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Abstract
We develop a new framework for analyzing recursive methods that
perform traversals over trees, called tree dependence analysis. This
analysis translates dependence analysis techniques for regular pro-
grams to the irregular space, identifying the structure of depen-
dences within a recursive method that traverses trees. We develop
a dependence test that exploits the dependence structure of such
programs, and can prove that several locality- and parallelism-
enhancing transformations are legal. In addition, we extend our
analysis with a novel path-dependent, conditional analysis to refine
the dependence test and prove the legality of transformations for a
wider range of algorithms. We then use these analyses to show that
several common algorithms that manipulate trees recursively are
amenable to several locality- and parallelism-enhancing transfor-
mations. This work shows that classical dependence analysis tech-
niques, which have largely been confined to nested loops over array
data structures, can be extended and translated to work for complex,
recursive programs that operate over pointer-based data structures.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program analysis

Keywords dependence analysis, irregular algorithms, loop trans-
formations

1. Introduction
Many dependence analysis techniques have been developed to de-
termine when applying loop transformations—such as loop inter-
change, fusion and tiling [2]—to regular programs—array pro-
grams with affine loop bounds and index expressions—is legal [1,
4, 5, 10, 17, 20, 31, 32]. While there have been many attempts to ex-
tend these transformations to handle more sophisticated programs,
including those that have non-affine loop bounds and index expres-
sions [21, 28, 29], these tools have largely been confined to array
programs using nested loops.

In recent work, Jo and Kulkarni developed an optimization
called point blocking that performs loop tiling–like transformations
not on nested loops, but instead on repeated recursive traversals of
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t r e e = / ∗ b s t ∗ /
v a l s = / ∗ i n t s > 0 ∗ /

foreach ( i in v a l s )
r e c u r s e ( t r e e , i )

r e c u r s e ( n , i )
i f ( n . v a l = −1)

n . v a l = i ; re turn ;
i f ( n . v a l < i )

i f ( n . l = n u l l )
n . l = new node ;
n . l . v a l = −1;

r e c u r s e ( n . l , i )
e l s e

i f ( n . r = n u l l )
n . r = new node ;
n . r . v a l = −1;

r e c u r s e ( n . r , i )

(a) BST insertion code

/ / i [ ] , l [ ] , r [ ] = b l o c k s
foreach ( i [ ] in v a l s )

r e c u r s e ( t r e e , i [ ] )

r e c u r s e ( n , i [ ] )
i f i . s i z e = 0

re turn ;
foreach ( j in i )

i f ( n . v a l = −1)
n . v a l = j ; c o n t in u e ;

i f ( n . v a l < j )
i f ( n . l = n u l l )

n . l = new node ;
n . l . v a l = −1;

l [ ] . append ( j ) ;
e l s e

i f ( n . r = n u l l )
n . r = new node ;
n . r . v a l = −1;

r [ ] . append ( j ) ;

r e c u r s e ( n . l , l [ ] ) ;
r e c u r s e ( n . r , r [ ] ) ;

(b) Blocked BST code

Figure 1: BST insertion, unblocked and blocked.

pointer-based tree structures [15]. Point blocking works by group-
ing together multiple traversals of a tree into a block and perform-
ing a single traversal of the tree. At each node of the tree, all traver-
sals that must perform computation at that tree node do their work
before the block moves on to the next node of the tree. In essence,
the computations performed by multiple traversals are reordered to
promote locality in the tree.

Unfortunately, while this transformation resembles loop tiling
(see Section 2.2), existing dependence analyses cannot be applied,
as point blocking targets pointer-based, recursive programs. In-
stead, Jo and Kulkarni establish the legality of their transformations
through a simple, sufficient condition: their transformations can be
applied when the traversals over the tree structure are independent
of each other.

However, this sufficient condition misses many optimization
opportunities. Consider inserting a set of points into a binary search
tree, as shown in Figure 1(a). Point blocking can be correctly
applied to the code, as shown in Figure 1(b), even though there
is clearly a dependence from one traversal to the next, as each
insertion changes the tree. The reason for this is that if multiple
points in a block travel down the same path of the tree, and the first
point in the block inserts a node into the tree, subsequent points in
the block see the new node that was inserted, as they would have
in the original code. The dependence is preserved! This pattern of
behavior is quite common, arising in, for example, top-down tree
building algorithms for building kd-trees and Barnes-Hut octrees.
Handling such cases requires a more sophisticated notion of what
kinds of dependences preclude point blocking.
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Contributions In this paper, we present a tree dependence analy-
sis, which provides a more sophisticated picture of the dependences
in a tree-traversal program. Analogous to array dependence analy-
ses, which allow complex loop transformations to be performed
even if there are loop-carried dependences, our tree dependence
analysis provides enough information to allow restructuring trans-
formations like point blocking to be performed even in the presence
of dependences between traversals. The contributions we make are:
• A novel dependence test that can prove the legality of point

blocking even in the face of complex dependences (Section 3),
and a proof of the soundness of point blocking under this test.
• An analysis that applies our dependence test to tree-traversal

programs (Section 5). While shape analyses can often deter-
mine whether there are dependences between accesses to recur-
sive data structures [18], our analysis reveals the structure of
these dependences with respect to the recursive control flow of
the program.
• A refinement of our dependence analysis that uses path condi-

tions to prove that certain dependences that appear to exist can
never arise during an execution (Section 6).
• An experimental evaluation that shows our analysis enables sig-

nificant performance improvements from three transformations:
point blocking, traversal splicing [16], and a transformation
that automatically derives parallel tree construction implemen-
tations from their sequential specification.
This paper presents, to our knowledge, the first attempt to lift the

kinds of sophisticated dependence analysis techniques developed
for programs that loop over arrays to more complex programs
that manipulate pointer-based data structures, enabling a host of
locality- and parallelism-enhancing transformations to be applied
to recursive tree programs.

2. Background and Motivation
This section discusses the theory of loop transformations for ar-
ray programs—specifically, interchange, which enables tiling—and
then summarizes recent work by Jo and Kulkarni that develops
analogous tiling transformations for trees.

2.1 Loop Transformations for Array Programs
Perhaps the most popular locality-enhancing transformation for
loops over arrays is loop tiling, which transforms a double-nested
loop into a triple- (or quadruple-) nested loop [17] , as in the fol-
lowing abstract example:

for (i := 0; i < N; i ++)
for ( j := 0; j < N; j ++)

A[ f1(i)][ f2( j)] = . . .; . . . = A[g1(i)][g2( j)]

Becomes:

for (ii := 0; ii < N; ii += B)
for ( j := 0; j < N; j ++)
for (i := ii; i < ii + B; i ++)

A[ f1(i)][ f2( j)] = . . .; . . . = A[g1(i)][g2( j)]

The legality of tiling boils down to whether loop interchange is
legal [32]; if the inner and outer loop of the above example can be
swapped, then loop tiling is legal.

Determining whether loop interchange is legal requires under-
standing how interchange affects the behavior of the loop. Concep-
tually, loop interchange is a rescheduling of the loop iterations. The
original loop consists of an iteration space—dynamic instances of
the loop body, each with a different value of i and j—that is totally
ordered: (i1, j1) ≺ (i2, j2)⇔ (i1 < i2) ∨ ((i1 = i2) ∧ ( j1 < j2)). Loop
interchange moves the j loop to the outside, producing a different

total ordering of the same iteration space: (i1, j1) ≺ (i2, j2)⇔ ( j1 <
j2) ∨ (( j1 = j2) ∧ (i1 < i2)).

When is this rescheduling legal? Answering this question re-
quires understanding the dependence structure of the loop [1]. If,
in the original schedule, one iteration of the loop, (i1, j1), writes to
a location that a later iteration, (i2, j2) reads from, we must ensure
that the new schedule does not exchange the order of these two iter-
ations, which would result in the second iteration reading the wrong
value. The following dependence test captures the conditions under
which loop interchange is legal.1

@ i1, i2, j1, j2 . f1(i1) = g1(i2) ∧ f2( j1) = g2( j2) ∧
(i1 < i2 ∧ j1 > j2)

(1)

The first line of the test captures whether a pair of iterations access
the same location, while the second line of the test captures whether
those iterations will execute in a different order after interchange.

Sophisticated dependence analyses such as the Omega test [20]
and compilers such as PLuTo [5] use integer linear programming–
based techniques to prove that interchange is legal. These analyses
rely on the fact that in most array programs, the indexing expres-
sions f1, f2, g1, and g2 are affine, and hence amenable to ILP. As a
result, a long standing open problem has been whether similar tiling
techniques exist for non-affine, non-loop-based programs, and how
to prove their legality.

