
PYSE: Automatic Worst-Case Test Generation by
Reinforcement Learning

Abstract—Stress testing is an important task in software
testing, which examines the behavior of a program under a
heavy load. Symbolic execution is a useful tool to find out the
worst-case input values for the stress testing. However, symbolic
execution does not scale to a large program, since the number
of paths to search grows exponentially with an input size. So far,
such a scalability issue has been mostly managed by pruning out
unpromising paths in the middle of searching based on heuristics,
but this kind of work easily eliminates the true worst case as
well, providing sub-optimal one only. Another way to achieve
scalability is to learn a branching policy of worst-case complexity
from small scale tests and apply it to a large scale. However, use
cases of such a method are restricted to programs whose worst-
case branching policy has a simple pattern.

To address such limitations, we propose PYSE that uses
symbolic execution to collect the behaviors of a given branching
policy, and updates the policy using a reinforcement learning
approach through multiple executions. PYSE’s branching policy
keeps evolving in a way that the length of an execution path
increases in the long term, and ultimately reaches the worst-
case complexity. PYSE can also learn the worst-case branching
policy of a complex or irregular pattern, using an artificial
neural network in a fully automatic way. Experiment results
demonstrate that PYSE can effectively find a path of worst-case
complexity for various Python benchmark programs and scales.

Index Terms—Machine learning, Q-learning, Symbolic execu-
tion, Worst-case complexity, Stress testing

I. INTRODUCTION

Stress testing is a software testing activity beyond normal
operational capacity, and investigates the behavior of a pro-
gram when subjected to heavy loads [1]–[4]. The goal of such
tests is to observe potential functional correctness bugs (e.g.,
deadlocks and buffer overflows) or violations in quality-related
requirement (e.g., latency deadline) that may not manifest
under normal circumstances. Symbolic execution [5], [6] is the
most widely used means to systematically construct test inputs
for the stress testing. Symbolic execution runs a program using
symbolic variables as inputs, instead of concrete values. When
symbolic execution meets a branch condition, it can choose a
specific direction of the branch as given by a branching policy.
Thus, by carefully designing the branching policy, we can
explore all the possible execution paths, including the ones of
worst-case complexity, which are the targets of stress testing.
On each path that is executed, symbolic execution collects a
set of symbolic conditions, called a path condition. Then, it
invokes a constraint solver, such as OpenSMT [7] or Z3 [8]
that generates concrete test input values, which satisfy such a
path condition and thus execute a program through a particular
path.

1 3 5 7 9
The t-th branch condition

False

True

Br
an

ch
in

g
 d

ec
isi

on

(a) Insertion sort (N = 5)

1 3 5 7 9
The t-th branch condition

False

True

Br
an

ch
in

g
 d

ec
isi

on

(b) Boyer-Moore algorithm (N = 10)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
The t-th branch condition

False

True

Br
an

ch
in

g
 d

ec
isi

on

(c) Dijkstra with a min-priority queue (N = 12)

Fig. 1: A sequence of branching decisions that lead to an
execution path of the worst-case complexity. Here, N is the
number of symbolic variables as inputs. Different markers
(•,×, and �) represent different branch conditions, meaning
that there is one kind of a branch condition in (a) and (b), and
there are three in (c). Note that in (c), branching decisions
change irregularly and thus it is difficult to describe in a
branching policy without hard-coding.

A limitation of finding the worst-case complexity by sym-
bolic execution is that exhaustive search through all execution
paths does not scale to large programs. This is because of
the so-called path explosion problem, meaning that on every
iteration of a loop, symbolic execution creates one new branch
point, and thus the number of possible paths grows expo-
nentially with an increase in the program input size (which
typically iterates a loop more times). To deal with the path
explosion problem, many efforts have been made to prune
unrealizable or redundant paths based on heuristics, thereby
reducing the search space of execution paths [9]–[12]. For
example, Zhang et al. [11] proposed incremental exhaustive
search that iteratively deepens search depth, pruning away
similar paths at each depth among all paths created by sym-
bolic execution. However, the main goal of the pruning-based
methods is to achieve high code coverage in a feasible time
bound, and they often do not focus on or fail to find the path
of the true worst-case complexity, which may also get pruned
out during the searching process.

Another category of solutions to avoid the path explosion
problem is represented by WISE [13] and its recent improve-
ment, SPF-WCA [14]. They first learn a branching policy

that results in a path of the worst-case complexity for small
input sizes by using exhaustive search, and then they apply
the learned branching policy to perform a guided search for a
large input size. Although proven effective in many cases, their
usefulness is, however, restricted to programs whose branching
policy is simple in the worst-case complexity, like “always
take a True branch” (see Figure 1a), or “alternate between
True and False decisions at a branch point in fixed patterns”
(see Figure 1b). Such cases are by no means comprehensive,
leaving many exceptions. For example, a Dijkstra algorithm
implemented using a min-priority queue [15], which is com-
mon practice, shows an irregular pattern as in Figure 1c, and
thus it is impossible to generalize a branching policy from
small scales to a large scale.

In addition, projecting the small-scale behavior into a large
scale will fail if there exists discontinuity in behavior over
scales due to parts of the code that are activated in a scale
dependent manner [16], [17]. Such cases abound in programs.
For example, by a simple if-condition, such as (N > N0),
where N is an input size variable and N0 is a constant, its block
statement is only executed when the input size is larger than a
certain threshold, and therefore, small scale tests cannot learn
such behavior. Such coding pattern exists, for instance, in data
communication where bulk transfer activates some specific
code path.
Our solution approach: In this paper, we address the afore-
mentioned limitations of existing symbolic execution schemes
exploring the worst-case complexity, by proposing PYSE1,
which is an algorithm to incrementally update the branch
policy to drive the program execution toward the worst
case. PYSE uses symbolic execution to collect behavioral
information of a given branching policy, and updates the
policy through multiple iterations of the program based on Q-
learning, a model-free reinforcement learning technique [18].
By iterating symbolic execution and policy update, PYSE’s
branching policy keeps evolving in a way that the length
of an execution path continues to increase over multiple
executions of the program, in a long-term trend, and eventually
reaches the longest possible path, meaning the worst-case
complexity. PYSE can deal with other definitions of the worst-
case complexity, such as maximum memory utilization. We
detail these other possibilities in Section VI.

