,vector>velocity;
// per element items
...

// Tag Collections
tag_collection<pair>iteration_node;
tag_collection<pair>iteration_element;
tag_collection<int>iteration;
...

// Producer Dependencies
step_compute_dt.consumes(dt);
...

// Consumer Dependencies
step_compute_dt.produces(dt);
...

Figure 3: LULESH CnC Specification

tiling help alleviate the effects of excessive synchronization
and scheduling costs without modifying the underlying pro-
gram semantics. Although CnC has built-in tuners, almost
none of these tuners alter the organization of the algorithm
itself; most tuners operate at a much lower level to benefit
the CnC runtime with things like memory usage, garbage
collection, serialization/synchronization, and thread man-
agement. The closest alternative is the tag-range tuner, but
it cannot handle step fusion and other optimizations such as
removing redundant get operations from shared dependen-
cies. The effects of our fusion and tiling techniques comple-
ment the back-end tuners provided in CnC. In the following
sections, we explore the legality of fusion and tiling and how
each technique affects performance in LULESH application.

3.2 Step Fusion
Step fusion is an effective way to serialize multiple steps in

a CnC program without altering the computation. The pri-
mary restriction on fusion is that steps remain “step-like”—
conceptually, once a step receives all of its inputs, it must
be able to run to completion.
Given multiple step collections, these steps can be legally

fused if and only if both step collections are prescribed using
identical tags and all dependencies between fused steps are
computed in previous steps generated by the same tag. Step
fusion is illegal for steps prescribed from different tags, or if
the resulting fused step would become a coroutine—in other
words, if the execution of the step would require interleaving
with another step, violating the step-like property.
In certain cases, data dependencies may come from step

instances generated by different tags, such as a reduction
operation, where a current step needs recently computed

data from multiple instance of a previous step. Fusion is
not legal between these two steps because we only serialize
the computation for step instances of a single tag, not all
instances of a previous one. When multiple steps are fused,
data dependencies that exist between fused steps can be
expressed as temporary data in the new step computation.
The set of get data which are consumed from from each
step fused are unioned to form a new set of dependencies
for the fused step. In the collection space, it reduces the
number of items in the step collections, but the number of
data dependencies will likely increase per step.

Figure 4: Fused LULESH Algorithm

We are able to apply step fusion in the CnC-LULESH
program to reduce the number of step collection items from
13 to 5. Figure 4 highlights the steps in the algorithm where
it is legal to fuse step collections. The leftmost node, Com-
pute Delta Time requires its own space of tags per iteration
due to the delta time calculation. The other steps are ei-
ther in the nodal iteration space (red) or element iteration
space (blue/green), each requiring separate tag collections.
All the steps corresponding to the node tags, and most of
the steps associated with the element tags can be fused.
The two independent partial force calculations, shown in
green, can be fused because they are independent and use
the same element tags. They cannot be combined with the
steps highlighted in blue even though they share the same
tags because the force calculations depend on a delta-time
calculation that is a global check that occurs at the begin-
ning of each iteration and has a separate tag. The spatial
computations that are prescribed by node tags can all be
fused, reducing the three node steps into a single step, high-
lighted in red. For the rest of the element computation,
fusion can reduce the remaining 6 element routines into 2
fused routines, as shown in blue in Figure 4. During the the
viscosity step, there is a gather operation that requires data
dependencies computed in a prior step using multiple differ-
ent tags, implying a synchronization barrier and preventing
those steps from legal fusion.
Initially, we believed using the consumer/producer depen-

dencies expressed in the CnC specification would be suffi-
cient to determine the legality of step fusion. However, that
itself is not enough because of there can be cases where de-
pendencies span across multiple instances of the same step
prescribed from different tags, such as the element viscosity
operation. Data items in CnC programs are written and
read in an atomic fashion, thus naturally enforcing synchro-
nization between dependencies. Step fusion alters execution

semantics by changing what would be a synchronization step
into serialization, but only for one tag instance. This is why
steps which have dependencies coming from multiple tags
cannot be fused.