2.2 Loop Transformations for Trees

In recent work, Jo and Kulkarni developed a locality-enhancing
transformation called point blocking for programs that repeatedly
traverse tree data structures [15]. Figure 2(b) shows abstracted
pseudocode capturing the general structure of these algorithms:
each of a series of points (a structures capturing a single traversal’s
data) recursively traverses a tree. As each point accesses the same
tree, there is data reuse in the algorithm, and an opportunity to
exploit locality if multiple points’ operations on the same data can
be brought closer together.

The key insight behind point blocking is that the tree-traversal
algorithm can be abstracted as a loop nest, with the loop over the
points as the outer loop and the recursive traversal as the inner
“loop.” Each “iteration” in this abstraction consists of the recursive
method body being executed by a particular point at a particular
node of the tree; the recursion and pointer-chasing merely serve to
determine the order in which the nodes are visited.

Figure 2(c) shows an example iteration space and total order
for a series of recursive traversals of the tree shown in Figure 2(a).
The x-axis represents the points that traverse the tree, while the y-
axis represents the nodes visited by the point. Note that some of
the iterations are greyed out, and the traversal skips past them. A
traversal may not visit the entire tree—it may be truncated and skip
visiting a subtree.

Given this iteration space abstraction, Jo and Kulkarni describe
a “loop interchange” transformation, with the total order shown in
Figure 2(e). This has an analogous reordering effect as loop inter-
change in the regular iteration spaces produced by array programs;
in the interchanged code, every point visits a particular node in the
tree before moving on to the next node in the tree. Point block-
ing is a combination of strip mining the point loop (breaking the
point loop into a series of smaller loops that operate over subsets of
points) and then interchanging the inner point loop with the traver-
sal loop. This is a direct analog of strip mining + interchange, a
common technique for tiling array programs [32].

1 In a full dependence test, there are additional constraints to ensure that
both iterations fall within the bounds of the loop nest; we ignore these
constraints for simplicity.
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(a) Example tree for traversal

t r e e = / ∗ t r e e r o o t ∗ /
p o i n t s = / ∗ p o i n t s ∗ /

foreach ( p in p o i n t s )
r e c u r s e ( t r e e , p )

r e c u r s e ( n , p )
i f t r u n c a t e ? ( n , p )

re turn ;
i f i s l e a f ? ( n )

re turn ;
/ ∗ do work ∗ /

r e c u r s e ( n . l e f t , p )
r e c u r s e ( n . r i g h t , p )

(b) Pseudocode for traversal

Points
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ee
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1 2 3 4
(c) Iteration space before inter-
change/point blocking

t r e e = / ∗ t r e e r o o t ∗ /
p o i n t s = / ∗ p o i n t s ∗ /

/ / bp i s b l o c k o f p o i n t s
foreach ( bp in p o i n t s )

r e c u r s e ( t r e e , bp )

r e c u r s e ( n , bp )
i f i s e m p t y ? ( bp )

re turn ;
foreach ( p in bp )

i f t r u n c a t e ? ( n , p )
c o n t in u e ;

i f i s l e a f ? ( n )
c o n t in u e ;

/ ∗ do work ∗ /

/ / add t o n e x t b l o c k
nb . add ( p )

r e c u r s e ( n . l e f t , nb )
r e c u r s e ( n . r i g h t , nb )

(d) Blocked traversal

Points

Tr
ee
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es
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G
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(e) Iteration space after interchange/-
point blocking

Figure 2: Point blocking

Figure 2(d) shows the transformed code. Instead of the recursive
method operating on a single point, it operates on blocks of points.
After each point in the block interacts with a particular node, the
points that want to continue traversal are added to a “next” block,
which continues down the tree. If a block is empty, that means no
points want to visit a particular node (or subtree), so the traversal is
truncated.

“Multi callset” traversals In the examples of Figure 2, there is a
single linearization of the nodes of the tree, and each point’s traver-
sal is some subsequence of that linearization. Hence, when points
are placed into a block, the order that the block traverses the tree is
the same as the traversal orders of any of the individual points. Jo
and Kulkarni call these “single callset” traversals [16]. However,
some algorithms, such as nearest neighbor, have point-dependent
traversal orders: different points traverse the tree in different or-
ders; these are known as “multi callset” traversals. In this paper, we
only concern ourselves with single call set traversal algorithms, as
they are the only ones that admit a sophisticated dependence test.
Multi callset algorithms can still be analyzed using a test for inde-
pendence.

3. Point Blocking Legality
This section lays out a dependence test for point blocking. For
brevity, we use “iteration” to refer to the operation(s) performed
by a single point at a single tree node.

3.1 A Conservative Approach

Jo and Kulkarni noted that despite the rescheduling imposed by
point blocking, each point still traversed the tree in the same order
as before [15]. Hence, any dependences carried over the “traversal
loop” but not over the “point loop” would be preserved. Thus,
they applied point blocking whenever the enclosing point loop was
parallelizable, ensuring that any dependences were only carried
across the traversal loop. This criterion is too conservative. Not all
point loop–carried dependences are violated by point blocking, as
in the BST-insertion example from Figure 1.

3.2 A Dependence Test for Point Blocking

To develop a more accurate dependence test for tree codes, we con-
sider the two clauses of the dependence test for array programs in
Equation 1. The first clause picks out the existence of iterations
that have a dependence. If only that clause were in the dependence
test, then any loop-carried dependence would preclude loop inter-
change. It is the second clause of the test (on the second line) that
provides the precision: a loop carried dependence is only a prob-
lem if the second iteration (i.e., the (i2, j2) iteration) encounters the
dependence earlier in the j loop than the first iteration.

The iteration space diagrams of Figures 2(c) and 2(e) give us
some insight into what an analogous dependence test for point
blocking might look like. Each “iteration” in a traversal code is
identified by a point/node pair: (p, n). Suppose there is a depen-
dence between the traversal executed by point p1 and a later point
p2: p1 accesses a location in the tree when it is visiting node n1, and
p2 accesses the same location in the tree when it is visiting node n2,
with at least one of the accesses being a write. This dependence is
preserved by point blocking if n2 is the same as n1 (both points are
at the same node when the dependence occurs) or n2 is later in the
traversal order than n1.

To formalize this dependence test, let us label each statement
that reads or writes a location in the recursive method body as
s1, s2, . . .. Because the particular location read or written by a state-
ment depends on where in the tree the recursive method is, we spec-
ify the location being accessed by statement i during iteration (p, n)
as si(p, n).

Making a recursive call requires accessing the arguments to the
recursive call. Because point blocking defers making recursive calls
until after all points in the block execute the rest of the method
body, it makes sense to treat the read(s) performed as part of the
method invocation as part of the next iteration performed by the
point. This is easily handled by assuming there are dummy state-
ments at the beginning of the method body that read the arguments
to the method.

Two dynamic statements, si(pi, ni) and s j(p j, n j) interfere (writ-
ten si(pi, ni) Z s j(p j, n j)) when they access the same location and
one of the statements is a write. Note that just because a statement
exists in a recursive method body does not mean that every point
will execute that statement at every node of its traversal. We thus
define an execution-based interference operator,Ze, which adds the
condition that statement si executes when point pi is visiting node
ni.

We can now define a dependence test under which point block-
ing is legal; note the similarity to Equation 1:

@ pi, p j, ni, n j, si, s j . si(pi, ni) Ze s j(p j, n j) ∧
(pi ≺ p j ∧ ni � n j)

(2)
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Theorem 1. If Equation 2 is satisfied for a recursive traversal
program, then applying point blocking to the program will not
break any dependences.

Proof. We proceed by contrapositive: we assume that applying
point blocking to the program breaks dependences, and show that
therefore the dependence test must be violated.

For a dependence to be broken, one must exist in the first place.
Hence, let (pi, ni) and (p j, n j) be the two dependent iterations, with
(pi, ni) ≺ (p j, n j). We thus have si(pi, ni) Ze s j(p j, n j). In the orig-
inal program, a point’s traversal is completed before moving on to
the next point. Hence, pi ≺ p j. Note that if, after applying point
blocking, pi and p j are placed in different blocks, the dependence
will not be broken: the earlier block will complete its traversal be-
fore the later block starts, preserving the ordering of the iterations.
Hence, pi and p j must be in the same block. Further, for the depen-
dence to be violated, we must have (p j, n j) ≺ (pi, ni) after applying
point blocking.