Our contributions in PYSE can be summarized as follows:
1) PYSE is fundamentally more efficient than exhaustive

searching for the worst-case path because it limits the
scope of search to mild variations of what has been found
to be the worst-case path so far. This feature, in effect,
prunes out most unnecessary paths, and allows PYSE to
work in a large scale program, where exhaustive search
is not feasible due to the path explosion problem.

2) Unlike WISE and SPF-WCA, PYSE learns a branching
policy at a targeted large scale directly, thus allowing it
to handle scale-dependent program behaviors. Most im-

1The term PYSE derives from Python and Symbolic Execution, and is
pronounced like the end of “spice”.

portantly, PYSE can learn a complex or irregular pattern
of branching decisions as well as simple patterns, thanks
to an expressive artificial neural network that defines its
branching policy.

We have implemented PYSE using Python (v2.7) on top
of the Z3 constraint solver [8] and Theano machine learning
library [19].2 PYSE can analyze any Python program whose
inputs can be specified by symbolic variables, without the need
to modify their source codes (such as adding instrumentation
code to generate logs). Experimental results demonstrate that
PYSE can effectively deal with various Python programs and
scales, which exhaustive search cannot handle because of the
path explosion, and WISE-like algorithms are not efficient due
to a complex or irregular branching pattern.

II. RELATED WORK

In a large body of work, the path explosion problem of
symbolic execution has been tackled by pruning away redun-
dant paths in the middle of the searching process [9]–[12]. For
example, Cadar et al. [12] prune out paths by bounding the
number of iterations in a loop, and Zhang et al. [11] iteratively
increase exploration depth, discarding similar paths at each
depth. However, the main focus of these methods is designing
a heuristic that can achieve high code coverage. No special
consideration is given there to find out a path of the worst-
case complexity.

WISE [13] came up with an efficient way to predict a path
of the worst-case complexity at a large scale. It performs
exhaustive search using symbolic execution on small scales,
and learn a fixed branching decision at each branch point
that leads to a path of the worst-case complexity. Then, the
learned branching policy is applied for guided search in large-
scale tests. This work assumes that the worst-case branching
decision is fixed at every branch point regardless of scales.
However, this assumption does not hold for many real-life
programs, like the merge sort example in [13], where the
worst case is alternation between True and False at one
branch point. To resolve such an issue, WISE’s improved
successor, SPF-WCA [14] considers the history, which is the
previous branching conditions and branching decisions there.
By this, SPF-WCA can dynamically change the worst-case-
leading branching decision at a branch point, depending on
the history. For example, in the merge sort, it can know that
True must go after False, and False must go after True.
However, it usually requires domain expertise to determine the
length of the history necessary to test a program. In addition,
it still leaves many programs uncovered. For example, a
Dijkstra algorithm implemented using a min-priority queue
[15] shows an irregular pattern at the worst case, as in Figure
1c. Thus, no matter how long the history is, SPF-WCA cannot
fix the branching decisions at all branch points. PYSE is
differentiated from this kind of work in that PYSE can learn
a complex or irregular branching pattern in a fully automatic
manner. In addition, PYSE works directly on the target scale,

2Source code of PYSE is available at http://x.y.z (anonymized).

http://x.y.z

P1

C2

P3

P2

C1

B1

C1 and C2:
branch conditions.

B1: a box that
bounds information
required to define a
state at C1 (� = 2).

P1, P2, and P3:
execution paths

Fig. 2: An example of a computation tree where a circle
denotes a branch condition at the t-th level that a program
reaches during runtime.

and thus it can handle branching behaviors that are scale-
dependent.

Fuzzing is also a practical approach to testing large-scale
programs in which a program is bombarded with random
inputs. Recent studies such as SlowFuzz [20] and PerfFuzz
[21] have shown that fuzzing techniques can be combined
with genetic algorithms to find the pathological input. Such
methods adopt guided search using a genetic algorithm to find
inputs that maximize the length of an execution path. They
generate a set of random inputs and keep mutating the set
to achieve longer execution paths. Genetic algorithm usually
works well with small scales in practice. However, when the
scale increases, it is well known that the genetic algorithm
can be stuck with local optimum points or converge towards
arbitrary points [22].

Loop summarization is a technique in symbolic execution
that can also be used to estimate the worst-case complexity
[23]–[25]. In such a technique, the effect of a loop is modeled
in terms of the number of times a loop executes, and this is
reflected on the symbolic values at the exit of the loop. Thus,
this kind of work can generate input values for a given iteration
of a loop. However, all loops of a program should be modeled
manually one by one via static analysis. Therefore, it is hard
to automate such a modeling process.

Another related work is worst-case execution time (WCET)
analysis [26], [27]. The major goal for this work is under-
standing the worst-case timing behavior of a program. This
problem is commonly tackled by modeling the upper bound
of execution time of a loop with some level of approximation,
and thus does not aim to generate concrete test input values
for exercising the worst-case paths.

III. OVERVIEW

In this section, we give a high-level overview of PYSE.
The main job of PYSE is to find out a branching policy
π(st) for a given state st at the t-th branch condition that it
encounters while a program is being symbolically executed.
The branching policy π(st) determines a branching decision
at = π(st) ∈ {True,False}, which we also call action.
The state st mainly consists of the current branch condition,
previous L branch conditions, and actions taken there, as
indicated in the box B1 in Figure 2 that defines the state at
the branch condition C1 when L = 2. We call L the history
length. Refer to Section IV-A for a formal definition of a state.

We make the branching policy π(st) continue evolving in
such a way that the length of an execution path, which we
define as the number of branch conditions within a path, in-
creases in a long-term trend, and eventually reaches the worst-
case complexity. To this end, PYSE iterates the following two
steps:

Step 1: (SYMBOLIC EXECUTION) Execute a program with
symbolic variables through a path decided by the
branching policy π(st), and collect resulting behav-
ioral information such as branch conditions the pro-
gram visits, actions taken at the branch conditions,
and feasibilities of the actions.3

Step 2: (POLICY UPDATE) Using the behavioral information,
update the branching policy π(st) in a way that an
undesirable action that caused a program to terminate
quickly can be avoided in the future.