3.3 Step tiling
We characterize step tiling as the coalescing of multiple

tags to reduce the number of dynamic step instances. Tiling
reduces the number of the tags, but increases the amount of
work performed in each step. Similarly to fusion, step tiling
serializes computation, altering the computation and the
working set data. Instead of many dynamic step instances,
a single step instance does the same amount of work, reduc-
ing scheduling overhead. This large step operates on a much
larger working set, and in turn requires more memory. Ad-
ditionally, step tiling alters the dependence structure. For
larger tiles, the number of dependencies increases, and in
some cases, neighboring data items may allow for data reuse,
thereby reducing the number of get operations required. We
find that step tiling is legal when there are no dependencies
between different tags which prescribed that step. An exam-
ple where tiling would be invalid for step collections would be
Guass-Seidel, due to producer-consumer inter-dependencies
between orthogonal tags for the same step.
There are almost no inter-tag dependencies in LULESH

that prevent step tiling from being legal. Each set of tags
correspond to independent nodes and elements of the mesh,
and each step clearly defines the producer-consumer rela-
tionship between steps. Since CnC handles the scheduling
aspect, the challenge is to correctly distribute and initial-
ize the tags during the start of the program. There are also
multiple ways to coalesce tags, and specifically for LULESH,
we look at a blocking scheme and a strided per-row imple-
mentation. The block-tiling implementation partitions the
problem into equal sized cubes that are a fraction of the size
of the whole mesh, whereas the strided tiling implementa-
tion tiles the nodes and elements as long rows, where each
row length as is equal to the mesh dimension. Figure 5 illus-
trates the difference between a block tile (red) and a strided
tile (blue). When discussing tiling implementations, we will
focus on these two tiling schemes.

Figure 5: Blocked vs. Strided Tiling Example

The challenges of applying step fusion and tiling come
from conforming to CnC coding standards. Blindly serial-

izing multiple computations and iterations into a combined
routine will likely modify the data and control flow within
that new routine. However, good CnC performance relies on
all CnC step collections being step-like, where all get opera-
tions occur at the beginning of the step (put operations can
still occur freely). If get operations are do not occur first,
the performance of the scheduler suffers, and in Intel-CnC,
requeueing activity heavily impacts performance. Addition-
ally, this coalescing increases the sizes of the working set
which increases memory usage since there is more tempo-
rary data to save between computation.
Step tiling can be further tuned when dependencies are

stencil-like such as in LULESH. In addition to spatial local-
ity achieved from tiling nearby elements, there is significant
re-use of dependencies due to nodal and elemental opera-
tions that require neighboring data. A single element op-
eration would normally require 8 get operations. A naively
tiled code could perform that 8 times, requiring 64 total
gets. However, an optimized tiling scheme for the same
8 steps would only require 27 get operations. We explore
this optimization in LULESH, but the effects are marginal
after the extra calculation to figure out which data items
are shared, compared to executing redundant get opera-
tions. For a shared memory machine, this is the case, but
on systems where communication costs far outweigh local
resources, removing extra data movement will be beneficial.

4. RESULTS
In this section, we evaluate the performance of the LU-

LESH application in CnC, with various configurations of
the baseline, fused, tiled, and two fused+tiled (blocked and
strided) schemes. We compare their execution running on
our shared-memory system running on up to 48 processors.
The following implementations are tested:
Baseline - This version, originally created from research-

ers at the Pacific Northwest National Laboratory, describes
the LULESH application at its most decomposed level, with
the minimal constraints. Domain scientists would most
likely want to express their algorithms this way. This follows
CnCs principles of writing the program without expressing
how it is parallelized. The burden falls to the CnC run-
time, which is given the maximum amount of flexibility to
optimize parallel execution. In this version, all tags are pre-
scribed in advance and every stencil element performance
every computation, requiring dynamic instances for each.
Unfortunately, CnC is unable to effectively schedule sten-
cil programs with that much fine-grain-parallelism, causing
reduced performance without further tuning.
Fusion-only - This implementation fuses all computa-

tion that can be coalesced in each tag space. Step fusion is
applied to the tags corresponding to the nodal and element
iteration spaces, reducing the step collection size from 13 to
5. This step size reduction provides around a constant 2x
speedup over the baseline implementation.
Tiling-only - This version of LULESH tiles the baseline

implementation and coarsens the tag space, thereby reduc-
ing the number of created dynamic step instances. Every
dynamic instance computes over a larger working data set,
but also requires more intermediate memory. The size the
working set is a tuneable parameter, which we investigate.
Tiling improves overall program scalability and performance
by reducing scheduling overhead and improving data local-
ity. Neighboring data elements and nodes are grouped into

Table 1: Timing Results: 603 Sized Mesh
Number of Cores

1 2 4 8 12 32 48
Baseline 53.180 52.900 71.852 108.531 110.515 110.572 119.466
Fusion Only 26.288 26.405 33.3389 52.224 51.391 54.340 57.430
Tiling Only 12.67596 12.5693 6.677482 4.234 2.652 2.504 2.526
Blocked Fuse-Tile 10.749 10.699 5.110 2.883 1.845 1.557 1.768
Strided Fuse-Tile 11.171 10.610 6.025 3.498 2.104 1.483 1.397