We have three possible cases for the ordering of ni and n j:
ni ≺ n j: In this case, ni appears before n j in the original program’s

traversal order. Recall that the block traverses the tree in the
same order as the original points would have. Hence, the block
will visit ni before it visits n j in the transformed code, preserv-
ing the dependence.

ni = n j: In this case, the points access the same location when
they are at the same node in the tree. In the point blocked code,
each point in a block executes its entire method body before
moving on to the next point, so pi performs its access before
p j, preserving the dependence.

ni � n j: In this case, n j precedes ni in the traversal order, so the
block will visit n j before it visits ni, and (p j, n j) will occur
before (pi, ni), violating the dependence.
Since we began by assuming the dependence must be violated,

the third case must obtain. Hence, we have two iterations, (pi, ni)
and (p j, n j), and two statements si and s j such that: si(pi, ni) Ze
s j(p j, n j), pi ≺ p j and ni � n j, violating the dependence test. �

DAG traversals Point blocking is applicable not only to traversals
of trees, but to traversals of any recursive data structure, including
DAGs and general graphs [15]. We note that the dependence test in
Equation 2 is still valid for traversals of non-tree data structures.
However, for DAGs and general graphs, the same node may be
visited by a traversal more than once, so the � relation between
nodes in a traversal no longer obeys any sort of order. Because of
the difficulty of determining the relation between two nodes in a
DAG or graph traversal, if our analyses encounter a traversal of
a data structure that cannot be proven to be a tree, we revert to
applying Jo and Kulkarni’s independence test for legality.

3.3 Simplified Dependence Tests
The dependence test of Equation 2 is difficult to apply. First, it
can be hard to tell exactly when a statement might execute, due
to complex, data-dependent control flow in the method body—not
to mention that whether a particular iteration executes in the first
place often depends on the structure of the tree, which is also input-
dependent. Second, telling whether one node of the tree precedes
another in the traversal order can also be tricky. We note, however,
that we can simplify the dependence test in various ways while
preserving soundness, as long as the resulting dependence test is
at least as strong. In particular, the following dependence test is
stronger than that of Equation 2:

∀ pi, p j, ni, n j . (pi ≺ p j)→
(∃si, s j . si(pi, ni) Z∗ s j(p j, n j))→
(ni �a n j)

(3)

v ∈ Values ::= Z l ∈ Locations ::= L ∪ null

n ∈ NodeRefs ::= root | n1 | n2 | . . .

⊕ ::= + | − | × | ÷

� ::=< | > | = | , | ≥ | ≤

s ∈ Stmts ::= skip | return | s; s | c; return

| if bexp then s else s

| n := n | n := n. fr | n. fr := null | n. fr := alloc

| n. fp := e | point. fp := e

c ∈ Calls ::= recurse (root. fr ,point) | c; c

e ∈ Exprs ::= n. fp | point. fp | e ⊕ e | v

bexp ∈ BExprs ::= n. fr = null | n. fr , null | e � e

p ∈ Body ::= s; return

Figure 3: Language for defining recursive tree traversals

where Z∗ represents any interference test weaker than Ze, and
ni �a n j is the ancestry relationship, and is true iff ni = n j or n j
is a descendant of ni in the tree. Restated, the dependence test says
that the transformation is safe when, for all iterations which are
from two different points’ traversals, if the two iterations interfere,
the node where the earlier point’s iteration occurs is an ancestor of
the node where the later point’s iteration occurs.

4. A Simple Language for Tree Traversals
To help formalize the discussion of our tree dependence analysis,
we present a simple language for writing recursive tree traversal
algorithms.2 Because our analysis concerns itself with the behavior
of the recursive method itself, rather than the code that invokes the
method, the language is used to describe the body of a recursive
method that traverses a tree, with arguments root and point, that
define the node of the tree being visited and the point performing
the traversal, respectively. Nodes are the objects that comprise the
tree, while points are the objects that hold information local to each
traversal. A frame program invokes the recursive method on the
root of the tree for each of a set of points.

The points and nodes are structures, consisting of a number
of fields. Tree node structures have one or more primitive fields,
fp ∈ Fp (holding values at each tree node), and one or more
recursive fields, fr ∈ Fr (references to their children in the tree),
while point structures only have primitive fields.

4.1 Syntax and Assumptions
Figure 3 describes the syntax of recursive methods that traverse
trees. Node references are local variables that can point to differ-
ent nodes in the tree. There is a distinguished node reference, root,
which names the reference passed in to the recursive method. Fi-
nally, there is a distinguished variable, point, that refers to the par-
ticular point structure passed in to the recursive method. For a given
traversal of the tree, this point reference is fixed—the same refer-
ence is passed to all recursive invocations.

We note a few features that simplify reasoning about behavior.
First, there are no loops in method bodies. Second, once a path
through the method body reaches the recursive calls (c), it performs
one or more recursive calls then returns, ensuring that all tree
traversals are pre-order.

Note that the only means of manipulating the tree structure in a
recursive method is by nullifying a subtree (by setting a recursive
field to null), or by creating a fresh subtree (by setting a recursive
field to point to a new tree node using alloc). Hence, if the traversal

2 We use this specification language to cleanly present our analyses. Our im-
plementation operates over Java programs whose operations are constrained
to those supported by our specification language.
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is called on a tree, we can be sure that after the traversal completes
the resulting structure is still a tree. Proving that the initial structure
is a tree is beyond the scope of this paper; shape analysis techniques
can be used prior to our analyses to establish this fact. We assume
that programs never dereference null fields. We also assume that
programs initialize all fields of newly-allocated tree nodes before
accessing them. We also assume that any local variable or node
reference is only defined once along any path through the program.

Finally, we assume that the recursive method bodies are single
callset (see Sections 2.2), ensuring a single, canonical traversal
order. More formally, each straight-line sequence of recursive calls
that occurs in the recursive method body induces a partial order
on the recursive fields of root. If all of those partial orders are
consistent with each other, the program is single callset.

Example programs Figure 5 shows how a quadtree traversal that
occasionally updates a value at a node can be expressed in our
simple language. Figure 6 shows how the BST insertion example
from Figure 1 can be expressed.

4.2 Concrete Semantics
We define the semantics for programs written in our language in
terms of the semantics of a particular tree traversal (i.e., the seman-
tics of a single iteration of the frame program’s loop). A traversal
operates over a heap, h, that contains a set of cells representing tree
nodes. Each tree node’s primitive fields map to values, while its re-
cursive fields map to other heap locations or null. A subset of the
tree nodes are linked together through their recursive fields to form
the tree. The heap also contains a finite set of point structures.

During the execution of a traversal, a store σ maps references
(including root and point) to heap locations.

σ : (NodeRefs ∪ root ∪ point)→ L

The program state also contains a boolean return value, ρ, that
tracks whether the method is supposed to return. Hence, the pro-
gram state is a 3-tuple of the heap, the store, and ρ. The evaluation
relation for statements and calls is: 〈s, σ, h, ρ〉 → 〈σ′, h′, ρ′〉 and
the evaluation relation for expressions is: 〈s, σ, h〉 → v.

Figure 4 gives a subset of the concrete semantics for performing
a traversal; the rules not shown follow the same pattern. The state
at the beginning of a traversal is determined by the invocation
of recurse by the frame program: 〈p, σ[root 7→ tree,point 7→
pt], h, F〉, where pt is a reference to the current point performing
the traversal, and root starts out mapped to tree, the root of the
tree structure (which resides in the heap). We assume that the tree
structure has been initialized prior to beginning traversal. All other
local variables are initialized to 0 or null as appropriate.

SKIP has standard semantics, leaving the store and heap un-
touched. RETURN changes the return flag to T. This flag is checked
during statement sequencing (SEQ-RET and SEQ-CONT); if the
first statement returns T, the second statement does not execute. IF-
T has standard semantics, executing the true branch of the if state-
ment; the semantics for the false branch are analogous. STORE-
P stores the result into the appropriate point structure in the heap
(looking up the heap location using σ).

Accessing tree nodes follows a similar pattern. DEF-N extracts
the heap location pointed to by n2. fr, and maps n1 to it. STORE-
N dereferences n to update the primitive field of the appropriate
tree node. ALLOC is similar to STORE-N, except that it updates
the appropriate recursive field in the heap to point to a freshly-
allocated tree node (with recursive fields initialized to null and
primitive fields initialized to 0). The semantics for assigning null
to a tree node’s recursive field are similar.