In other words, PYSE is alternating between symbolic execu-
tion driven by the branching policy π(st) in Step 1, and the
learning of a good branching policy π(st) in Step 2. As we
will see later in Section IV-B, updating the branching policy
π(st) is done by Q-learning [18].

For a state st, we design the branching policy π(st) as:

π(st) = arg max
at

Q(st, at), (1)

where Q(st, at) is made from an artificial neural network
(ANN), whose inputs are st and whose output layer pro-
duces two values, Q(st,True) and Q(st,False). That
is, π(st) = True if Q(st,True) > Q(st,False) and
π(st) = False otherwise. The detail of the ANN is explained
in Section IV-C.

Note in (1) that π(s) is always defined for any s, since
it is described by an ANN that results in Q(s,True) and
Q(s,False) for any input s. By virtue of this feature, PYSE
can make a branch decision even for a state that has not been
observed yet. When an unobserved state comes in, ANN’s
internal structure will reproduce the action taken at one of the
already-observed states that is recognized most similar to the
input state, where similarity is internally recognized by the
ANN and we do not have to explicitly define any measure of
similarity.

3This behavioral information is defined as an experience in Section IV-D.

Symbolic
Execution

Policy
Update

Unique
Path Finder

𝑁𝑁 symbolic
variables

Fig. 3: Workflow of PYSE that starts with specifying symbolic
variables. In a basic mode, PYSE works with the symbolic
execution and policy update in solid boxes only. The dashed
box represents the means to expedite learning of a good
branching policy.

It should also be noted that the branching policy π(st) is
deterministic: π(st) is always the same unless the function
Q(st, at) changes. As a result, every time we symbolically run
a program exploiting π(st), we will end up with an identical
execution path. In order to explore a new path, PYSE, thus,
adds some randomness in Step 1 such that at every branch
condition, PYSE takes random action with small probability ε
(typically ≤ 0.1), instead of the one decided by the branching
policy. On average, the branching policy is exploited for a
proportion 1 − ε of executions, and a branching decision is
selected at random for a proportion ε. Such exploration by
random action with probability ε is called the ε-greedy strategy
in reinforcement learning literature [18].

To get a better understanding of the ε-greedy strategy in
our context, consider an example, where PYSE starts with the
branching policy π(st) that leads to the path P1 in Figure 2. In
Step 1, random action may not occur at all, since the value of
ε is small. In such a case, the execution path is the same as P1,
and PYSE gathers no new information. However, if random
action is chosen to occur at the branch condition C2 in Figure
2, for example, the resulting execution path will be different
from P1, like P2 in Figure 2. If the new action taken at C2
results in a longer execution path, the branching policy π(st)
is updated in Step 2 in a manner that it is more likely to take
that action again in the future. Otherwise, π(st) is updated in
the opposite way. Then, the updated π(st) is likely to be better
in Step 1 of the next iteration, resulting in a longer path like
P3 in Figure 2.

As we briefly mentioned above, a naı̈ve ε-greedy strategy
often ends up with the path that we have already observed,
thereby wasting time. In Section IV-E, we explain how to re-
solve this issue and expedite the learning of a good branching
policy.

IV. DESIGN DETAIL

Figure 3 shows the whole workflow of PYSE. It takes N
symbolic variables as inputs, and iterates Symbolic Execution
and Policy Update, corresponding to Step 1 and Step 2
mentioned in Section III. PYSE may work with these two
core blocks only. We refer to such a case as a basic mode.
We first explain the basic mode in Sections IV-A through IV-D
and discuss reasons why it may be slow in learning a good
branching policy. The remaining block, Unique Path Finder
is an addition to expedite the learning process of the basic

Level Line
number Action

𝑡𝑡 −2 0 1

𝑡𝑡 − 1 1 0

𝑡𝑡 2 -1

C2

C3

C1

𝒔𝒔𝒕𝒕𝟎𝟎

𝒔𝒔𝒕𝒕𝒕𝒕

𝒔𝒔𝒕𝒕𝒕𝒕

𝒔𝒔𝒕𝒕𝟎𝟎

𝒔𝒔𝒕𝒕𝒕𝒕

𝒔𝒔𝒕𝒕𝒕𝒕

𝑠𝑠𝑡𝑡 = (𝑠𝑠𝑡𝑡𝑡, 𝑠𝑠𝑡𝑡𝑡, 𝑠𝑠𝑡𝑡𝑡)

F1 F3

Encoding

F2

Examples of branch conditions
C1: line number 150, C2: line number 140, C3: line number 89

Fig. 4: Encoding of a state when L = 2. In the table, the
field F2 encodes each line number of a branch condition into
a unique integer. The F3 tells us what action was taken at
a branch condition with 0 meaning False and 1 meaning
True. Note that this state representation is made before PYSE
takes action at the t-th branch condition, so the action field in
st0 is set to -1 meaning the action is yet to decide. Each row
of the table is the vector encoding stl for l = 0, 1, 2.

mode, which complete the final look of PYSE. This addition
is described in Section IV-E.

A. State representation

In a formal form, a state st at the t-th branch condition
is defined as st = (st0, st1, . . . , stL), where stl is an integer
vector encoding the (t− l)-th branch condition and the action
taken there. Figure 4 illustrates how to encode the integer
vectors for a state. The content of stl includes the value of
(t−l) (field F1 in Figure 4), information about the line number
of a program that a branch condition belongs to (field F2), and
what action is taken at a branch condition (field F3). When
t ≤ l (nonexistent cases), we set stl as an all-zero vector. In
a word, the state st summarizes, in a machine-understandable
form, representative features of an execution path from the t-th
branch condition to the (t− L) branch condition and actions
taken in between. Note that the representation of a state st is
scale-independent (i.e., the format of st is the same for any
N).