Figure 6: Scalability for Tiling Implementations

the same tile, allowing for data reuse computations that
access shared data. The items in the data collections are
minimally altered to maintain the overall structure of the
original program.
Fused-Tiled - This implementation combines both the

fusion and tiling optimizations. The step collections and tag
collections are fused and tiled to create new larger steps. We
also try to exploit the locality for shared data that exists for
tags with shared common neighbors. The transformation
requires some coding changes which require bookkeeping to
account for extra variables and computation re-ordering to
preserve step-like properties required by every CnC step,
where gets all occur at the beginning of a computation step.
We also note that there are specific tuners available in

the Intel CnC implementation that would have eased pro-
grammability for fusion and tiling implementations. One of
these includes the depends tuner. This tuner prevents pre-
emptive scheduling of a step collection until all variables are
ready.

Evaluation
Experiments were run on mesh sizes up to size 60 for 30
iterations, ten times per heuristic, with minimum and max-
imum results excluded to reduce variance. The hardware is
a shared memory, AMD Opteron 6176 SE system configured
with four 12-core processors (48 cores total) running at 2.3
GHz, with 512 KB per-core level 2 cache, and 12 MB level
3 cache. Table 1 shows the timing results per-iteration for a

mesh of dimension 603. In the LULESH manual, the authors
recommend experiments to run for problem sizes around 50-
90 along each dimension, and experiments with a problem
size of 60 provides us with consistent results in that range
while allowing for even sized block partitions [12].
The baseline implementation performs poorly in CnC.

With the baseline program, CnC creates 603 dynamic step
instances for each minimally-constrained step. Such fine
granularity requires CnC to perform excessive scheduling
and bookkeeping during execution, even causing it to per-
form worse than in sequential. Applying step fusion halves
the number of steps, and results in a 2x speedup. Fusion by
itself does not impact scalability until tiling is consider. A
much larger benefit can be seen from step tiling, where we
see speedups over 20x faster than sequential when running
on 48 threads, for the tiling-only implementation. Figure 6
shows the scaling for the three tiling implementations. Step
tiling gives a significant speedup compared to fusion, scal-
ing with higher thread counts, but does not scale well past
16 threads. However, combining both step fusion and tiling
gives the greatest performance increase, giving up to 37x
speedup over the sequential version. It is interesting to see
the block tiling method perform better than the strided im-
plementation at lower thread counts. We reason that this is
due to larger tile sizes in the block tiles, which are 15 in each
dimension. Larger tiles coarsens the partitioning, reducing
the available parallelism, but performs better for a smaller
thread count. However, at 32 and 48 threads, strided tiling,

which offers more parallelism and better tile parity, scales
better than the blocking method.
We further investigate the impact of step tiling and two

different tiling implementations in LULESH. The first meth-
od, strided tiling, groups full rows of nodes or elements along
one dimension of the mesh into a single block of compu-
tation. These long strides scale to all mesh sizes and the
transition between node-based and element-based compu-
tations is seamless. Every element tile depends on exactly
four neighboring node tiles when executing each iteration.
Strided tiling is able to create equivalent sized tiles, although
at the cost of being finer grain and no way to adjust the
granularity.
The block tiling method partitions the element space of

the original mesh into equivalent sized subdomains. How-
ever, the node space cannot be mapped directly onto the
element partitions directly, and are partitioned similarly to
strided tiling. In an ideal scenario, all nodal dependencies
would fit into a single tile which would map perfectly onto
each element tile, so that all dependencies would come from
a single tile. However, because of shared neighbors and the
offset sizes between nodes and elements, it is extremely dif-
ficult to map properly under the CnC framework, which
expects dynamic single assignment of data. Alternative so-
lutions add increased complexity to the partitioning setup
and/or more redundant computation, so we do not include
those results. Even with an imperfect mapping, there is am-
ple parallelism in the application, but we believe that the
scalability suffers due to it. The parity between node and
element tiles in the strided method shows to give benefits
in terms of scalability. After 16 cores, block tiling becomes
inferior to strided tiling, most likely due to this reason.
While strided row-tiles are exactly the size of the mesh

dimension, block tiles do not have restrictions on their sizes,
provided that the data and corresponding tags are initial-
ized correctly. We investigate 4 different sizes for a mesh
of size 603, with results shown in Figure 7. When execut-
ing using less than 8 threads, the behavior is similar to the
performance running with 8 threads, with the larger block
sizes being superior. However, we can see that after using
more than 8 threads, it becomes more advantageous to use
smaller block sizes, creating more fine-grained parallel units.
Depending on the problem size, this is most likely a tuneable
parameter.