Expressions have standard semantics. We show the rules for
loading from point and references. Loading from point requires
looking up which point structure is referenced in the store, then

1. root.v := root.v + 1;
2. if point.v = root.v
3. return
4. else skip
5. if root.lea f = 1
6. return
7. else skip
8. recurse (root.c1,point); recurse (root.c2,point);
9. recurse (root.c3,point); recurse (root.c4,point); return

Figure 5: Recursive method body for quadtree traversal

1. if root.v = −1
2. root.v := point.v; return
3. else
4. if root.v < point.v
5. if root.l = null
6. root.l = alloc; n1 := root.l; n1.v := −1
7. else skip
8. recurse (root.l,point); return
9. else
10. if root.r = null
11. root.r = alloc; n1 := root.r; n1.v := −1
12. else skip
13. recurse (root.r,point); return

Figure 6: Recursive method body for BST insertion

loading the appropriate field from the heap. Loading from a refer-
ence loops up the appropriate location in the store. Binary opera-
tions combine the results of their operands as expected.

The semantics of calls are relatively straightforward. The
method body is re-executed with a new store, where root is
remapped to the node the recursive call is invoked on and point
retains the same mapping as the original store. Note that we do
not remap any local variables; these variables will be re-initialized
before being used. After the call returns, execution continues with
the old store (thus returning to the old mapping for root), but the
updated heap. Note, also, that the return flag of the call is always
reset to F; if calls are sequenced, all calls execute, following the
semantics of SEQ-CONT.

5. Path-Insensitive Dependence Analysis
Our first approach to dependence testing is a path insensitive anal-
ysis that assumes any statement in the method body might execute.
This analysis proceeds in three steps:

1. Extracting the rooted access paths by associating every read
and write to a field of a tree node in the method body with
a field that can be reached through a series of field accesses
starting from root.

2. Identifying conflicting access paths by determining whether, for
two access expressions, at least one of which is performing a
write, there exist two distinct nodes in the tree where if the first
access path were rooted at the first node, and the second access
path were rooted at the second, the two paths would refer to the
same node.

3. Determining whether any conflicting access paths imply a pos-
sible dependence that precludes point blocking.

If step 3 yields no problematic accesses, then point blocking is
legal. We now describe each of these steps in more detail.

5.1 Collecting Rooted Access Paths
First, reads and writes to tree nodes in the heap are transformed into
reads or writes of rooted access paths. Access paths are elements
of the regular set A = root(. fr)∗ and primitive access paths are
members of the set Ap = root(. fr)∗.( fp | ι). This lets us reason
about the locations being read and written by the recursive method
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l = σ(point) v = h(l. fp)

〈point. fp, σ, h〉 → v
[LOAD-P]

l = σ(n) v = h(l. fp)

〈n. fp, σ, h〉 → v
[LOAD-N]

〈e1, σ, h〉 → v1 〈e2, σ, h〉 → v2 v = v1 ⊕ v2

〈e1 ⊕ e2, σ, h〉 → v
[BINOP]

〈skip, σ, h, F〉 → 〈σ, h, F〉 [SKIP] 〈return, σ, h, F〉 → 〈σ, h, T〉 [RETURN]

〈s1, σ, h, F〉 → 〈σ′, h′, T〉

〈s1; s2, σ, h, F〉 → 〈σ′, h′, T〉
[SEQ-RET]

〈s1, σ, h, F〉 → 〈σ′, h′, F〉 〈s2, σ
′, h′, F〉 → 〈σ′′, h′′, ρ〉

〈s1; s2, σ, h, F〉 → 〈σ′′, h′′, ρ〉
[SEQ-CONT]

〈e, σ, h〉 → v l = σ(point)
〈point. fp := e, σ, h, F〉 → 〈σ, h[l. fp 7→ v], F〉

[STORE-P]
〈e, σ, h〉 → v l = σ(n)

〈n. fp := e, σ, h, F〉 → 〈σ, h[l. fp 7→ v], F〉
[STORE-N]

l1 = σ(n2) l2 = h(l1. fr)

〈n1 := n2. fr , σ, h, F〉 → 〈σ[n1 7→ l2], h, F〉
[DEF-N]

l = σ(n)

〈n. fr := alloc, σ, h, F〉 → 〈σ, h[l. fr 7→ fresh], F〉
[ALLOC]

〈bexp, σ, h〉 → T 〈s1, σ, h, F〉 → 〈σ′, h′, ρ′〉

〈if bexp then s1 else s2, σ, h, F〉 → 〈σ′, h′, ρ′〉
[IF-T]

l = h(σ(root). fr) 〈p, σ[root 7→ l], h, F〉 → 〈σ′, h′, ρ〉

〈recurse (root. fr ,point), σ, h, F〉 → 〈σ, h′, F〉
[CALL]

Figure 4: Concrete semantics for traversal

relative to the current iteration (i.e., the current values of root and
point). The special field ι allows us to tell when the node itself
is being read to or written from. We only consider accesses to
tree nodes when looking for dependences. In our language, the
point structures and local references accessed by each traversal are
disjoint so cannot induce any cross-traversal dependences.

To collect the access paths, we define an abstract interpreta-
tion [6]. Intuitively, the abstract interpretation executes every path
through the recursive method body, determining what (sets of)
nodes each node reference can refer to, and associating with each
read and write of a tree node field an access path starting from root.
The analysis is loosely based on Wiedermann and Cook’s approach
to identifying paths traversed in object-relational databases [30].

The abstract store, σ̂, maps primitive fields of point and prim-
itive access paths to P(Z ∪ ⊥), where ⊥ represents unknown val-
ues; and maps root and node references to sets of access paths,
A ∈ P(A). The program state consists of the abstract store, re-
turn flag (as in the concrete semantics), and two access path sets,
πr, πw ∈ P(Ap), which collect primitive access paths being read
from and written to, respectively.

Intuitively, the abstract store soundly approximates both the
concrete store and the concrete heap. Because point is fixed for
each traversal, the specific location in the concrete heap that point
refers to is irrelevant; the abstract store maintains the possible
values of point’s fields directly. The concretization includes all
possible point structures in the appropriate heap location. Node
references in the concrete store always refer to nodes that are
part of a subtree rooted at root. The abstract store captures these
by mapping each node reference to a set of access paths; the
concretization of those access paths are all of the cells in the
heap that can be reached by following those access paths from
root. Sets of primitive access paths are concretized similarly, with
concretizations including all possible values for the primitive fields
of the heap cells in the concretization.

The abstract semantics are given in Figure 7. The evalua-
tion relation for statements and calls is 〈s, σ̂, πr, πw, ρ〉 →
〈σ̂′, π′r, π

′
w, ρ

′〉, and the evaluation relation for expressions is
〈e, σ̂〉 → 〈v̂, π〉. Note that expressions return a set of values,
and can generate new access expressions. The sets of values arise
because abstract stores are joined after conditionals, so node ref-
erences can refer to multiple access paths, and primitive fields can
take on multiple values. Expressions are always reads, so the eval-
uation relation generates only a single access path set. The initial
abstract store maps all locals, primitive fields and primitive access
paths to {⊥}, and maps root to {root} and everything else to ∅. The
initial access path sets are πr = {root.ι} (recall that we assume that
root is read in every iteration) and πw = ∅.

Expressions (ALOAD-P, ALOAD-N) are handled as expected,
with the only difference from the concrete semantics being that they
return a set of values instead of just one, and that expressions that
reference the tree (see ALOAD-N) can add accesses to the access
set (note that those node references might refer to multiple access
paths). Binary operations yield the result of applying the operation
to all pairs of values from the two operands’ value sets (with the
operation yielding ⊥ if one of the values is ⊥).

We do not present the rules for skip and return, as they simply
pass through the abstract store, heap and access path sets. The
rules for sequencing of statements thread through the access path
sets, setting the return flag and skipping over the execution of
subsequent statements if necessary. Interestingly, calls (recurse)
are handled much like skip. Even though a call reads an access
path to make the recursive call, that read is instead associated with
the beginning of the next iteration (see Section 3.2), and is captured
by the initial access path set of root.ι.

ASTORE-N, which provides the semantics for n. fp := e, shows
an example of adding new access paths. After looking up the set
of access paths that n is mapped to, for each such access path a,
we add a. fp to the set of written access paths. The helper function
mapall takes care of mapping each of the primitive access paths
accessed by n. fp to the result of evaluating e. ADEF-N adds a. fr.ι
to the set of read access paths for all a that n2 is mapped to.

AALLOC is interesting. It creates a new access path, indicating
that n. fr.ι has been written to. It only changes the store by setting
the special primitive field n. fr.ι to alloc. No other access paths
are changed. In essence, our abstract semantics assume the tree
structure itself already exists. Allocating a new node does not add
a new node to the tree. Instead, it just writes to an existing node,
as recorded by the access. The assumption that programs initialize
fields before accessing them means that we do not have to worry
about updating the values of any other fields.3 A similar rule is
used for null.