B. How to update the branching policy

Symbolic execution takes action at at a given state st and
observes its consequence, which is whether the execution path
is still feasible, i.e., whether there exist any concrete input
values that satisfy what is called a path condition, which are
all the branch conditions and actions taken so far. Feasibility
of the path condition can be checked by using a constraint
solver [7], [8]. Depending on the feasibility, the consequence
of the action at at the state st is scored by a reward rt, which
is defined as:

rt =

{
1 if feasible,
P if infeasible, (2)

where P is called a penalty, which can be any value smaller
than 1, the reward for feasible cases. We chose P = −20
so that the infeasible decision is more distinguishable from

the feasible one. If P differs too much from 1, it can also
delay the convergence of Q-network. We found by experiments
that P = −20 is a reasonable choice that fits to our purpose.
Symbolic execution stops immediately when it encounters an
infeasible path condition. Note that we are rewarded by 1
whenever the length of a feasible execution path increases by
1, and penalized by P if any action leads to an infeasible
execution path. The main goal of PYSE is to update the
branching policy π(st) so that π(st) can converge to the
optimal branching policy π∗(st) that maximizes the expected
sum of future rewards, E(

∑T
k=t rk|st) with T denoting the

last branch condition before a program terminates normally
or falls in an infeasible path condition, and thus maximizes
the length of a feasible execution path. The optimal branching
policy π∗(st) can be of any rule, such as “always True” or
“alternating irregularly between True and False” over t, as
in Figure 1.

Now define the optimal action-value function
Q∗(st, at) as the maximum expected sum of future
rewards, after taking action at at a state st. That
is, Q∗(st, at) = maxπ E

(∑T
t rk

∣∣∣st, at). Then, the
optimal branching policy π∗(st) can be expressed as
π∗(st) = arg maxat Q

∗(st, at).

Note that Q∗(st, at) can be achieved by taking action at at
the state st, then continuing by choosing subsequent actions
optimally. Hence, Q∗(st, at) can be re-written recursively as:

Q∗(st, at) = E
(
rt + max

at+1

Q∗(st+1, at+1)

)
, (3)

with maxat+1
Q∗(st+1, at+1) = 0, by definition, when st+1

is the state of program termination. In (3), since we do
not know the value of

(
rt + maxat+1

Q∗(st+1, at+1)
)

and
its distribution for all t beforehand, direct computation of
Q∗(st, at) is not possible. Therefore, we will try to learn it
by a sample mean Q(st, at) in the following way:

Q(st, at)←(1− α)Q(st, at) + α

(
rt + max

at+1

Q(st+1, at+1)

)
,

(4)

where α is called a learning rate. More precisely, Q(st, at)
is updated in a weighted mean where a new sample is added
by a weight α. By the law of large numbers, Q(st, at) can
converge to Q∗(st, at) after iterations for a sufficiently small
value of α [18], [28]. Such an update for learning Q∗(st, at)
without knowing the underlying probability distribution model
is referred to as Q-learning in the reinforcement learning
literature. Using this function Q(st, at), our branching policy
π(st) is defined as in (1). When Q(st, at) converges to the
optimal action-value function Q∗(st, at), the branching policy
π(st) also converges to the optimal branching policy π∗(st).

In the meantime, if we re-write (4) as:

Q(st, at)←Q(st, at) + α∆Q(st, at), (5)

LSTM
cell

LSTM
cell

LSTM
cell

…

Linear combination

��� ��� ���

ℎ�� ℎ��
ℎ��

ℎ��

…

�(��, True) �(��, False)

…

���

ℎ��

���

ℎ��

���

Fig. 5: Architecture of Q(st, at) that is built using a special
kind of ANNs, called a LSTM. Here, htl denotes a feature
vector extracted by the LSTM cell, and ctl is a cell state vector.

where

∆Q(st, at) = rt + max
at+1

Q(st+1, at+1)−Q(st, at), (6)

then we can see that Q(st, at) converges when the magnitude
of ∆Q(st, at) becomes zero. Thus, updating the branching
policy π(st) towards the optimal one basically means adjusting
internal parameters (weights) of the function Q(st, at) so that
the magnitude of ∆Q(st, at) gets minimized.

C. Q-network architecture

In practice, updating Q(st, at) in (5) separately for each
(st, at) is unattainable, since the state is a multi-dimensional
integer vector and thus the number of possible states can be
too large. Thus, a function approximator is commonly used
to estimate the function Q(st, at) with the limited number of
observations for state-action pairs. Such a function approxima-
tor is typically a linear combination of representative features
of (st, at) [18], [29]. However, recently an ANN-based non-
linear function approximator is getting more attention in
various applications, including Google’s AlphaGo [30], [31].

PYSE also represents Q(st, at) by using an ANN-based
function approximator, which we refer to as a Q-network. As
shown in Figure 5, the Q-network of PYSE is made using
the long short term memory (LSTM) cell [32], [33], a special
kind of recurrent neural networks (RNNs) that is capable of
learning long-term dependencies between input values, and
thus a good fit to handle the sequence structure of a state
in PYSE. The Q-network is created by applying the same
LSTM cell recursively over elements of a state st in the order
from stL to st0. The LSTM cell outputs a two-tuple, htl and
ctl, which are fed forward to next computations. Here, htl is
a feature vector extracted from a sequence from stl to stL,
thereby containing dependency information in there. The ctl
denotes a cell state vector, which is a kind of memory that
selectively remembers computation results so far. Since the
interior structure of the LSTM cell is not the focus of this
work, interested readers may refer to [32], [33] for detail. The
output of the Q-network is a linear combination of the feature
vectors, written as the following matrix multiplication:[

Q(st,True)
Q(st,False)

]
= Wq

[
ht0 ht1 · · · htL

]T
(7)

Algorithm 1 Basic mode of PYSE
1: procedure SYMBOLIC EXECUTION
2: for t from 1 to T do
3: Choose a number u randomly over [0, 1].
4: if u < ε then
5: Choose at randomly. . ε-greedy.
6: else
7: at = π(st).
8: Execute at, and observe rt and st+1.
9: if the experience et = (st, at, rt, st+1) is new then

10: Add et in E.
11: Delete old experiences in E to keep |E| ≤ Ne.
12: procedure POLICY UPDATE
13: Sort experiences in E in a random order.
14: for i from 1 to |E| do
15: Read the i-th experience from E.
16: Update weights in W according to (8).

where Wq is a weight matrix, and
[
ht0 ht1 · · · htL

]
denotes a concatenation of all feature vectors. Hereafter, we
will use a weight set W to refer to all the weights within
the Q-network collectively that include the weights within the
LSTM cell in addition to Wq .