Figure 7: Impact of Block Size

5. DISCUSSION
The final fused-tiled implementation had a number of im-

provements over the baseline code. As stated previously,
the number of get and put operations were reduced, as well
as the number of tags that were prescribed. Additionally,
some data calculations were able to be reused, and a few
dependencies were serialized which reduced scheduling syn-
chronization. During fusion and tiling modifications, we re-
ordered specific read/write operations to best accommodate
CnC’s functional guidelines, which gave a slight performance
boost and reduced requeue events. It should be noted that
two premature implementations were tested which did not
perform as well as the final heuristics. The first method
thoughtlessly fused and/or tiled the step functions and re-
lied on a built-in tuner to handle the dependencies, allow-
ing non-ideal orderings of get and put operations in each
function. This Depends tuner prevents speculation, which
negates any negative requeuing effect. Although it provided
a simple programming solution, the tuner was too restric-
tive and the resulting program never scaled when running
in parallel. The second iteration included the reordering of
get and put operations, but did not manage memory and
temporary values effectively. With some additional garbage
collection and the removal of redundancy between shared
neighboring data, we were able to get a 10% speedup over a
non-optimized code.
Although the CnC port is based on the original LULESH

2.0 implementations provided by LLNL, the performance,
especially sequential code, does not perform as well. This
was one of the original motivations for the work, but the
transformations discussed can be generalized to other ap-
plications as well. When comparing, we found that the
CnC sequential baseline is far worse than its OpenMP al-
ternative. With optimizations, our CnC implementation
is around 10x slower than the later versions of the LLNL
code. Upon further investigation, we reason the degreda-
tion is primarily caused by cache performance from the lack
of cache-specific tuners for our tiled/fused implementation.
Additionally, there are greater overheads with accessing in-
dividual elements from the data collection during CnC’s dy-
namic execution of steps, compared to OpenMP which op-
erates on parallel regions with uniform memory access and
does not dynamically manage dependencies. With under-
lying changes to the item collections and a modified data
layout to match the computation tiles, we believe removing
the bottlenecks associated with data access and movement
will give us performance much closer to that of the LULESH
2.0 code.
An execution trace is shown during parallel execution of

8 threads, shown in Figure 8. Each block represents an ac-
tive task working on a piece of computation, for the fused-
tiled LULESH program, but on a smaller 203 problem. This
demonstrates that LULESH is a complex application to han-
dle in CnC, especially in parallel. The gaps between the
partial force calculations are mostly due to requeued events,
which occur in Intel CnC when dependencies are not ready
for a specific step collection. The data dependencies before
and after the force calculations require a reduction opera-
tion, effectively becoming a synchronization barrier. As seen
by the trace, the element-based computations afterwards
happen without much idle time in between. Finally, we
note that in between iterations, the delta time computation
requires a significant fraction per iteration. This step is a

Figure 8: Multi-threaded CnC Execution Trace

safety check which requires every element to have calculated
all values for the previous iteration before advancing to the
next one. With CnC, which exploits asynchronous-parallel
execution, we achieve between a 70-80% utilization ratio but
are unable to fully take advantage of maximum parallelism
due to implicit barriers caused by the dependence structure
in LULESH.

5.1 Lessons Learned
In our study, we focus on a single application, LULESH.

From the minimally constrained algorithm written in CnC,
we applied high level fusion and tiling transformations on the
program by altering the step, data, and tag collections while
making negligible changes to the underlying data structures
and low level code. However, the applicability of this step
fusion and tiling technique are not limited to the single ap-
plication. These techniques should be applicable to any high
level algorithm using the CnC language and are not domain-
specific. The advantages of using the CnC programming
model creates a separation of concerns that allows domain
scientists to focus on the algorithm, while the tuning expert
can focus on performance concerns such as tiling and fu-
sion. However, the current CnC tuning capabilities do not
always yield scalable applications using the CnC language if
the algorithm specifies a level of parallelism that is too fine.
We show this using the LULESH mini-app and exploit the
fact that there was enough algorithmic complexity to take
advantage of step fusion. Being a 3D stencil-based code, it
also benefits from tiling techniques to exploit the available
parallelism in each iteration. When it comes to partition-
ing the iteration space of CnC steps, fusion and tiling are
semantically equivalent to combining multiple steps into a
single instance. It is a very general approach, and the trans-
formations do not alter any computations, but only change
how and when they are executed.
Although the information from CnCs high level specifica-

