
Optimistic Parallelism Requires
Abstractions

Milind Kulkarni, Keshav Pingali – The University of Texas at Austin
Bruce Walter, Ganesh Ramanarayanan, Kavita Bala and L. Paul Chew – Cornell University

Optimistic Parallelism Requires
Abstractions

Milind Kulkarni, Keshav Pingali – The University of Texas at Austin
Bruce Walter, Ganesh Ramanarayanan, Kavita Bala and L. Paul Chew – Cornell University

PLDI 2007 June 11th, 2007

Motivation
✦ Parallel programming very important

✦ Multicore processors
✦ Parallel programming is hard!

✦ Limited success in domains which deal with
structured data
✦ Array programs
✦ Database applications

✦ What about irregular applications which deal
with unstructured data?
✦ Compile time techniques have failed

3

PLDI 2007 June 11th, 2007

Galois System: Core Beliefs

✦ Irregular applications have worklist-style data
parallelism

✦ Optimistic parallelization is crucial
✦ Parallelism should be hidden within natural

syntactic constructs
✦ High level application semantics are critical

for parallelization

4

PLDI 2007 June 11th, 2007

Outline

✦ Two challenge problems
✦ Galois programming model and

implementation
✦ Evaluation
✦ Related Work
✦ Conclusions

5

PLDI 2007 June 11th, 2007

Delaunay Mesh Refinement
✦ Iterative refinement procedure to produce

guaranteed quality meshes

6

PLDI 2007 June 11th, 2007

Delaunay Pseudo-code

7

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
 Element e = wl.get();
 if (e no longer in mesh)
 continue;
 Cavity c = new Cavity(e);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

PLDI 2007 June 11th, 2007

Delaunay Pseudo-code

8

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles());

while (wl.size() != 0) {
 Element e = wl.get();
 if (e no longer in mesh)
 continue;
 Cavity c = new Cavity(e);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

Worklist idiom

PLDI 2007 June 11th, 2007

Finding Parallelism
✦ Can expand multiple cavities in parallel

✦ Provided cavities do not overlap

✦ Determining this statically is impossible
✦ Solution: Optimistic parallel execution

9

PLDI 2007 June 11th, 2007

Agglomerative Clustering

✦ Create binary tree of points in a space in
bottom-up fashion

✦ Always choose two closest points to cluster

10

a

b
c

d

e

a

b
c

d

e

a b c d e

(a) Data points (b) Hierarchical clusters (c) Dendrogram

PLDI 2007 June 11th, 2007

Agglomerative Clustering

✦ Two key data structures
✦ Priority Queue – Keeps pairs of points

<p,n> where n is the nearest neighbor of p
✦ Ordered by distance

✦ KD-tree – Spatial structure to find nearest
neighbors

11

PLDI 2007 June 11th, 2007

Finding Parallelism
✦ Priority queue functions as a worklist

✦ Seems to be completely sequential
✦ If clusters are independent, can be done in

parallel

12

a b c d e

PLDI 2007 June 11th, 2007

Lessons Learned

✦ Worklist-style data parallelism
✦ May be dependences between iterations

✦ However, worklist abstractions are missing
from the code

✦ Concurrent access to shared objects a must
✦ worklist, priority queue, kd-tree

13

Galois Programming Model
and

Implementation

PLDI 2007 June 11th, 2007

Programming Model
✦ Object-based shared

memory model
✦ Client code must

invoke methods to
access object state

✦ Client code has
sequential semantics
✦ But runtime system

may execute code in
parallel

15

Client Code

Galois Objects

PLDI 2007 June 11th, 2007

Worklist Abstractions

✦ Iterators over collections
✦ foreach e in set S do B(e)

✦ Iterations can execute in any order
✦ As in Delaunay mesh refinement

✦ foreach e in poSet S do B(e)
✦ Iterations must respect ordering of S

✦ As in agglomerative clustering
✦ May be dependences between iterations
✦ Sets can change during execution

16

PLDI 2007 June 11th, 2007

Delaunay Example

17

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles());
while (wl.size() != 0) {
 Element e = wl.get();
 if (e no longer in mesh)
 continue;
 Cavity c = new Cavity(e);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

PLDI 2007 June 11th, 2007

Delaunay Example

18

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles());
foreach Element e in wl {

 if (e no longer in mesh)
 continue;
 Cavity c = new Cavity(e);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

rest of code unchanged

PLDI 2007 June 11th, 2007

Delaunay Example

19

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles());
foreach Element e in wl {

 if (e no longer in mesh)
 continue;
 Cavity c = new Cavity(e);
 c.expand();
 c.retriangulate();
 mesh.update(c);
 wl.add(c.badTriangles());
}

Iterators expose worklist abstraction
to runtime system

PLDI 2007 June 11th, 2007

Execution Model

✦ Master thread begins execution
✦ When it encounters an iterator, it uses helper

threads to aid in execution of iterations
✦ Iterations assigned to thread according to

scheduling policy (for now, dynamic to
ensure load balance)

