
Scheduling Strategies for
Optimistic Parallel Execution

of Irregular Programs
Milind Kulkarni, Patrick Carribault, Keshav
Pingali, Ganesh Ramanarayanan, Bruce

Walter, Kavita Bala and L. Paul Chew

University of Texas at Austin
Cornell University

Amorphous Data
Parallelism

• Many irregular programs implement
iterative algorithms over worklists

‣ Mesh refinement, agglomerative
clustering, maxflow algorithms, compiler
analyses, ...

• Complex dependences between
iterations

• But many iterations can be executed in
parallel

• New elements can be added to worklist

2

Delaunay Mesh
Refinement (DMR)

3

Worklist wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
 Triangle t = wl.get();
 if (t no longer in mesh)
 continue;
 Cavity c = new Cavity(t);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

Delaunay Mesh
Refinement (DMR)

3

Worklist wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
 Triangle t = wl.get();
 if (t no longer in mesh)
 continue;
 Cavity c = new Cavity(t);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

No ordering constraints on
processing of worklist items

Parallelism in DMR
• Can process bad triangles

concurrently

‣ As long as cavities do not
overlap

‣ Cannot determine this until
run time

• Example of amorphous data
parallelism

• Our approach: Galois system
for optimistic parallelization
[PLDI’07, ASPLOS’08]

4

Galois System

• User code

‣ Optimistic iterators

‣ Sequential Semantics

• Class libraries

‣ Data structures

‣ Conflict conditions

• Runtime system

‣ Optimistic parallelization

‣ Conflict detection & handling

5

User Code

Class Libraries

Runtime

foreach e in Set s do B(e)

Worklist wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
 Triangle t = wl.get();
 if (t no longer in mesh)
 continue;
 Cavity c = new Cavity(t);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

DMR User Code

6

Worklist wl;
wl.add(mesh.badTriangles());

foreach Triangle t in wl {

 if (t no longer in mesh)
 continue;
 Cavity c = new Cavity(t);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

7

DMR User Code

1 2 3 4

of Cores

0.8

1

1.2

1.4

1.6

1.8

2

2.2

S
p
e
e
d
u
p

stack

random

Scheduling Impact: DMR

8

Evaluation platform: 4-core Xeon system, running Java 1.6
HotSpot JVM

Input mesh: 100K triangles, ~40K bad triangles

Scheduling in OpenMP

• OpenMP provides parallel DO-ALL loops
for regular programs

• Major scheduling concerns are load-
balancing and overhead

• OpenMP scheduling policies address these
issues

‣ static, dynamic, guided

9

Amorphous Data
Parallelism Issues

• Algorithmic – The efficiency of the
algorithm or data structures

• Conflicts – The likelihood that two iterations
executed in parallel will conflict

• Locality – The temporal or spatial locality
exhibited in the data structures

• Dynamically created work

• Load-balancing and contention still an
issue

10

Scheduling Basics

• Each iteration is executed by a single core

• Each core executes a set of iterations in a
linear order

• Scheduling maps work from an “iteration
space” to positions in an “execution
schedule”

‣ Each iteration is mapped to a core, and
a position in that core’s execution
schedule

11

Scheduling Functions

12

➡ Clustering – Groups
iterations into clusters;
Each cluster executed
on a single core

➡ Labeling – Maps clusters
to cores; Each core can
have multiple clusters

• Ordering – Specifies a
serial execution order
for each core

Scheduling Functions

13

➡ Clustering – Groups
iterations into clusters;
Each cluster executed
on a single core

➡ Labeling – Maps clusters
to cores; Each core can
have multiple clusters

• Ordering – Specifies a
serial execution order
for each core

Scheduling Functions

13

➡ Clustering – Groups
iterations into clusters;
Each cluster executed
on a single core

➡ Labeling – Maps clusters
to cores; Each core can
have multiple clusters

• Ordering – Specifies a
serial execution order
for each core

Scheduling Functions

14

➡ Clustering – Groups
iterations into clusters;
Each cluster executed
on a single core

➡ Labeling – Maps clusters
to cores; Each core can
have multiple clusters

• Ordering – Specifies a
serial execution order
for each core

Scheduling Functions

14

P0

P1

➡ Clustering – Groups
iterations into clusters;
Each cluster executed
on a single core

➡ Labeling – Maps clusters
to cores; Each core can
have multiple clusters

• Ordering – Specifies a
serial execution order
for each core

Scheduling Functions

15

P0

P1

➡ Clustering – Groups
iterations into clusters;
Each cluster executed
on a single core

➡ Labeling – Maps clusters
to cores; Each core can
have multiple clusters

➡ Ordering – Specifies a
serial execution order
for each core

Scheduling Functions

15

P0

P1
time

time➡ Clustering – Groups
iterations into clusters;
Each cluster executed
on a single core

➡ Labeling – Maps clusters
to cores; Each core can
have multiple clusters

➡ Ordering – Specifies a
serial execution order
for each core

Scheduling Functions

15

P0

P1
time

time

Functions can be
defined “online”

➡ Clustering – Groups
iterations into clusters;
Each cluster executed
on a single core

➡ Labeling – Maps clusters
to cores; Each core can
have multiple clusters

➡ Ordering – Specifies a
serial execution order
for each core

Example Instantiations
• OpenMP’s chunked

self-scheduling

‣ Clustering: chunked

‣ Labeling: dynamic

‣ Ordering: cluster-major

16

• DMR’s “generator-
computes”

‣ Clustering: chunked +
generator-computes

‣ Labeling: dynamic

‣ Ordering: LIFO

The Galois system provides a number of built-in
scheduling policies

Evaluated Applications

• Delaunay mesh refinement

• Delaunay triangulation

• Augmenting-paths maxflow

• Preflow-push maxflow

• Agglomerative clustering

17

Sample Schedules for
DMR

• random – default Galois schedule

• stack – LIFO schedule

• partitioned – data-centric schedule,
based on partitioning of mesh

• generator-computes – random schedule,
new work immediately processed by core
that created it

18

1 2 3 4

of Cores

1

1.5

2

2.5

3

S
p
e
e
d
u
p

generator-computes

partitioned

stack

random

DMR Results

19

Summary of Results

20

Clustering Labeling Ordering

Delaunay Mesh
Refinement

random/
inherited

dynamic/
random

—/
LIFO

Delaunay
Triangulation

data-centric/
—

static/
data-centric

cluster-major/
random

Augmenting Paths
Maxflow

data-centric/
inherited

static/
data-centric

cluster-major/
LIFO

Preflow Push
Maxflow

data-centric/
inherited

static/
data-centric

cluster-major/
LIFO

Agglomerative
Clustering

unit/
custom

dynamic/
custom

—/
—

• Best combination of policies for each application

Summary of Results

21

Clustering Labeling Ordering

Delaunay Mesh
Refinement

random/
inherited

dynamic/
random

—/
LIFO

Delaunay
Triangulation

data-centric/
—

static/
data-centric

cluster-major/
random

Augmenting Paths
Maxflow

data-centric/
inherited

static/
data-centric

cluster-major/
LIFO

Preflow Push
Maxflow

data-centric/
inherited

static/
data-centric

cluster-major/
LIFO

Agglomerative
Clustering

unit/
custom

dynamic/
custom

—/
—

• Best combination of policies for each application

Conclusions
• Developed a general framework for

scheduling programs with amorphous
data parallelism

‣ Subsumes OpenMP scheduling policies

• Implemented framework in Galois system

‣ Provides several default scheduling
policies

‣ Allows programmers to specify their own
scheduling policies when needed

22