AIF runs both branches of the if statement, collecting the access
paths from the boolean expression as well as both branches of the if
statement. σ̂′tσ̂′′ creates a new abstract store, where each variable
or access path maps to the union of its mappings in σ̂′ and σ̂′′. Note,
too, that if both branches of the if statement call return, evaluating
the if statement sets the return flag to true.

5.2 Identifying Conflicting Access Expressions
After collecting the accesses for the recursive method, the next step
is to determine which accesses could result in dependences—two

3 AALLOC introduces some inexactness to the set of accesses: if a new
node is allocated for an access path, old node references that have the same
access path will appear to access the new node as well. This does not affect
soundness, as it can only introduce additional dependences.
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v̂ = σ̂(point. fp)

〈point. fp, σ̂〉 → 〈v̂, ∅〉
[ALOAD-P]

A = σ̂(n) v̂ = {σ̂(a. fp) | a ∈ A}

〈n. fp, σ̂〉 → 〈v̂, {a. fp | a ∈ A}〉
[ALOAD-N]

〈e1, σ̂〉 → 〈v̂1, π1〉 〈e2, σ̂〉 → 〈v̂2, π2〉 v̂ = v̂1⊕̂v̂2

〈e1 ⊕ e2, σ̂〉 → 〈v̂, π1 ∪ π2〉
[ABINOP]

〈e, σ̂〉 → 〈v̂, πe〉 A1 = σ̂(n) A2 = {a. fp | a ∈ A1}

〈n. fp := e, σ, πr , πw, F〉 → 〈σ̂[mapall(A, fp, v̂)], πr ∪ πe, πw ∪ A2, F〉
[ASTORE-N]

A1 = σ(n2) A2 = {a. fr | a ∈ A1}

〈n1 := n2. fr , σ̂, πr , πw, F〉 → 〈σ̂[n1 7→ A2], πr ∪ {a.ι | a ∈ A2}, πw, F〉
[ADEF-N]

A1 = σ(n) A2 = {a. fr | a ∈ A1}

〈n. fr := alloc, σ̂, πr , πw, F〉 → 〈σ̂, πr , πw ∪ {a.ι | a ∈ A2}, F〉
[AALLOC]

〈bexp, σ̂〉 → 〈v̂, πe〉 〈s1, σ̂, ∅, ∅, F〉 → 〈σ̂′, π′r , π
′
w, ρ

′〉 〈s2, σ̂, ∅, ∅, F〉 → 〈σ̂′′, π′′r , π
′′
w , ρ

′′〉

〈if bexp then s1 else s2, σ̂, πr , πw, F〉 → 〈σ̂′ t σ̂′′, πr ∪ π
′
r ∪ π

′′
r ∪ πe, πw ∪ π

′
w ∪ π

′′
w , ρ

′ ∧ ρ′′〉
[AIF]

Figure 7: Abstract semantics to collect access expressions

accesses that touch the same location in the tree, with at least one
of them a write.

Definition 1. For a pair of accesses, root.α and root.β, we say
that the two access paths collide—written root.α ∼ root.β—if there
exists two nodes in a tree (of unbounded size), n1 and n2 such that
n1.α refers to the same location as n2.β.

This definition lends itself to a straightforward approach to
finding access paths that collide. Suppose we consider the access
path pair root.α ∈ πw and root.β ∈ (πw ∪ πr). Without loss of
generality, let α be the longer access path than β (i.e., it contains at
least as many field dereferences). We then have root.α ∼ root.β iff
β is a suffix of α.

If β is not a suffix of α, then, because the access paths traverse
a tree, there is no way for the two to refer to the same field.
Conversely, if β is a suffix of α, then let γ be a sequence of field
accesses such that γ.β = α. Note that γ’s last field access must be
a recursive field (if β , α, otherwise γ = ε). Then let n1 be an
arbitrary node in the tree (for example, the global root of the tree),
and let n2 be the node at n1.γ. It is clear that n1.α = n2.β.

If two access paths collide and one of them is a write, then there
is a potential dependence between them. We can compute the set of
such pairs, S ⊆ πw × (πw ∪ πr):

S = {(a, b) | a ∈ πw ∧ b ∈ (πw ∪ πr) ∧ a ∼ b}

5.3 Applying the Dependence Test
After collecting the access paths, and identifying potential depen-
dences, the final step is to determine whether the conflicting access
paths preclude point blocking.

Note that the access paths in S are relative to root, which is the
index identifier for the traversal “loop” in the application. When
iteration (p, n) executes a statement that reads from access path
root.α, the field in the tree being read is n.α. For each pair of
conflicting access paths in S , (root.α, root.β)4, we compute γ as
described previously. Let p1 and p2 be points such that p1 ≺ p2.
For all nodes n, during iteration (p1, n.γ), location n.γ.β may be
accessed by some statement s1, and during iteration (p2, n), location
n.α may be accessed by some statement s2. By the definition of
conflicting accesses, we have s1(p1, n.γ) Z s2(p2, n).

By Equation 3, we see that for these potential dependences not
to preclude point blocking, we must have n.γ �a n. We see that this
can only be the case if γ = ε. By verifying this condition for all
pairs of conflicting access paths, we can determine whether point
blocking is legal.

Soundness The key proof obligation to prove the soundness of
this dependence analysis is to show that the set of access paths
collected by the abstract interpretation allows us to find every si and

4 Assume, without loss of generality, that β is a suffix of α.

s j where there exist pi, p j, ni, n j such that si(pi, ni) Ze s j(p j, n j). If
the set of statements we test for interference is a superset of these
si and s j, then the remainder of the dependence analysis (which
ensures the proper ordering of pi, p j, ni and n j) soundly applies the
dependence test from Equation 3. To show this, we show that if
there are two statements that could interfere with each other in two
specific iterations, we must have an pair of conflicting accesses that
conflict in the same two iterations.

Theorem 2. If there exist si and s j such that there exist pi, p j, ni, n j
and si(pi, ni) Ze s j(p j, n j), there exists an access path pair (root.α,
root.β) ∈ S such that ni.α = n j.β.

Proof sketch: Note that the only way for two statements to interfere
in our language is if they access the same fields of a tree node.
Note further that any tree node accessed by a recursive method
body must be accessible from root, and it can be accessed by
only one path. Let us assume, without loss of generality, that si
is a write and s j is a read, and that the interference is through a
primitive field access. Then si must be of the form nx. fp := ... and
s j must contain an expression of the form ny. fp. By the antecedent,
there must be some node m such that when root is mapped to ni,
nx = m—and there must be exactly one access path root.α = m—
and likewise, when root is mapped to n j, there must be some access
path root.β = m. Hence, ni.α = n j.β. By structural induction on
the abstract semantics, upon encountering statement si, the abstract
store will contain a mapping from nx to root.α, adding the access
root.α. fp to πw; likewise, upon encountering s j, root.β. fp will be
added to πr. Because the abstract interpretation explores all paths,
both accesses will be in the access path sets at the end of execution.
Moreover, because both accesses refer to the same node in the tree,
and each node in the tree can be accessed by only one path from
the global root of the tree, either α. fp will be a suffix of β. fp or vice
versa, and the pair will be added to the set of conflicting accesses.

5.4 Examples

Quadtree traversal Running the abstract interpretation over the
example from Figure 5 generates the following access paths: πw =
{root.v}, πr = {root.ι, root.v, root.lea f } There is one pair of con-
flicting access paths: (root.v, root.v). For two points, p1 and p2,
with p1 ≺ p2, iteration (p1, n) writes to the same location that
(p2, n) does. For this pair, γ = ε, so the dependence does not pre-
clude point blocking. In particular, if p1 and p2 are in the same
block, p1 will perform its write before p2 does, just as in the orig-
inal, non-blocked code. Hence, despite the dependence between
traversals, point blocking is legal for this code. Note that the simple
dependence test of Jo and Kulkarni would have claimed that point
blocking is illegal, as the traversals are not independent of each
other.
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v ∈ Z b ∈ {T,F} a ∈ A ap ∈ Ap

E = ap | v | E ⊕ E

P = E � E | a.ι = null | a.ι , null

F = b | P | F ∧ F | F ∨ F

Figure 8: Logical fragment for path conditions

BST insertion Running the analysis over the BST insertion ex-
ample from Figure 6 generates the following access paths:

πw = {root.v, root.l.ι, root.l.v, root.r.ι, root.r.v}
πr = {root.ι, root.v, root.l.ι, root.r.ι}

Each access path in πw conflicts with itself. But by the same analy-
sis as in the quadtree example, these conflicts do not preclude point
blocking: they all arise when different points are at the same node
of the tree. However, the access paths root.v ∈ πr and root.l.v ∈ πw
conflict with each other. Here, iteration (p1, n.l) reads from the
same location that iteration (p2, n) writes to. γ is l in this case, so the
potential dependence precludes point blocking. However, we know
that point blocking is legal for this code—our path-insensitive de-
pendence analysis is too conservative. To develop a dependence
analysis that correctly handles this code, we must also consider the
conditions under which certain accesses happen.