As mentioned earlier, updating the branching policy π(st)
means basically adjusting the weight set W to minimize the
magnitude of ∆Q(st, at). Such minimization can be con-
ducted by various optimization techniques. For example, if
we use the stochastic gradient descent, any weight w ∈W is
updated until convergence as:

w ← w − α ∂

∂w
∆Q(st, at). (8)

D. Basic mode and its issue

Algorithm 1 illustrates two components of PYSE that iterate
in a basic mode. SYMBOLIC EXECUTION in line 1 corresponds
to the step to run a program symbolically, and is mainly re-
sponsible for collecting a transition sample of (st, at, rt, st+1),
which we call an experience. At the t-th branch condition,
PYSE takes a branch determined by at, observes rt and st+1,
and stores the four-tuple experience et = (st, at, rt, st+1) in
an experience set E. Here, we add new experiences only in
the the experience set E (line 9). Thus, E contains unique
experiences only. This prevents the Q-network from being
trained with bias to particular experiences due to duplication,
since all experiences can now be used the same number of
times for weight updates. The symbolic execution lasts until a
program terminates normally, or it encounters an infeasible
path condition, i.e., rt = P in (2), which is indicated by
T in line 2. Note that by the ε-greedy strategy, action at is
decided randomly with probability ε instead of at = π(st) in
all executions. This is how PYSE explores a new execution
path that is not specified by the branching policy π(st). As
in line 11, old experiences in E are deleted in an oldest-first
manner when |E|, denoting the number of experiences in E,
becomes larger than a threshold Ne. This prevents a particular
experience from being used too many times for updating W
over iterations, and the set E from being ever increasing.

Branch conditions (BCs)
belonging to stale states

A new BC found
by virtual execution

New BCs found
by symbolic execution

P1

P2

Fig. 6: Unique Path Finder that discovers a prefix (P1) of
a brand-new execution path by virtual execution, which is a
run over a computation tree built by observed experiences.
Symbolic execution that follows is guided by the prefix P1
and finds out the remaining (P2) of the new execution path.

POLICY UPDATE in line 12 is the step to update π(st) using
the experiences gathered in E by SYMBOLIC EXECUTION. For
each experience, which has sufficient information to determine
the value of ∆Q(st, at) in (6), the weight set W of the Q-
network is updated according to (8). This update makes π(st)
converge to the optimal branching policy π∗(st), and in a
long-term trend, increases the expected length of a feasible
execution path determined by π(st), which is equivalent to
E(
∑T
k=1 rk). Note that by line 13, we are randomizing the

order of experiences in E. This is to break strong correlation
between timely-consecutive experience samples and thus to
reduce the variance of the updates [31]. The number of
experiences in E, i.e., |E|, decides how many times we update
W in a call to POLICY UPDATE. In lines 15 and 16, more than
one experience can be used at a time to update W in what
is called a mini-batch method, which may result in smoother
convergence.

The basic mode of PYSE may work well for programs
whose optimal branching policy π∗(st) is simple to describe,
e.g., the optimal action is always True for all t. However, it
may take a painfully long time to learn π∗(st) if there is no
obvious pattern in the sequence of optimal actions over t. As
shown in Figure 1c, a Dijkstra algorithm using a min-priority
queue, for example, falls in this category. After a thorough
investigation, we have found that this slowness in learning is
mainly due to inefficiency of the ε-greedy strategy in exploring
a new path. In detail, the problem is that since ε is small,
the chance of finding a new execution path quickly decreases
over iterations, resulting in many duplicated execution paths.
When an execution path is what we have already observed,
we cannot gather any new experience, thereby wasting time.
Note that a large value of ε is not a fix to this issue, since
then π(st) is rather close to a random policy, i.e., no use of
intelligence built up in the Q-network. The ε-greedy with ε
annealed down over iterations from a large value to a small
one may alleviate the situation, but still it cannot prevent paths
from being duplicated.

E. Unique Path Finder

Unique Path Finder (UPF) is a component of PYSE that
is intended to resolve the issue mentioned in Section IV-D.
In other words, UPF attempts to help us gather at least one
new experience in each symbolic execution step. Towards this
end, what UPF does is virtual execution. Here, the virtual
execution is defined as a sequence of state transitions using
π(st) with an ε-greedy strategy over an observed computation
tree, which means a computation tree built up by all of
observed experiences. Namely, the virtual execution is not
an execution of a real program, but a simulation of state
transitions among states that have been already observed,
which we call stale states. Such a simulation takes negligible
time to run.

As illustrated in Figure 6, a trial of virtual execution
successfully finishes when it finds a new branch condition,
equivalently a new state that has not yet been observed, which
also means finding a new experience. When virtual execution
ends up with an already-known path (i.e., termination at a stale
state), UPF can repeat virtual execution until successful, since
the running cost of virtual execution is trivial.

The path from the starting branch condition to the new one
found by virtual execution is what we call a prefix of a new
execution path. Since virtual execution does not use a real
program, UPF cannot describe the new branch condition itself.
Instead, UPF represents the prefix by a sequence of actions in
there. At the following iteration cycle, symbolic execution is
first guided by this sequence of actions, and the new branch
condition is then actualized. From that branch condition on,
normal symbolic execution is performed, which completes the
rest of the brand-new execution path.

F. A complete version of PYSE

Algorithm 2 describes all components of PYSE in its
complete version, which we call an advanced mode, where
each component iterates in the order shown in Figure 3. In line
4, āt denotes action in the prefix of a new path found by UPF.
When SYMBOLIC EXECUTION is guided by such actions at
its beginning phase, the state st in the first execution of line
11 is guaranteed to be brand-new.