tion can aid in the transformations, the dependency infor-
mation is insufficient to fully automate the process. Parsing
the CnC graph does not provide enough data to analyze the
dependence structure between individual step instances. In
the future, we wish to automate fusion and tiling techniques

using the information from the high level CnC specification
as well as inter-tag dependencies based on get and put in-
dices. We believe that this is possible, but more information
must be available at the specification level in order to detect
when dependencies cross between tag instances. Preliminary
results using CnC-OCR, a separate CnC implementation,
has shown promise in generating a bare-bones CnC program
which automatically interfaces every step collection to its
respective data collections [8]. This feature requires depen-
dencies to be explicitly stated, but variable tile sizes will
require underlying data structure changes. Future work in
that direction will hopefully produce a process to automate
step tiling that will allow fusion and other optimizations.

6. RELATED WORK
Parallel Programming is still a difficult task, even after

so many decades. Legacy codes are difficult to maintain;
meanwhile, no one is certain what our hardware will look
like in 10 years. Many researchers are still trying to figure
out the best trade-off between programming portability and
performance. Concurrent Collections is just one approach
for efficiently program parallel applications.

6.1 Scientific Applications
One well-known approach to programming scientific ap-

plications is through the use of domain-specific languages
(DSLs). Previously, Karlin et al. [10] had explored the ap-
plicability of using traditional and emerging parallel pro-
gramming models for LULESH. These included Chapel,
Charm++, Liszt, and Loci. Their results were mixed, cit-
ing that no single model handled all optimizations per-
fectly, and that only the longstanding frameworks performed
competitively due to having more time to mature runtime
and compiler technologies. However, the newer technologies
mostly utilized high-level programming constructs and pro-
vided easier programmability and better tuning interfaces,
with better potential for programmers to obtain reasonable
performance using significantly less time and effort.
CnC would fall into the category of offering superior ease

of programmability and portability for reasonable perfor-
mance. Previous work evaluating the performance of CnC
on a Cholesky Factorization yielded very competitive re-
sults compared to highly tuned MKL kernels [4]. In their
study, they acknowledge that performance is impacted by
tile-size and locality, and observe minor performance degra-
dation from queuing and scheduling overheads. We surmise
that with enough tuning to taking advantage of Intel’s opti-
mizations, we could achieve competitive performance rival-
ing tuned versions of LULESH.

6.2 Parallel Programming Models
CnC goes beyond just that of scientific applications. The

core belief in CnC is that any parallel application can be pro-
grammed using their model, which was designed specifically
for that cause. The semantics of parallelism is expressed
without explicitly determining any parallel execution, sim-
plifying the programming process for non-performance ex-
perts. The issue that arises is how to optimally express the
computation granularity so that it an be tuned efficiently.
Our approach focuses on tiling/fusion techniques and high-
level tuning in CnC to coarsen the iteration space and bal-
ance the work/scheduling ratio to aid the runtime.
Another alternative to exploiting parallelism is through

the use of polyhedral frameworks. Polyhedral frameworks
are very powerful compiler tools for analyzing and trans-
forming loop-based codes. They can reason about separate
iterations in loops and analyze symbolic expressions, un-
like more traditional compiler techniques. PLUTO, an au-
tomatic parallelizer based on the polyhedral model, focuses
specifically on addressing tiling and locality concerns [1]. We
note that the notion of tiling they use is the general term
addressed for common loops, and not the tiling we focus on,
in the CnC space. Another similar work that has connec-
tions to both CnC and polyhedral compilation frameworks
is Data Flow Graph Representation (DFGR), an intermedi-
ate graph representation for macro-dataflow programs [16].
In their work, Sbirlea et al. uses program information simi-
lar to the CnC specification to help her framework generate
scalable parallel programs that run using various libraries.
One of their purposes for relying on the framework is to
generate well-tiled code, but do not need to tune any tiling
parameters.
CnC is still a relatively new programming model. There

are two major implementations, with Intel’s version and an-
other version being developed by Rice that runs using their
Open Community Runtime (OCR) [8]. Future work will in-
clude trying to automate the process of fusion and tiling for
programs using either CnC framework. Another idea being
explored is to have a dynamic runtime that can leverage the
benefits of fusion and tiling on demand to run the original,
fused, tiled, or both, depending on which implementation
will be more advantageous. This increases platform flexibil-
ity, potential dynamic adaptation, but will also likely add
increased complexity along with unknown feasibility.