6. Conditional Dependence Analysis
Even using the dependence test, the code in Figure 6 still exhibits a
problematic dependence. The dependence test of the previous sec-
tion assumes that all accesses in an iteration will happen. Consider
two points p1 and p2 with p1 ≺ p2, and the tree in Figure 2(a).
When point p1 is at node c, it reads from c.v in line 1. That is the
same field that point p2 could write to at node b in line 6, when it
writes to root.l.v.

However, reads and writes performed during traversals are not
always unconditional in each iteration. It is often the case that
if a traversal performs a particular access, other traversals cannot
perform certain accesses: if iteration (p1, c) reads from c.v, we see
that iteration (p1, b) must have established that b.l , null (as that is
the only way for recurse (b.l,point) to be called in line 8). Hence,
when iteration (p2, b) executes, it will not execute line 6, and the
access that causes the problematic dependence does not happen.

This section describes how we augment the dependence analysis
of the previous section to engage in this type of reasoning on
conditions. The key insight is that we can determine the symbolic
path conditions under which various accesses might occur, relative
to arbitrary nodes in the tree. Given these conditions, we can prove
that if the first of two potentially conflicting accesses occurs, the
second cannot.

6.1 Attaching Conditions to Access Paths
First, we attach symbolic path conditions to each access path that
can occur in a program. A path condition is some logical formula,
φ ∈ (F ∪ E) produced from the logical fragment given in Figure 8.

To track path conditions, we extend the abstract semantics of the
previous section. First, we extend access paths to be a 3-tuple of an
access path, a formula in the logic, and a flag that indicates whether
the access path was a strong access. If an access path was generated
by a variable dereference that only pointed to a single access path,
the access path is strong, and is amenable to strong updates.

Expressions now yield formulae (Φ ∈ P(F ∪ E)) in addition to
sets of values (an expression can produce more than one conditional
formula because variables accessed in an expression may map to
more than one access path). Statements and expressions carry with
them a condition, k, a predicate defining when statement might
execute. The conditions capture a precondition that holds before
a basic block executes. Hence, these conditions are updated when

πw = {root.v [root.v = −1],

root.l.ι [root.v , −1 ∧ root.v < point.v ∧ root.l.ι = null],

root.l.v [root.v , −1 ∧ root.v < point.v ∧ root.l.ι = null],

root.r.ι [root.v , −1 ∧ root.v ≥ point.v ∧ root.r.ι = null],

root.r.v [root.v , −1 ∧ root.v ≥ point.v ∧ root.r.ι = null]}

πr = {root [T], root.v [T],

root.l.ι [root.v , −1 ∧ root.v < point.v],

root.r.ι [root.v , −1 ∧ root.v ≥ point.v]}

Figure 10: Conditional access paths in BST insertion

executing if statements. Figure 9 shows the relevant portion of the
extended semantics. The evaluation relation for expressions is now
〈e, σ̂, k〉 → 〈v̂, πe, Φ〉 and the evaluation relation for statements is
now 〈s, σ̂, πr, πw, k, ρ〉 → 〈σ̂′, π′r, π

′
w, k′, ρ′〉. The starting path

condition for a program is T.
Expressions accessing fields generate atomic formulae as ex-

pected. When an expression generates an access path, the condition
for the expression is attached to the access path. We also check the
cardinality of the access path set in the store to determine whether
the generated access path is a strong access. Comparison operations
produce a new formula set from combining all pairs of formulae
from its operands’ formula sets (e.g., if one operand has the formu-
lae {point.x} and the other has the formulae {1, 2}, then combining
them with =̂ produces the formula set {point.x = 1,point.y = 2}).
We do not show rules for most statements; the only difference be-
tween these semantics and the semantics in Figure 7 is that when
an access occurs, the statement’s condition is associated with the
access path. The strong tag is set, and a strong update performed
on the abstract store, if the access path refers to exactly one node.

The key rules are for if statements. The formulae generated by
the test condition are attached to the true and false branches of
the if statement. If the test expression generates multiple formulae,
the true branch is taken if any of the formulae are true, while the
false branch is taken if any of the formulae are false; the conditions
for the two branches are assembled appropriately. Joining together
access paths (t) logically ors the conditions under which the access
paths occur, and logically ands the strong tag.

The path condition after the if statement executes is subtle.
It seems as though we should simply revert to the original con-
dition, k, after control has re-converged. However, along one of
the branches of the if statement, a write may have happened
that invalidated part of the path condition. Consider if root.v =
0 then root.v := 1 else skip. After the statement executes, we
know that root.v , 0 ∨ root.v = 1.

The helper function munge(σ̂, k, πw) creates two formulae: k1,
which captures all possible values of access paths that were defi-
nitely written along the branch (determined by checking the strong
tags); and k2, which removes from k conditions that are invalidated
by writes that may happen along the branch. The function returns
k1 ∧ k2, which amounts to a postcondition for that branch of the
if statement. The disjunction of the munged conditions from both
branches of the if statement yields the precondition for the follow-
ing statement. Note that if there are no writes along the branches,
then the resulting path condition will again be k.

This treatment of if statements only occurs if the condition of
the if statement accesses portions of the tree that have not yet been
written (see the second premise of FIF1); otherwise, we pass no
conditional information along branches of the if statement (FIF2).
Figure 10 shows the results of running this analysis on our BST-
insertion example (we elide the tag for strong accesses for brevity).

We can perform a very similar analysis (not shown, for lack
of space) to determine under which conditions recursive calls are
made. The only difference is that we also munge the path condition
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v̂ = σ̂(point. fp)

〈point. fp, σ̂, k〉 → 〈v̂, ∅, {point. fp}〉
[FLOAD-P]

A = σ̂(n) v̂ = {σ̂(a. fp) | a ∈ A}

〈n. fp, σ̂, k〉 → 〈v̂, {a. fp[k][|A| = 1] | a ∈ A}, {a. fp | a ∈ A}〉
[FLOAD-N]

〈e1, σ̂, k〉 → 〈v̂1, π1, Φ1〉 〈e2, σ̂, k〉 → 〈v̂2, π2, Φ2〉

〈e1 � e2, σ̂, k〉 → 〈{⊥}, π1 t π2, Φ1�̂Φ2〉
[FCMPOP]

〈bexp, σ̂, k〉 → 〈v̂, πe, Φ〉 ∀a[k∗][b∗] ∈ πw . @a[k][∗] ∈ πe

〈s1, σ̂, ∅, ∅, k ∧ (
∨
{φ | φ ∈ Φ}), F〉 → 〈σ̂′, π′r , π

′
w, k′, ρ′〉 〈s2, σ̂, ∅, ∅, k ∧ (

∨
{¬φ | φ ∈ Φ}), F〉 → 〈σ̂′′, π′′r , π

′′
w , k′′, ρ′′〉

kT = munge(σ̂′, k′, π′w) ∧ ¬ρ′ kF = munge(σ̂′′, k′′, π′′w) ∧ ¬ρ′′

〈if bexp then s1 else s2, σ̂, πr , πw, k, F〉 → 〈σ̂′ t σ̂′′, πr t π
′
r t π

′′
r t πe, πw t π

′
w t π

′′
w , kT ∨ kF , ρ

′ ∧ ρ′′〉
[FIF1]

〈bexp, σ̂, k〉 → 〈v̂, πe, Φ〉 FIF1 does not apply
〈s1, σ̂, ∅, ∅, k, F〉 → 〈σ̂′, π′r , π

′
w, k′, ρ′〉 〈s2, σ̂, ∅, ∅, k, F〉 → 〈σ̂′′, π′′r , π

′′
w , k′′, ρ′′〉

〈if bexp then s1 else s2, σ̂, πr , πw, k, F〉 → 〈σ̂′ t σ̂′′, πr t π
′
r t π

′′
r t πe, πw t π

′
w t π

′′
w , k, ρ′ ∧ ρ′′〉

[FIF2]

Figure 9: Abstract semantics to collect conditional access expressions

prior to making the recursive call, to produce a precondition for the
call. In essence, the condition we attach to the recursive call is a
statement about the state of the tree when the call is made. For
example, the condition for the recursive call in line 8 of Figure 6 is:

root.v , −1 ∧ (root.v < point.v) ∧
((root.l.ι = alloc ∧ root.l.v = −1) ∨ root.l.ι , null)

6.2 Using Conditions to Disprove Dependences
Suppose we have a potential dependence between two accesses
(root.α[φα], root.β[φβ]) where α = γ.β. The dependence that ap-
pears to preclude point blocking arises when (p1, n.γ) executes ac-
cess path root.β, and (p2, n) executes access path root.α. The for-
mulae φα and φβ indicate the conditions under which the two ac-
cesses occur. If we can show that whenever φβ is true during iter-
ation (p1, n.γ), φα will not be true during iteration (p2, n), then the
dependence cannot arise. The procedure for doing this is as follows:

1. First, we construct a more precise condition for access root.β.
In particular, φβ is a formula in terms of access paths rooted
at root, which must be bound to the dynamic iteration instance.
This is easily accomplished by substituting n.γ for root to create
φ′β. We then substitute n for root to create φ′α and query an SMT
solver to determine φ′β is incompatible with φ′α. If so, we move
to step 3.

