
Brief Announcement: Locality-aware Load Balancing
for Speculatively-parallelized Irregular Applications

Youngjoon Jo and Milind Kulkarni
School of Electrical and Computer Engineering

Purdue University
{yjo, milind}@purdue.edu

ABSTRACT
Load balancing is an important consideration when running
data-parallel programs. While traditional techniques trade off
the cost of load imbalance with the overhead of mitigating
that imbalance, when speculatively parallelizing amorphous
data-parallel applications, we must also consider the effects of
load balancing decisions on locality and speculation accuracy.
We present two data centric load balancing strategies which
account for the intricacies of amorphous data-parallel execu-
tion. We implement these strategies as schedulers in the Ga-
lois system and demonstrate that they outperform traditional
load balancing schedulers, as well as a data-centric, non-load-
balancing scheduler.

Categories and Subject Descriptors: D.3.4 [Processors]: Run-
time Environments

General Terms: Languages

Keywords: Speculative parallelization, Irregular programs,
Data partitioning, Load balancing

1. INTRODUCTION
A common source of inefficiency in data-parallel programs

(where elements from an iteration space are processed in par-
allel) is load imbalance, where different threads perform dif-
ferent amounts of work. Load imbalance can arise because
one thread is assigned more work than another, or because the
work assigned to one thread takes longer (due to, e.g., local-
ity effects). A number of load balancing schedulers have been
proposed to minimize the effects of load imbalance, ranging
from dynamic schedulers that allocate work on-demand [10]
to work-stealing schedulers that allow threads without work to
“steal” work from other threads [1, 2].

In recent work, we have identified a more general form of
data-parallelism that arises in many irregular programs, called
amorphous data-parallelism [5]. An amorphous data-parallel
application is organized around a worklist of active nodes,
which represent computation over a shared data structure. To
process an active node, a portion of the data structure, called
the node’s neighborhood is read or written; this execution may
generate new active nodes, which are added to the worklist.
Parallelism arises by processing active nodes with disjoint neigh-
borhoods in parallel. Active nodes with overlapping neighbor-

Copyright is held by the author/owner(s).
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
ACM 978-1-4503-0079-7/10/06.

hoods are said to conflict, and cannot be processed in parallel.
In general, these applications must be parallelized using spec-
ulative parallelization [8].

Amorphous data-parallel algorithms differ from traditional
data-parallel programs in notable ways. First, the iteration
space may not be fixed: work may be added to the work-
list during execution. Second, because the applications op-
erate over irregular data structures, adjacent elements in the
worklist may not exhibit locality. Finally, and most impor-
tantly, elements in the worklist may not be independent of each
other; there may be cross-iteration dependences that must be
respected.

Existing load balancing techniques, which have focused on
traditional data-parallelism, do not perform well when faced
with amorphous data-parallel programs. Load balancing sched-
ulers suited for amorphous data parallel programs must ad-
dress additional factors beyond run-time overhead and load
balance: they must account for newly created work, how that
work may be assigned to improve locality, and how load bal-
ancing decisions may impact misspeculation rates. Absent
these considerations, a load balancing scheduler may deliver
good load balance, but at the cost of overall performance.

In this brief announcement, we present two novel, data cen-
tric load balancing algorithms, dynamic partition allocation
and partition stealing, as well as a data-centric version of the
traditional work-stealing algorithm. These approaches account
for the effects of speculatively parallelized, amorphous data-
parallel programs. We implement our schedulers in the Galois
system. Across three benchmarks from the Lonestar bench-
mark suite, we find that data-centric load balancing can im-
prove performance by up to 66% over a non load-balancing
scheduler, and by up to 25% over the best load balancing sched-
ulers that do not account for locality effects.

2. BACKGROUND

2.1 The Galois system
The Galois system uses speculative techniques to parallelize

amorphous data-parallel applications [8]. The system uses
data partitioning to improve locality and reduce speculation
overhead [7]. The data structure used in a program is parti-
tioned (typically, into more partitions than threads). To mini-
mize conflict detection overhead, two active nodes are consid-
ered to conflict if their neighborhoods lie in the same partition.
It is hence critical to minimize the chance that two threads
work on active nodes with neighborhoods in the same parti-
tion. To achieve this, partitions are mapped to threads and ac-



tive nodes from a partition are executed by the thread that owns
the partition. This minimizes misspeculation, as only neigh-
borhoods that cross partition boundaries can trigger conflicts.
This static, partition-based scheduler is the default scheduler
used by the optimized Galois system.

2.2 Load balancing techniques
A common load balancing strategy is guided self schedul-

ing [10]. All the work is placed in a centralized worklist, and
work is handed out to threads in chunks that decrease in size
as computation progresses. While this approach improves load
balance without incurring too much overhead from accessing
the central worklist, it does not address locality. Furthermore,
because the chunks of work are created in a partition-agnostic
manner, it is quite likely that different threads will receive ac-
tive nodes from the same partition, increasing misspeculation
(as their neighborhoods will necessarily conflict).