UNIQUE PATH FINDER (UPF) repeats virtual execution
with a given value of ε, at most Nsearch times, until it can
find a prefix of a new execution path, as in lines 21 to 23.
The found prefix is used by SYMBOLIC EXECUTION in the
next iteration cycle. If UPF cannot find a prefix of any new
path within Nsearch times of virtual executions, SYMBOLIC
EXECUTION that follows will start directly at line 7. In order
to increase the chance of finding the prefix, the value of ε is
doubled at i = Nsearch/2, as in line 25.

V. EXPERIMENTAL RESULTS

Our evaluation answers the following research questions:
RQ 1: How efficiently does PYSE find the worst-case path,

compared to exhaustive search, WISE, and SPF-WCA?
RQ 2: Is the advanced mode of PYSE better than the basic

mode?

Algorithm 2 Advanced mode of PYSE (complete version)
1: Initialize an experience set E at start.
2: procedure SYMBOLIC EXECUTION
3: for t from 1 to T do
4: if āt exists then
5: at = āt. . guided by the founding of UPF.
6: else
7: Choose a number u randomly over [0, 1].
8: if u < ε then
9: Choose at randomly.

10: else
11: at = π(st).
12: Execute at, and observe rt and st+1.
13: if the experience et = (st, at, rt, st+1) is new then
14: Add et in E.
15: Delete old experiences in E to keep |E| ≤ Ne.
16: procedure POLICY UPDATE
17: . POLICY UPDATE is the same as in Algorithm 1.
18: procedure UNIQUE PATH FINDER (UPF)
19: for i from 1 to Nsearch do
20: Do virtual execution (VE) with ε-greedy strategy.
21: if a new state found by VE then
22: Report a prefix (ā1, ā2, . . .).
23: Break.
24: if i = Nsearch/2 then
25: Double the value of ε.

RQ 3: Is pre-training the Q-network helpful in reducing the
search time?

RQ 4: Does the history length L affect the search time?
Benchmark programs: We evaluate PYSE by using it to find
the worst-case at varying scales for two real-world applications
and five micro-benchmark programs. We chose these programs
as they are common benchmarks in stress testing literature.

• Biopython parewise2: Biopython is a Python tool set
for biological computation. In this case study, we applied
PYSE to its pairwise2.align.localxx module,
which determines similar regions between two strings of
nucleic acid sequences or protein sequences, using Smith-
Waterman algorithm [34].

• GNU grep: This is a tool for a key string search over a
given text using Boyer-Moore algorithm [36]. We used a
Python implementation in [37] with a fixed key string of
length 3 and the text string made of N symbolic variables.
Boyer-Moore algorithm has one branch point, and in this
setup, the sequence of the worst-case branching decisions
is (True, True, False) for N = 3, 4, 5, (True, True,
False,True, True, False) for N = 6, 7, 8, and so on
(refer to Figure 1b). Namely, it is the i times repetition
of (True, True, False) for N = 3i, 3i + 1, 3i + 2.
This kind of discontinuity over scales occurs due to the
so-called good suffix rule of Boyer-Moore algorithm [36].

• Micro-benchmarks: We consider insertion sort (the most
common benchmarks for stress testing), priority queue
(enqueueing), binary search tree (building a tree), travel-
ing salesman, and Dijkstra (using a min-priority queue).

All experiments are conducted on a Dell PowerEdge R320
server of 12 Intel Xeon processors at 2.4GHz, and 16GB

TABLE I: Results for Class 1 programs. Here, N is the number of symbolic variables as inputs, ‘Paths’ means the number
of paths to search including infeasible ones. It reports the total number of paths explored until finding the worst case. ‘Time’
is the corresponding elapsed time in a ‘min:sec’ format. The symbol ‘-’ denotes that a corresponding experiment could not
finish in 1,000 minutes.

Benchmark 1:
Biopython parewise2:

Smith-Waterman [34]

(N , longest path length) (3,9) (4,12) (5,15) (10,30) (20,60) (30,90) (100,300)

Exhaustive search Paths 127 511 2047 - - - -
Time 0:04 0:18 1:14 - - - -

WISE Paths 1 1 1 1 1 1 1
Time 0:00 0:00 0:00 0:00 0:00 0:00 0:01

PYSE Paths 1 1 1 1 1 1 2
Time 0:02 0:02 0:02 0:02 0:02 0:02 0:13

Benchmark 2:
Insertion sort

(N , longest path length) (3,3) (4,6) (5,10) (10,45) (20,190) (30,435) (100,3875)

Exhaustive search Paths 6 24 120 - - - -
Time 0:00 0:00 0:01 - - - -

WISE Paths 1 1 1 1 1 1 1
Time 0:00 0:00 0:00 0:00 0:00 0:00 0:09

PYSE Paths 2 1 4 4 2 5 2
Time 0:11 0:02 0:30 0:30 0:30 3:19 23:04

Benchmark 3:
Priority queue

(enqueue)
[35]

(N , longest path length) (3,2) (4,4) (5,6) (10,19) (20,54) (30,94) (100,480)

Exhaustive search Paths 4 12 36 20736 - - -
Time 0:00 0:00 0:01 21:02 - - -

WISE Paths 1 1 1 1 1 1 1
Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00

PYSE Paths 1 1 1 2 2 25 47
Time 0:02 0:02 0:02 0:10 0:12 3:50 11:19

Benchmark 4:
Binary search tree

(build)

(N , longest path length) (3,3) (4,6) (5,10) (10,45) (20,190) (30,435) (100,4950)

