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Amorphous Data 
Parallelism

• Many irregular programs implement 
iterative algorithms over worklists

‣ Mesh refinement, agglomerative 
clustering, maxflow algorithms, compiler 
analyses, ...

• Complex dependences between 
iterations

• But many iterations can be executed in 
parallel

• New elements can be added to worklist
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Delaunay Mesh 
Refinement (DMR)
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Worklist wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
   Triangle t = wl.get();
   if (t no longer in mesh) 
      continue;
   Cavity c = new Cavity(t);
   c.expand();
   c.retriangulate();
   mesh.update(c);
   wl.add(c.badTriangles());
}
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No ordering constraints on 
processing of worklist items



Parallelism in DMR
• Can process bad triangles 

concurrently

‣ As long as cavities do not 
overlap

‣ Cannot determine this until 
run time

• Example of amorphous data 
parallelism

• Our approach: Galois system 
for optimistic parallelization 
[PLDI’07, ASPLOS’08]
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Galois System

• User code

‣ Optimistic iterators

‣ Sequential Semantics

• Class libraries

‣ Data structures

‣ Conflict conditions

• Runtime system

‣ Optimistic parallelization

‣ Conflict detection & handling
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User Code

Class Libraries

Runtime

foreach e in Set s do B(e)



Worklist wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
   Triangle t = wl.get();
   if (t no longer in mesh) 
      continue;
   Cavity c = new Cavity(t);
   c.expand();
   c.retriangulate();
   mesh.update(c);
   wl.add(c.badTriangles());
}

DMR User Code
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Worklist wl;
wl.add(mesh.badTriangles());

foreach Triangle t in wl {

   if (t no longer in mesh) 
      continue;
   Cavity c = new Cavity(t);
   c.expand();
   c.retriangulate();
   mesh.update(c);
   wl.add(c.badTriangles());
}
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DMR User Code
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8

Evaluation platform: 4-core Xeon system, running Java 1.6 
HotSpot JVM

Input mesh: 100K triangles, ~40K bad triangles



Scheduling in OpenMP

• OpenMP provides parallel DO-ALL loops 
for regular programs

• Major scheduling concerns are load-
balancing and overhead

• OpenMP scheduling policies address these 
issues

‣ static, dynamic, guided
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Amorphous Data 
Parallelism Issues

• Algorithmic – The efficiency of the 
algorithm or data structures

• Conflicts – The likelihood that two iterations 
executed in parallel will conflict

• Locality – The temporal or spatial locality 
exhibited in the data structures

• Dynamically created work

• Load-balancing and contention still an 
issue
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Scheduling Basics

• Each iteration is executed by a single core

• Each core executes a set of iterations in a 
linear order

• Scheduling maps work from an “iteration 
space” to positions in an “execution 
schedule”

‣ Each iteration is mapped to a core, and 
a position in that core’s execution 
schedule
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Scheduling Functions

12

➡ Clustering – Groups 
iterations into clusters; 
Each cluster executed 
on a single core

➡ Labeling – Maps clusters 
to cores; Each core can 
have multiple clusters

• Ordering – Specifies a 
serial execution order 
for each core
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Example Instantiations
• OpenMP’s chunked 

self-scheduling

‣ Clustering: chunked
 

‣ Labeling: dynamic

‣ Ordering: cluster-major
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• DMR’s “generator-
computes”

‣ Clustering: chunked + 
generator-computes

‣ Labeling: dynamic

‣ Ordering: LIFO

The Galois system provides a number of built-in 
scheduling policies



Evaluated Applications

• Delaunay mesh refinement

• Delaunay triangulation

• Augmenting-paths maxflow

• Preflow-push maxflow

• Agglomerative clustering
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Sample Schedules for
DMR

• random – default Galois schedule

• stack – LIFO schedule

• partitioned – data-centric schedule, 
based on partitioning of mesh

• generator-computes – random schedule, 
new work immediately processed by core 
that created it
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Summary of Results
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Conclusions
• Developed a general framework for 

scheduling programs with amorphous 
data parallelism

‣ Subsumes OpenMP scheduling policies

• Implemented framework in Galois system

‣ Provides several default scheduling 
policies

‣ Allows programmers to specify their own 
scheduling policies when needed
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