7. CONCLUSION
In this paper, we present a transformative method in Con-

current Collections to optimize the performance of the LU-
LESH mini-app, a hydrodynamics stencil code developed
by LLNL. Borrowing from classical compiler concepts, we
apply fusion and tiling onto the fundamentals core compo-
nents of CnC programs, altering only the collections while
making negligible changes to underlying code. This pro-
duced a semantically equivalent algorithm while reducing
the granularity of the program. Although Concurrent Col-
lections offers intuitive programming simplifications, it has
trouble with over-scheduling programs (like stencils) with
fine-grained parallelism. We start with what a scientist un-
derstands, beginning with a decomposed algorithm consist-
ing of minimally constrained computational steps, and are
able to transform that program into a well-optimized CnC
program that is scalable and architecture-agnostic.
To achieve good performance in CnC, the programmer

has to more than just express the partially ordered set of
computations. If a CnC program has extremely fine-grained
parallelism, no amount of built-in performance tuning will
prevent severe performance degradation. For most decom-
posed algorithms for stencil codes similar to LULESH, step
fusion and step tiling or an equivalent programming change
will be necessary to obtain scalable performance on modern
hardware.

Acknowledgments.
This research is supported by the Department of Energy un-
der contract DE-FC02-12ER26104. We would like to thank
the anonymous reviewers for their feedback and suggestions.

We would also like to thank Ellen Porter and her work at
the Pacific Northwest National Laboratory for providing us
with the original LULESH program, as well as Kath Knobe,
Nick Vrvilo, Frank Schlimbach, and Zoran Budimlic, for
their comments and feedback during discussions regarding
Concurrent Collections.

References
[1] U. Bondhugula, A. Hartono, J. Ramanujam, and

P. Sadayappan. Pluto: A practical and fully
automatic polyhedral program optimization system.
In Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and
Implementation (PLDI 08), Tucson, AZ (June 2008).
Citeseer, 2008.

[2] Z. Budimlić, M. Burke, V. Cavé, K. Knobe,
G. Lowney, R. Newton, J. Palsberg, D. Peixotto,
V. Sarkar, F. Schlimbach, et al. Concurrent
collections. Scientific Programming, 18(3-4):203–217,
2010.

[3] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar.
Concurrent collections programming model. In
Encyclopedia of Parallel Computing, pages 364–371.
Springer, 2011.

[4] A. Chandramowlishwaran, K. Knobe, and R. Vuduc.
Performance evaluation of concurrent collections on
high-performance multicore computing systems. In
Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1–12. IEEE,
2010.

[5] I. C. Frank Schlimbach. Intel concurrent collections
for c++ for windows and linux, 2015.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language.
In ACM Sigplan Notices, volume 33, pages 212–223.
ACM, 1998.

[7] D. Gelernter. Multiple tuple spaces in Linda. Springer,
1989.

[8] Habanero-Rice. Concurrent collections on ocr, 2015.
[9] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen,

Z. Devito, M. Gokhale, R. Haque, R. Hornung,
J. Keasler, D. Laney, et al. Lulesh programming
model and performance ports overview. Lawrence
Livermore National Laboratory (LLNL), Livermore,
CA, Tech. Rep, 2012.

[10] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain,
J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke,
F. Wang, et al. Exploring traditional and emerging
parallel programming models using a proxy
application. In Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium
on, pages 919–932. IEEE, 2013.

[11] I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates
and changes. Livermore, CAAugust, 2013.

[12] I. Karlin, J. McGraw, J. Keasler, and B. Still. Tuning
the lulesh mini-app for current and future hardware.
In Nuclear Explosive Code Development Conference
Proceedings (NECDC12), 2012.

[13] K. Knobe. Ease of use with concurrent collections

(cnc). Hot Topics in Parallelism, 2009.
[14] K. Knobe and Z. Budimlic. Compiler optimization of

an application-specific runtime.
[15] J. Reinders. Intel threading building blocks: outfitting

C++ for multi-core processor parallelism. " O’Reilly
Media, Inc.", 2007.

[16] A. Sbirlea, L.-N. Pouchet, and V. Sarkar. Dfgr an
intermediate graph representation for macro-dataflow
programs. In Data-Flow Execution Models for
Extreme Scale Computing (DFM), 2014 Fourth
Workshop on, pages 38–45. IEEE, 2014.