An alternate approach to load balancing is work-stealing [2].
A work-stealing scheduler is organized around a set of deques,
one per thread. Each thread takes work from the front of its
deque, and places any newly generated work at the front, as in
a stack. If a thread runs out of work, it steals work from the
back of a randomly chosen deque. Thus, locality is enhanced
during normal operation by processing newly generated work
immediately, while steals preserve locality by removing work
from the back of the victim’s deque.

There are a few drawbacks to workstealing in the context of
amorphous data-parallelism. First, if new work is rarely cre-
ated, workstealing can lead to poor locality: the initial assign-
ment of work may either be random, or use binary splitting [1],
which places all the work in one worklist and distributes work
through steals. In either case, there is no guarantee that local-
ity will be attained. Second, steals potentially increase mis-
speculation: if a thief steals work from the same partition that
another thread is working on, only one of the two threads will
be able to make forward progress.

3. DATA-CENTRIC LOAD BALANCING
To address the problem of load imbalance in amorphous

data-parallel programs without sacrificing locality or increas-
ing misspeculation, we must take a data-centric approach to
load balancing. We present three schedulers that leverage par-
titioning information when making load-balancing decisions:
a variant
Partition-aware work-stealing: A simple strategy is to add
partition-awareness to the work stealing scheduler. The sched-
uler adopts a data-centric model, using the same initial distri-
bution of active nodes as the default Galois scheduler. Until
steals start to occur, the application will enjoy the same local-
ity as the static scheduler. Unfortunately, because steals do not
consider partitioning information, they may still suffer from
the misspeculation effects discussed in the previous section.
Dynamic partition allocation: In dynamic partition alloca-
tion, active nodes are associated with partitions as in the static
scheduler. However, rather than assigning every partition to
a thread prior to execution, the partitions are all placed in a
centralized worklist. When parallel execution begins, and any
time a thread runs out of work, it retrieves a new partition from
the central worklist. As a result, the steady state of the sched-
uler is for a single partition to be assigned to each thread and
the remainder of the partitions to be in the central worklist.

Each thread treats the set of active nodes in a single partition
as a stack, with newly generated work in that partition being
processed immediately.

This scheduler attempts to gain the benefits of dynamic sched-
uling without incurring its costs. There are fewer accesses
to the centralized worklist, as work is distributed at the parti-
tion granularity. Furthermore, work is handed out in locality-
preserving chunks, reducing misspeculation.
Partition stealing: The final data-centric scheduler we inves-
tigate is a variant of work-stealing. The initial distribution of
work to threads is partition-based, as in the static partitioned
scheduler, and in partitioned work-stealing. However, rather
than stealing individual pieces of work—or larger, but still es-
sentially random chunks—when a thread runs out of work it
attempts to steal a partition from another, randomly selected,
thread. When a thread is operating in its normal, non-stealing
mode, it behaves as in the static partitioned scheduler. This
scheduler attempts to mitigate the misspeculation effects of
workstealing by ensuring that each thread works in separate
partitions.

4. EVALUATION
Methodology: We evaluated three benchmarks from the Lon-
estar suite of irregular programs [6]: Delaunay triangulation
(DT), Delaunay mesh refinement (DMR) and preflow push
(PFP). For each benchmark, we evaluated 6 different load bal-
ancing schedulers: (i) the default static, data-centric scheduler,
used as the baseline for our comparisons; (ii) self, a scheduler
using guided self-scheduling; (iii) steal, a workstealing sched-
uler using binary splitting; (iv) steal*, a workstealing sched-
uler that assigns initial work using partition information; (v)
dynamic(P), a dynamic partition-allocation scheduler; and (vi)
steal(P), a partition-stealing scheduler.

Our schedulers were implemented in the Galois system, us-
ing partition-locking [7]. The system, schedulers and applica-
tions were written in Java 6 and executed on the Sun HotSpot
VM version 1.6 with a 12GB heap. To account for the effects
of JIT compilation, each configuration was run 10 times, and
the average of the two median run-times was recorded. All of
our experiments were conducted on a Sun Niagara 2 server,
consisting of two 8-core chips in an SMP configuration.
Results: Figure 1 shows the performance of the six load-
balancing schedulers, relative to the static scheduler. The non-
data-centric schedulers are plotted with solid lines, while the
data-centric schedulers are shown with dashed lines.

DT does not suffer from significant load imbalance, as new
work is not generated; on 32 threads, the average time each
thread is idle when using the static scheduler is only 13%. As
such, the primary goal of a load balancing scheduler should be
to preserve locality and performance. Unfortunately, self and
steal perform poorly, because they do not consider partitioning
information. However, introducing data-centrism improves
performance: steal(P) performs similarly to the default static
scheduler, and outperforms the best non-data-centric scheduler
by up to 9%.