✦ Parallel execution of iterator must respect
sequential semantics of iterator
✦ Concurrent access control
✦ Serializability of iterations

20

PLDI 2007 June 11th, 2007

Concurrent Access

✦ Concurrent invocations
to a shared object must
not interfere
✦ Our current

implementation uses
locks

✦ Can use other
techniques such as TM

21

S.add(y)S.add(x)

S

PLDI 2007 June 11th, 2007

Serializability

22

S.contains?(x)

S.remove(x)

S.add(x)

S Workset

S.add()

... = S.get()

S.add()

... = S.get()

(a) Interleaving is illegal (b) Interleaving is legal

(and necessary)

PLDI 2007 June 11th, 2007

Semantic Commutativity

✦ Method calls which commute can be
interleaved
✦ Else, commutativity violation

✦ Property of abstract data type
✦ Implementation independent

23

PLDI 2007 June 11th, 2007

Galois Classes

✦ Inverse methods
✦ Allow for rollback

when commutativity
violated

✦ Commutativity and
inverse specified through
interface annotation

24

class SetInterface {
void add(T x);
[commutes]
add(y) {y != x}
remove(y) {y != x}
contains(y) {y != x}

[inverse]
remove(x)

bool contains(T x);
[commutes]
add(y) {y != x}
remove(y) {y != x}

...
}

PLDI 2007 June 11th, 2007

Galois Classes

✦ Inverse methods
✦ Allow for rollback

when commutativity
violated

✦ Commutativity and
inverse specified through
interface annotation

25

class SetInterface {
void add(T x);
[commutes]
add(y) {y != x}
remove(y) {y != x}
contains(y) {y != x}

[inverse]
remove(x)

bool contains(T x);
[commutes]
add(y) {y != x}
remove(y) {y != x}

...
}

Galois Classes expose abstractions to
the runtime system

PLDI 2007 June 11th, 2007

Runtime System

✦ Two main components:
✦ Global commit pool

✦ Manages iterations
✦ Similar to reorder buffer in OOE

processors
✦ Per object conflict logs

✦ Detects commutativity violations
✦ Triggers aborts if commutativity violated

26

PLDI 2007 June 11th, 2007

Evaluation

✦ Evaluation platform:
✦ Implementation in C++
✦ gcc compiler on Red Hat Linux
✦ 4 processor, shared memory system
✦ Itanium 2 @ 1.5 GHz

27

PLDI 2007 June 11th, 2007

Evaluation – Delaunay

✦ Three different versions of benchmark
✦ reference – purely sequential code
✦ FGL – hand-written, optimistic parallel code

using fine-grained locking
✦ meshgen – Galois version of code

✦ Input mesh generated using Triangle
✦ ~10K triangles
✦ ~4K bad triangles

28

PLDI 2007 June 11th, 2007

Abort Ratios

✦ Optimism must be warranted
✦ Conflicts lead to rollbacks, which waste

work
✦ FGL and meshgen have abort ratios <1% on 4

processors
✦ Closely tied to scheduling policy

✦ Choice of proper scheduling policy is
crucial for good performance

29

PLDI 2007 June 11th, 2007

1 2 3 4

of processors

1

1.5

2

2.5

3

S
p

e
e

d
u

p

reference
FGL
meshgen

1 2 3 4

of processors

0

2

4

6

8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

reference
FGL
meshgen

Evaluation – Delaunay

30

PLDI 2007 June 11th, 2007

1 2 3 4

of processors

1

1.5

2

2.5

3

S
p

e
e

d
u

p

reference
FGL
meshgen

1 2 3 4

of processors

0

2

4

6

8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

reference
FGL
meshgen

Evaluation – Delaunay

31

~3x speedup

PLDI 2007 June 11th, 2007

Performance Breakdown

32

Client Object Runtime

0

5

10

15

20

1 proc 4 proc

C
yc

le
 (

b
ill

io
n
s)

13.8951

18.8501

0

5

10

15

20

1 proc 4 proc

In
st

ru
ct

io
n
s

(b
ill

io
n
s)

16.8889 17.4675

PLDI 2007 June 11th, 2007

Related Work

✦ Weihl, 1988 – Concurrency control using
commutativity properties of ADTs

✦ Rinard & Diniz, 1996 – Static commutativity
analysis for parallelization

✦ Wu & Padua, 1998 – Exploiting semantic
properties of containers in compilation

✦ Ni et al, 2007 – Open nesting using abstract
locks

33

PLDI 2007 June 11th, 2007

Conclusions

✦ Optimistic parallelism necessary to parallelize
irregular, worklist-based applications

✦ Need to exploit high-level semantics
✦ Iterators to expose parallelism
✦ Galois classes to expose semantics of

objects

34

Thank You!
Email: milind@cs.utexas.edu

mailto:milind@cs.utexas.edu
mailto:milind@cs.utexas.edu