2. φ′β being compatible with φ′α does not mean that both accesses
will happen. φ′β was computed with a starting path condition of
T . To make the condition more precise, we propagate the con-
ditions of the previous iteration down to (p1, n.γ). Define δ such
that δ. fr = γ. If we substitute n.δ for the path conditions asso-
ciated with all recursive calls recurse (root. fr,point), we gain
information about the state of the tree during iteration (p1, n.δ),
immediately before making a recursive call to start iteration
(p1, n.γ). The disjunction of all such recursive conditions (call
this φδ) is a sound approximation of the state of the tree before
(p1, n.γ) executes. Essentially, we inline one instance of the re-
cursive method. We then re-run the abstract interpretation with
an initial condition of φδ, generating a stronger condition under
which access root.β occurs.
We repeat this “inlining” process, backing up one iteration
at a time, until we reach iteration (p1, n). We cannot inline
beyond this point—n could be the global root of the tree, and
hence there is no earlier iteration in the traversal. In practice,
potentially-dependent iterations are nearby in the tree, so we
need only inline one or two times.
After performing this inlining, we have a much stronger path
condition, φ′β, for the problematic access. We can then query
the SMT solver once again to determine whether the path con-
ditions are incompatible. If they are not, then we declare this
dependence a true conflict, and fail the overall dependence test.

3. If φ′α is incompatible with φ′β, we have determined that whatever
computation p1 performs during its traversal prevents p2 from
performing the access root.α. It is possible, however, for a
traversal in between p1 and p2 to “reactivate” p2’s bad access.
Thus, we must ensure that no other accesses can affect the path
condition φ′α that prevents p2 from performing the bad access.
We look for any access paths in πw that collide with any access
paths in φ′α; these writes affect the path condition, and hence if
some iteration performs the write, it may cause the bad access to
occur. We use the same conditional dependence test to ensure
that those accesses cannot happen. Note that any access path
that appears in φ′α must also appear in πr. Hence, there are a
bounded number of access paths to consider and the number of
tests is finite.

6.3 Example
Consider the conflicting access paths (root.v[T], root.l.v[root.v ,
−1 ∧ root.v < point.v ∧ root.l.ι = null]). These access paths pre-
clude point blocking if iteration (p1, n.l) performs the first access
and iteration (p2, n) performs the second access. We substitute n.l
and n for the conditions to generate: φ′β = T and φ′α = n.v ,
−1 ∧ n.v < n.v ∧ n.l.ι = null. These conditions are not incom-
patible with each other, so we “unroll” the recursive method by one
iteration, passing the recursion condition from iteration (p1, n) to
(p1, n.l). The new φ′β is:

n.v , −1∧ (n.v < n.v) ∧ ((n.l.ι = alloc∧ n.l.v = −1)∨ n.l.ι , null)

The refined condition under which iteration (p1, n.l) reads n.l.v
is clearly incompatible with the condition under which iteration
(p2, n) writes n.l.v—the latter requires that n.l.ι = null, while the
former only happens when n.l.ι , null.

Finally, we must make sure that there is no intervening traver-
sal that writes to n.l.ι, possibly “re-activating” the write in iteration
(p2, n). We see that the only access path that writes to n.l.ι does so
under the same condition as the write to n.l.v, and is therefore in-
validated by the same argument. Repeating the process for all con-
flicting access paths, we discover that all pairs that might introduce
a problematic dependence are incompatible with each other.

7. Generalization
The dependence test of Equation 2 is general: because it only refers
to indices in the iteration space (points and nodes), it is not specific
to traversals of trees. The strengthened form of the dependence test
in Equation 3 makes two simplifications to make the test practical;
each of these simplifications contributes to limiting the scope of
our analysis. One simplification is that we do not verify that two
statements definitely execute to produce a dependence; instead,
we use the path-sensitive analysis of Section 6 to approximate
which statements execute in a method body. To make this analysis
effective, we limit our method bodies to loop-free execution. While
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more powerful analyses might be able to support more general
method bodies, many recursive algorithms do not use statically-
unbounded loops.

A more restrictive simplification is the replacement of the gen-
eral ordering test for nodes (ni � n j) with a test for ancestry
(ni �a n j). It is this restriction that limits our dependence test to
operating over preorder tree traversals: it is only in such cases that
a node’s ancestors are guaranteed to be visited and fully processed
before the node itself. Any attempt to generalize our dependence
tests will require weakening this condition.

One generalization that is certainly worth exploring is relaxing
the requirement of preorder traversals. For example, a postorder
traversal merely flips the ancestry condition: descendants are pro-
cessed before ancestors. By splitting method bodies into portions
that execute before the recursive call and those that execute after the
recursive call, we can even mix preorder and postorder execution
in a single program. This relaxation can be especially effective for
analyzing algorithms such as abstract syntax tree (AST) traversals
in compilers; the legality of traversal fusion, which merges multi-
ple AST passes, can be determined by a variant of our dependence
test, as fusion is a limited case of point blocking.

There are several other generalizations to investigate. Our cur-
rent specification language only allows localized changes to trees
by adding or removing nodes. We could support more complex mu-
tations of trees by defining mutating operations that generate more
complex, or larger, set of access paths in our analyses to capture
their effects on the tree. Such a generalization would also allow us
to handle algorithms where entire subtrees are processed at once,
rather than single nodes of a tree. We could support certain types of
DAG traversals, as well: in many search algorithms, only the first
visit to a node matters. Subsequent visits are either truncated, or
some monotonic computation is performed. As a result, the DAG
traversal functions as a (dynamic) tree traversal, allowing our anal-
ysis to be applied if the necessary preconditions hold.5 These are
all promising and exciting avenues for future work.

8. Implementation and Evaluation
Analysis implementation We implement our analysis in Jast-
Add [9], a compilation framework for Java.6 The analysis ana-
lyzes recursive Java methods that are constrained to only use op-
erations analogous to the operations in our specification language
(Section 4); if a method does not obey those restrictions, we do not
analyze it. We assume that either a shape analysis or a programmer
annotation has established that the recursive data structure being
traversed is a tree. The conditional analysis (Section 6) passes path
conditions to the Z3 SMT solver [7], which checks whether they
are compatible or not. The conditional analysis currently assumes
that all writes used to compute post-conditions are strong (i.e., in
a single basic block, each write definitely happens), which is valid
for the benchmarks we have studied.

Benchmarks We applied the dependence test of Equation 3 to
five benchmarks, ranging from simple microbenchmarks to com-
plex data-structure construction algorithms:

ll: Repeatedly appending values to a linked list, with traversal
starting from the head of the list.

bst: Building a binary search tree, as in Figure 1.
skew: Building a skew-heap [25].7

5 Extending the analysis beyond trees will require a different interference
test—using access path prefixes assumes tree-ness.
6 Our analysis framework has been certified by the artifact evaluation com-
mittee, and can be downloaded, along with our benchmarks, at https:
//bitbucket.org/plcl/tree-dependence-analysis.
7 We modify the algorithm slightly to fit our language restrictions.

bh: Building a Barnes-Hut octree.
kdtree: Building a kd-tree using top-down insertion.

Our analysis is able to prove that the each of these benchmarks
passes the dependence test, and hence can be soundly transformed
using point blocking, as well as other optimizations; the follow-
ing section describes the performance benefits of these transforma-
tions. Note that not only do all of these benchmarks modify the
contents of the tree structure being traversed, they also morph the
structure of the tree by adding additional nodes and edges.

Experimental configurations All experiments were run on a 32-
core Intel Xeon system running at 2.7 GHz, with 256K of L2 cache
per core, and 20MB of L3 cache shared among groups of 8 cores.