Exhaustive search Paths 6 24 120 - - - -
Time 0:00 0:00 0:01 - - - -

WISE Paths 1 1 1 1 1 1 1
Time 0:00 0:00 0:00 0:00 0:00 0:00 12:40

PYSE Paths 1 1 2 2 2 2 2
Time 0:02 0:02 0:11 0:15 0:21 1:08 21:02

memory. Unless otherwise stated, we set Nsearch = 200,
Ne = 5000, and L = 2. In the Q-network, the lengths of
htl and ctl are both set to 2. Minor variation of ε does not
give an observable change in the result, and the trend by the
major variation is well known in the reinforcement learning
literature, which we also briefly mentioned in Section IV-D.
Thus, in our experiments, we fix ε = 0.1.
Branching pattern classes: Depending on the worst-case
behavior, we categorize the benchmark programs into two
classes. Class 1 programs (listed in Table I) are the ones where
regardless of scales, all the branch points have a fixed decision
(True or False) in the worst case, as in Figure 1a. These are
the programs where WISE is effective, and SPF-WCA works
exactly the same as WISE. Class 2 programs (listed in Table
II) are the one where some or all of branch points have a
non-deterministic decision in the worst case, as in Figures 1b
and 1c. In Class 2, the worst-case-leading decision at a branch
point can change depending on the scale (N), or the time (t)
that the branch point is visited. WISE cannot handle Class
2 programs efficiently. However, SPF-WCA can be effective
for some of them, i.e., when there is an obvious pattern in
alternation between True and False as in Figures 1b.
Comparison in Class 1 programs (RQ1): Table I shows
comparison results in Class 1 programs. Here, SPF-WCA is
functionally the same as WISE [14] so we omit the result for
SPF-WCA. For each program, WISE learned the worst-case
branching policy using the smallest and the second smallest
scales shown on the table. The learning time of WISE is not
included in the table. PYSE’s result is the median among five
sets of Monte Carlo experiments, for which the weight set W
of the Q-network is randomly initialized.

We can first see that exhaustive search faces exponentially
growing path diversity and search time so it becomes quickly
infeasible to finish its search within a limit (as which we set
1,000 minutes). In contrast, WISE predicts the worst-case path

using its branching policy and thus searches one single path
only, achieving the search time that is negligible. In the same
situation, PYSE can also learn the worst-case path within a
few trials, since the branching pattern is simple. However, after
each trial, PYSE needs time to update the branching policy
π(st) (i.e., training the Q-network). For this reason, the search
time of PYSE is longer than that of WISE, but we can say
that it is still trivial compared to exhaustive search.
Comparison in Class 2 programs (RQ1): The same kind
of comparison experiments are done in Class 2 programs and
Table II shows the results. For this table, WISE and SPF-
WCA learned the worst-case branching policy using exhaus-
tive search on the smallest and the second smallest scales
shown on the table unless otherwise stated, and the learning
time of WISE and SPF-WCA is not included in the table,
as before. As a default value, SPF-WCA used the history of
length 2, like L = 2 in PYSE, meaning that SPF-WCA makes
a branching decision considering the two previous branching
decisions and conditions. In PYSE, the weight set W of the
Q-network is initialized with the one that was pre-trained at
scale N = 5 for benchmark 5, and N = 6 for benchmarks 6
and 7, unless otherwise stated. This is intended to speed-up the
learning if possible, and the effect of loading the pre-trained
weight set at the beginning can be seen in more detail in Figure
7b.

In the benchmark 5, GNU grep, since the worst-case
branching decision is not deterministic at a branch point,
WISE cannot predict the worst-case path, and has to search
all the possible cases, like exhaustive search. In the meantime,
SPF-WCA may handle this situation effectively. Since SPF-
WCA considers history, it can learn what decision should
be taken to lead to the worst case when the previous de-
cision sequences are (True, True), (True, False), or
(False,True). However, this is only possible when SPF-
WCA learns the worst-case branching policy on scales over 6

TABLE II: Results for Class 2 programs. The symbol ‘x’ denotes the prediction of the worst-case path is wrong. The symbol
‘?’ on the longest path length means that the number is not double-checked, since other solutions could not find the worst-case
path within the limit.

Benchmark 5:
GNU grep:

Boyer-Moore [36]

(N , longest path length) (3,3) (4,3) (5,3) (10,9) (20,18) (30,30) (100,99)

Exhaustive search Paths 4 4 4 40 1093 88573 -
Time 0:00 0:00 0:00 00:01 00:31 43:39 -

WISE Paths 4 4 4 40 1093 88573 -
Time 0:00 0:00 0:00 00:01 00:32 44:24 -

SPF-WCA
trained at N = 3, 4

Paths 1 1 1 9 243 19683 -
Time 0:00 0:00 0:00 00:00 00:07 10:20 -

SPF-WCA
trained at N = 6, 7

Paths 1 1 1 1 1 1 1
Time 0:00 0:00 0:00 00:00 00:00 00:00 00:00

PYSE
pre-trained at N = 5

Paths 2 2 2 2 2 3 276
Time 0:11 0:11 0:11 0:11 0:12 0:20 48:21

PYSE
pre-trained at N = 10

Paths 2 2 2 1 2 3 82
Time 0:11 0:11 0:11 0:02 0:12 0:20 13:03

Benchmark 6:
Traveling salesman

[38]

(N , longest path length) (3,4) (6,12) (10,28?) (15,55?)

Exhaustive search Paths 8 728 - -
Time 0:00 0:22 - -

WISE Paths 8 728 - -
Time 0:00 0:23 - -

SPF-WCA Paths 1 1 x -
Time 0:00 0:00 2:18 -

PYSE Paths 2 7 102 1501
Time 0:11 0:56 41:10 204:16

Benchmark 7:
Dijkstra

(with a min-priority queue)
[15]

(N , longest path length) (6,5) (12,29) (20,72) (30,126?)

Exhaustive search Paths 9 837 - -
Time 0:00 0:10 - -

WISE Paths 7 518 91275 -
Time 0:00 0:22 114:13 -

SPF-WCA Paths 3 269 x -
Time 0:00 0:10 144:05 -

PYSE Paths 4 114 1020 5534
Time 0:29 16:46 172:42 819:27

(i.e., N ≥ 6), because up to N = 5, the sequence of the worst-
case branching decisions is always (True, True, False) so
that it cannot learn what will follow after (True, False)
on a larger scale, for example. The table shows that for this
reason, SPF-WCA has to do exhaustive search through some
part of the execution tree, and the number of paths to search
increases exponentially over scales. Note that as mentioned,
SPF-WCA can predict the worst-case path at large scales
with a single trial, if trained with N ≥ 6. However, such
critical choices of training scales requires deep understanding
of a target program, and thus, it can be said a drawback of
SPF-WCA as a black-box testing tool. In contrast, PYSE
is flexible in responding to such discontinuity over scales,
since it learns the worst-case path directly at the target scale.
Looking at the difference caused by the scale that pre-training
is done at, PYSE can also get a little more benefit when pre-
trained with more patterns of the branching decision sequence.
However, even if PYSE encounters a pattern that has not seen
in the pre-training, it can update the branching policy from
the experiences collected at the target scale, and achieve faster
search time than WISE and SPF-WCA at large scales.

