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Amorphous Datfa
Parallelism

® Many irregular programs implement
iterative algorithms over worklists

» Mesh refinement, agglomerative
clustering, maxftlow algorithms, compiller
analyses, ...

® Complex dependences between
iferations

® But many iterations can be executed in
parallel

® New elements can be added to worklist



Delaunay Mesh
Refinement (DMR)

Worklist wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
Triangle t = wl.get();
if (t no longer in mesh)

continue;

Cavity ¢ = new Cavity(t);
c.expand();
c.retriangulate();
mesh.update(c);
wl.add(c.badTriangles());




Delaunay Mesh
Refinement (DMR)

Worklist wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
Triangle t = wl.get();
if (t no longer in 1 .sh)
continue;
Cavity ¢ = new Cavity(t . .
T No ordering constraints on
c.retriangulate(); processing of worklist items

mesh.update(c);
wl.add(c.badTriangles());




Parallelism in DMR

® Can process bad friangles
concurrently

» Aslong as cavities do not
overlap

» Cannot determine this until
run fime

® Example of amorphous data
parallelism

® Our approach: Galois system
for optimistic parallelization
[PLDI'O7, ASPLOS’08]




Galois System

® User code

» Optimistic iterators

foreach e in Set s do B(e)

» Seqguential Semantics
. User Code

® Class libraries

» Data structures Class Libraries

» Conflict conditions

® Runtime system Runtime

» Optimistic parallelization

» Conflict detection & handling



DMR User Code

Worklist wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
Triangle t = wl.get();
if (t no longer in mesh)

continue;

Cavity ¢ = new Cavity(t);
c.expand();
c.retriangulate();
mesh.update(c);
wl.add(c.badTriangles());




DMR User Code

Worklist wl;
wl.add(mesh.badTriangles());

foreach Triangle t in wl {

if (t no longer in mesh)
continue;

Cavity ¢ = new Cavity(t);

c.expand();

c.retriangulate();

mesh.update(c);

wl.add(c.badTriangles());




Scheduling Impact: DMR
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Evaluation platform: 4-core Xeon system, running Java 1.6
HotSpot JVM

Input mesh: 100K friangles, ~40K bad triangles



Scheduling in OpenMP

® OpenMP provides parallel DO-ALL loops
for regular programs

® Maqjor scheduling concerns are load-
balancing and overhead

® OpenMP scheduling policies address these
Issues

» static, dynamic, guided



Amorphous Datfa
Parallelism Issues

® Algorithmic — The efficiency of the
algorithm or data structures

® Conflicts — The likelihood that two iterations

executed in parallel wi

® | ocality — The tempora

Nelelglillel]

or spaftial locality

exhibited in the data structures

® Dynamically created work

® | oad-balancing and contention still an

Issue
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Scheduling Basics

® Each iteration is executed by a single core

® FEach core executes a set of iterations in a
linear order

® Scheduling maps work from an “iteration
space’” to positions in an “execution
schedule”

» Each iteration is mapped o a core, and
a position In that core’s execution
schedule
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Scheduling Functions

Clustering — Groups ®)
iferations info clusters;

Each cluster executed ®

on a single core

Labeling — Maps clusters O
to cores; Each core can
have multiple clusters

Ordering — Specifies @ O

serial execution order ®

for each core O ®)
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Scheduling Functions

Clustering — Groups
itferations info clusters;
Each cluster executed
on a single core

Labeling — Maps clusters
to cores; Each core can
have multiple clusters
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serial execution order
for each core

PLLC
AR

15



Scheduling Functions

PO
Clustering — Groups time
iferations into clusters;

Each cluster executed O O O O 0O O

on a single core
Labeling — Maps clusters

to cores; Each core can

have multiple clusters Pl
Ordering — Specifies a time

>
serial execution order
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for each core




Scheduling Functions

PO
Clustering — Groups time
iferations into clusters;

Each cluster executed O O O O 0O O

on a single core
Labeling — Maps clusters

to cores; Each core can

have multiple clusters Pl
Ordering — Specifies a time

>
serial execution order
® ¢ © ©¢ © ¢

for each core

Functions can be
defined “online”




Example Instantiations

® OpenMP’s chunked ® DMR’s “generator-
self-scheduling computes”

» Clustering: chunked » Clustering: chunked +
generator-computes

» Labeling: dynamic » Labeling: dynamic

» Ordering: cluster-major » Ordering: LIFO

The Galois system provides a number of built-in
scheduling policies

16



Evaluated Applications

® Delaunay mesh refinement

® Delaunay triangulation
® Augmenting-paths maxflow

® Preflow-push maxflow

® Agglomerative clustering



Sample Schedules for
DMR

® random — default Galois schedule
® stack — LIFO schedule

® partitioned — data-centric schedule,
based on partitioning of mesh

® generator-computes —random schedule,
new work iImmediately processed by core
that created it

18



3
025
-

3 2
()
o
n

DMR Results

10O [> &

generator-computes
partitioned

stack

random

# of Cores

19



Summary of Results

* Best combination of policies for each application

Clustering Labeling
Delaunay data-centric/ static/ cluster-major/
Triangulation — data-centric random

Augmenting Paths data-centric/ static/ cluster-major/
Maxflow inherited data-centric LIFO
Preflow Push data-centric/ static/ cluster-major/
Maxflow inherited data-centric LIFO
Agglomerative unit/ dynamic/ —/
Clustering custom custom —




Summary of Results

* Best combination of policies for each application

Delaunay Mesh random/ dynamic/
Refinement inherited

Ordering

\I

random LIFO
Delaunay data-centric/ cluster-major/
Triangulation — random

cluster-major/

Augmenting Paths data-centric/
Maxflow inherited

LIFO
Preflow Push data-centric/ cluster-major/
Maxflow inherited LIFO
Agglomerative unit/ dynamic/ —/

Clustering custom custom
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Conclusions

® Developed a general framework for
scheduling programs with amorphous
data parallelism

» Subsumes OpenMP scheduling policies
® Implemented framework in Galois system

» Provides several default scheduling
policies

» Allows programmers to specity their own
scheduling policies when needed
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