Analysis performance Table 1 summarizes the results of running
our analysis on each benchmark. # access paths is the number of
paths collected by our abstract interpretation. # interfering pairs is
the number of access path pairs that interfere (i.e., one is a suffix of
the other). # conflicts is the number of pairs that require the condi-
tional dependence analysis of Section 6 to rule out as problematic
(the difference between this column and the previous column is the
number of pairs that are ruled out by the path-insensitive analysis
of Section 5). We also count how many Z3 calls are made for each
benchmark, as benchmarks with more recursive calls require that
more paths be checked to rule out conflicts. The upshot of these
results is that for all five benchmarks, the simple independence test
is not sufficient (some access paths interfere); moreover, the condi-
tional analysis is required to verify the dependence test.

We measure both the overall analysis time, and the analysis time
not including calls to Z3. Most of the benchmarks are analyzed
very quickly. We note that bh takes quite a bit longer than the
other benchmarks, due both to the larger number of access paths
and to the 8 recursive calls in the method body, which leads to a
commensurate increase in the number of Z3 calls.

Transformation evaluation After proving that the benchmarks
pass the dependence test, we applied three different transformations
whose legality is established by the dependence test:

1. Point blocking, described in detail in Section 2.2. The baseline
code for point-blocking is written in Java (and is the same code
analyzed by the analysis framework described above). Point
blocking uses a block size equal to the input size.

2. Traversal splicing [16]. In contrast to point blocking, traversal
splicing tiles the “tree loop” instead of the point loop. The orig-
inal version of traversal splicing reorders the point loop during
execution, and hence is not amenable to the dependence test
that we develop in this work. However, for benchmarks where
a point only visits one child of any node, traversal splicing per-
forms no reordering, and hence is legal whenever the depen-
dence test of Equation 3 holds. For infrastructural reasons, the
baseline for traversal splicing is written in C++: we analyzed
the Java version of the benchmarks to prove the transforma-
tions’ legality, then ported the benchmarks to C++.

3. Parallelization. It is well-known that top-down tree building
algorithms can be parallelized by recursively building left and
right subtrees in parallel. We design a transformation that
derives the parallel implementation from the sequential version
of any traversal code where each point only visits one child
of a node: we apply point blocking to the code, and can then
simply run each of the left and right recursive calls (e.g., the two
recursive calls in Figure 1(b)) in parallel. The resulting parallel
implementation not only requires no locks, it is also guaranteed
to produce the same tree as the original sequential code. We
used Cilk+ [11] for parallelism. We ran the parallel code using
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Table 1: Analysis results. LoC is lines of code in the analyzed method. Runtimes are in seconds, and include 95% confidence intervals.

Benchmark LoC # access paths # interfering pairs # conflicts # Z3 calls Runtime (no Z3) Runtime (total)

ll 9 5 5 1 1 0.7914 ± .0945 0.8174 ± 0.0959
bst 21 12 20 8 16 0.8800 ± 0.136 1.220 ± 0.154
skew 28 21 41 16 32 0.9527 ± 0.0430 1.687 ± 0.0498
kdtree 145 145 901 510 3060 23.94 ± 0.462 109.0 ± 0.481
bh 829 780 40248 3448 27584 280.3 ± 6.78 1432 ± 16.5

Table 2: Speedups of transformed versions over the baselines spec-
ified in the text (95% confidence intervals in parentheses).

Bench. Blocking Splicing Parallelization

ll 1.42 (1.39, 1.45) N/A N/A
bst 2.59 (2.52, 2.65) 2.00 (1.87, 2.13) 1.54 (1.53, 1.56)
skew 1.59 (1.53, 1.66) 0.86 (0.85, 0.86) 0.76 (0.73, 0.79)
kdtree 1.80 (1.75, 1.85) 2.65 (2.64, 2.66) 2.07 (2.01, 2.12)
bh 1.17 (1.15, 1.18) 1.28 (1.27, 1.29) 2.67 (2.58, 2.75)

4 threads, and compared to a baseline of the Cilk+ code running
on a single thread.

For ll, we insert 60,000 values; to avoid stack overflow, we per-
form tail-call optimization on the transformed code. For each of
the other benchmarks, we build the trees using 10 million points/-
values. The splicing and parallelization transformations are only
applied to the four tree-based benchmarks. Table 2 presents the re-
sults. Each experiment is run 15 times, and the table shows the
average speedups, with 95% confidence intervals.

Our transformations are able to achieve substantial speedups on
most of the benchmarks. The exception is skew, which has slow-
downs for splicing or parallelization, despite good speedup for
point blocking. In the case of splicing, we believe this is because
the overhead of splicing far outweighs its locality benefits—point
blocking is a lighter-weight transformation. Parallelization has no
speedup for skew due to low available parallelism (there is rela-
tively more work to be done at the root node, which must be done
sequentially) and Cilk overheads (we observe a 1.13× speedup
when using two cores, which dissipates when using four cores).

Each of these transformations is enabled by our dependence
test, and, moreover, would not have been proven legal by prior
dependence tests, including Jo and Kulkarni’s [15]. Our goal with
these experiments is not to evaluate these transformations against
each other; indeed, these transformations are not a contribution
of this work. Instead, our aim is to show that extending these
transformations to a wider class of kernels through our dependence
test and tree dependence analysis is beneficial. Note, for example,
that by applying our dependence analysis to bh, almost the entirety
of the application—the two major kernels, tree building and tree
traversal, comprise 99% of its runtime—is now amenable to point
blocking and traversal splicing.

9. Related Work
Many analyses have taken access-path based approaches to reason-
ing about the behavior of programs. We adopt the notion of attach-
ing conditions to access paths to facilitate deeper reasoning from
Wiedermann and Cook [30]. Their domain (reasoning about object-
relational database programs) is substantially different than ours,
and they only consider read accesses. Our notions of interference
of statements and collisions of access paths are similar to those
defined by Larus and Hilfinger [18]. Hummel et al. also use the in-
terference of access paths to identify dependences [14]. Ghiya et al.
use shape analysis to determine whether loop iterations can be par-
allelized [13]. Rugina and Rinard use symbolic constraints to deter-
mine possible interference between pointers [23]. Other shape anal-

yses can prove interesting properties of structures, but do not pro-
vide enough information to reason about dependences [8, 12, 24].
To our knowledge, ours is the first analysis to reason about the
structure of dependences with respect to recursion (rather than just
the existence of dependences).

In the context of reasoning about tree and graph programs, An-
drusky et al. reason about the kinds of traversals performed over
trees (breadth-first vs. depth-first) [3]; their approach does not rea-
son about dependences. Rinard and Diniz use commutativity anal-
ysis to prove that certain dependences do not preclude paralleliza-
tion of graph traversals [22]; we instead reason about structural
properties of non-commutative dependences (as in BST insertion).
Zumbusch reasons about dependences to parallelize individual tree
traversals, but does not consider the relationship between multiple
traversals [33]. Madhusudan et al. develop a logic for reasoning
about recursive invariants on trees [19]; in contrast, we reason about
the dynamic behavior of a program, and, in particular, the behavior
of multiple operations (traversals) over trees.

Most dependence analysis frameworks ([1, 4, 5, 10, 17, 20, 31,
32], among numerous others) operate over nested loops with affine
loop bounds that manipulate arrays using affine subscripts. More
recent work has attempted to generalize this model to handlenon-
affine loop bounds and subscripts using symbolic expressions [21,
28, 29], but they still confine themselves to loop-based programs;
these approaches also require a run-time component to evaluate the
symbolic expressions. Similarly, there has been substantial work in
applying locality transformations to sparse-matrix programs using
hybrid compile-time/run-time approaches [26, 27]. None of these
approaches deal with recursion and pointer-based structures, how-
ever. In addition, many of these approaches deal with perfectly- or
imperfectly-nested loops, but do not consider further control flow
within loop bodies; our path condition–based analysis is able to ac-
count for control flow in ruling out potential dependences.

10. Conclusions
This paper presents techniques for analyzing dependences in pro-
grams that recursively traverse trees. We developed an accurate de-
pendence test that identified only those dependences that preclude
point blocking. Through a conditional tree dependence analysis, we
prove the legality of point blocking and other transformations for a
wide range of programs, including tree building codes.

Through multiple decades of compiler research sophisticated
dependence analysis frameworks like the unimodular and polyhe-
dral frameworks were developed to apply transformations like loop
tiling to array programs in the face of complex dependences. De-
spite these decades of research, similar analyses for pointer-based
programs have been an elusive target. This paper presents the first
dependence analysis toolkit that can prove the legality of analogous
“loop” transformations over pointer-based data structures.
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