DMR has more load imbalance, as new work is generated;
the mean idleness with the static scheduler is 21% on 32 threads.
Again, we see that by ignoring locality effects, the non-data-
centric schedulers perform poorly, while the data-centric sched-
ulers perform well. The best data-centric scheduler, dynamic(P)



Figure 1: Performance of load balancing schedulers relative to Galois default.

outperforms the best non-data-centric scheduler, self, by up to
24%, and outperforms the static scheduler by up to 12%.

PFP has the worst load imbalance: the static scheduler has
an average mean idleness of 58% on 32 threads, and 69% on
8 threads. Because most of the work in PFP is generated dur-
ing execution, the initial distribution of work has little bearing
on performance, and steal and steal* exhibit similar behavior.
The two other data-centric schedulers outperform the work-
stealing schedulers up to 16 threads, at which point overheads
and abort ratios cause their performance to become compara-
ble. All the load balancing schedulers, save self, substantially
outperform the static scheduler. Dynamic(P) outperforms the
static scheduler by up to 66%, and outperforms the best non-
data-centric scheduler, steal, by up to 25%.

5. RELATED WORK & CONCLUSIONS
Related work: Markatos and LeBlanc identified the tension
between schedulers that attempt to improve locality and sched-
ulers that attempt to improve load balance, and noted that most
schedulers target load balance at the expense of locality [9].
They noted that in many cases, it is more important to con-
centrate on locality, even if that results in poorer load balance.
Our work echoes their finding in the context of amorphous
data-parallelism, where locality-aware schedulers outperform
schedulers that do not pay heed to data-locality concerns.

Recent studies have investigated extending work-stealing
to consider locality. Krishnamoorthy et al. investigated a
locality-aware work-stealing scheduler for sparse-matrix com-
putations [4]. However, these applications do not use specula-
tion or generate new work, unlike our target algorithms. Guo
et al. studied a work-stealing scheduler for X10 [3], which
preserves locality by limiting a thread’s steal targets to other
threads working on local data.
Conclusions We introduced three data-centric schedulers: a
partition-aware variant of work stealing, a data-centric dynamic
scheduler and a data-centric work stealing scheduler. Across
three benchmarks, we find that our load balancing schedulers
outperform the default, locality-ware scheduler by up to 2%
on Delaunay triangulation, 12% on Delaunay mesh refinement
and 66% on preflow push. Furthermore, on each benchmark,
our data-centric schedulers outperformed the best non-data-
centric schedulers by up to 9% on Delaunay triangulation, 24%
on Delaunay mesh refinement and 25% on preflow push. Clearly,
making load balancing decisions with an eye toward data-centrism
is critical to achieving high performance on amorphous data-
parallel programs.

References
[1] Intel Threading Building Blocks Reference Manual, Rev 1.9.

2008.

[2] Robert D. Blumofe and Charles E. Leiserson. Scheduling mul-
tithreaded computations by work stealing. J. ACM, 46(5):720–
748, 1999.

[3] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. SLAW:
A scalable locality-aware adaptive work-stealing scheduler for
multi-core systems. In PPoPP ’10: Proceedings of the 15th
ACM SIGPLAN symposium on Principles and practice of par-
allel programming, pages 341–342, 2010.

[4] S. Krishnamoorthy, U. Catalyurek, J. Nieplocha, and P Sadayap-
pan. An approach to locality-conscious load balancing and trans-
parent memory hierarchy management with a global-address-
space parallel programming model. In IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), 2006.

[5] Milind Kulkarni, Martin Burtscher, Rajasekhar Inkulu, Keshav
Pingali, and Calin Cascaval. How much parallelism is there in
irregular applications? In PPoPP ’09: Proceedings of the 14th
ACM SIGPLAN symposium on Principles and practice of paral-
lel programming, pages 3–14, New York, NY, USA, 2009. ACM.

[6] Milind Kulkarni, Martin Burtscher, Keshav Pingali, and Calin
Cascaval. Lonestar: A suite of parallel irregular programs. In
2009 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 65–76, April 2009.

[7] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan,
Bruce Walter, Kavita Bala, and L. Paul Chew. Optimistic paral-
lelism benefits from data partitioning. In ASPLOS XIII: Proceed-
ings of the 13th international conference on Architectural sup-
port for programming languages and operating systems, pages
233–243, New York, NY, USA, 2008. ACM.

[8] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. Optimistic paral-
lelism requires abstractions. In PLDI ’07: Proceedings of the
2007 ACM SIGPLAN conference on Programming language de-
sign and implementation, pages 211–222, New York, NY, USA,
2007. ACM.

[9] E. P. Markatos and T. J. LeBlanc. Load balancing vs. locality
management in shared-memory multiprocessors. Technical re-
port, Rochester, NY, USA, 1991.

[10] Constantine D. Polychronopoulos and David J. Kuck. Guided
self-scheduling: A practical scheduling scheme for parallel su-
percomputers. IEEE Transactions on Computers, C-36(12),
1987.