For benchmark 6, traveling salesman algorithm [38], there
exists one branch point, but it shows many different worst-
case paths (e.g., there are 96 worst-case paths of the same
length at N = 6), where the sequences of the worst-case
branching decisions are all irregular alternation between True
and False. Thus, WISE cannot learns a fixed branching
policy and acts like exhaustive search. On the other hand, SPF-
WCA collects 7 kinds of histories of length 2 and fixes the
branching decisions at 6 of them, resulting in the search time
that is within the limit at N = 10. However, this causes a
wrong prediction to the worst-case (we could check it since
PYSE found paths that are at least longer than the prediction
of SPF-WCA). This might be because the training scales are

too small, but we could not add the next possible scale in the
training, since exhaustive search at scale N = 10 could not
finish within the time limit. At N = 10 and N = 15, we can
see that only PYSE finished the search within the time limit.
PYSE found a longer path than SPF-WCA (the path length is
reported in the table), but we could not check if the found path
is the true worst case, since no other solutions could confirm
it within the time limit.

Benchmark 7, Dijkstra using a min-priority queue [15]
has three branch points, and WISE can fix the worst-case
branching decision at only one of them (corresponding to the
marker � in Figure 1c). Thus, it could reduce the number
of paths to search a little, compared to exhaustive search,
but it was not effective enough to handle large scales. SPF-
WCA collects 17 kinds of histories of length 2 and fixes the
branching decisions at three of them. However, we can still
see that search time increases exponentially over scales. In
addition, SPF-WCA predicts a wrong worst-case path in this
case as well at N = 20 (we could check it because SPF-
WCA predicted a shorter path than WISE). In sum, WISE
and SPF-WCA reduce the search scope partially, but search
time still increases exponentially over scales, leaving N = 30
uncovered. In contrast, we can see that PYSE can still handle
N = 30, although it takes a long time to finish its search, due
to complex branching patterns.

Basic mode vs. advanced mode (RQ2): Figure 7a shows how
many more paths the basic mode of PYSE has to search until
finding the worst-case path, compared to the advanced mode.
We can first notice that in Class 1 programs, the basic mode
of PYSE works almost the same as the advanced mode. This
means that when the branching policy has a simple pattern,
the basic mode is as good as the advanced mode. However, in
Class 2 programs, the speed-up benefit of the advanced mode
becomes significant. To learn the complex branching patterns

1 2 3 4
100

0
100
200
300
400
500

In
cr

ea
se

 in
 th

e
nu

m
be

r
 o

f p
at

hs
 to

 se
ar

ch
Class 1

5 6 7
100

0
100
200
300
400
500

Class 2

Benchmark
(a) Effect of advanced mode.

1 2 3 4
50

0

50

100

150

200

250

In
cr

ea
se

 in
 th

e
nu

m
be

r
 o

f p
at

hs
 to

 se
ar

ch

Class 1

5 6 7
50

0

50

100

150

200

250
Class 2

Benchmark
(b) Effect of pre-training.

0 2 4 6
History legnth (L)

100

101

102

Th
e

nu
m

be
r o

f
 p

at
hs

 to
 se

ar
ch

1
2
3
4
5
6
7

(c) Effect of history length.

Fig. 7: Effects of internal parameter choices in PYSE. Here, N = 10 for all benchmarks except that N = 12 for benchmarks 7
and 8: (a) Increase in the number of paths to search until finding the worst-case path when we switch from the advanced mode
of PYSE to its basic mode. (b) Increase in the number of paths to search until finding the worst-case path when switching
from the case we use the pre-trained Q-network to the case we initialize Q-network with random values. We used the next
smallest scale in Tables I and II for pre-training. (c) The number of paths to search for each benchmark, depending on the
history length. Here, the number of paths to search is the median of five sets of experiments.

of Class 2 programs, PYSE needs to collect various unique
experiences. In such a situation, controlled exploration to new
paths by UPF indeed saves time as intended.
Effect of pre-training (RQ3): Since PYSE’s state represen-
tation is scale-independent, PYSE can benefit at some cases
from reusing the pre-trained Q-network at different scales.
Figure 7b shows an example of how many trials we can save
in search by loading the pre-trained Q-network, instead of
random initialization. By looking at the median value, we
can see that Class 1 programs where the branching policy
has a simple pattern do not benefit from using loading pre-
trained Q-network. However, in Class 2 programs, we can
notice the difference, especially at benchmark 7. This result
implies that when the target program has complex branching
patterns, PYSE can be faster with pre-training at a lower scale.
Effect of history legnth L (RQ4): Figure 7c shows the effect
of the history length L in the search time for each benchmark.
We can first notice that there is no common trend: every
benchmark has different optimal history length. Since L = 2 is
not the best for some benchmarks, we can know that the results
of PYSE in Tables I and II can be improved with other choice
of L. Some benchmarks (e.g., benchmark 4) reduce search
time with non-zero L. Some benchmarks (e.g., benchmark 5)
show that too long history may rather increase the search time.
However, note that PYSE can still find the worst-case with
any value of L, which is different from SPF-WCA, where the
exact number of the history length affects the correctness of
worst-case path prediction.

VI. DISCUSSION

We can see from Tables I and II that the search time of
PYSE increases according to input scales even for Class 1,
albeit slowly. This is mainly due to fact that computation time
of a constraint solver increase with a scale. Thus, the scale that
PYSE can handle is somehow bounded in practice, although
it can be much larger than N = 100 for Class 1. Our future
work will be overcoming this limitation by devising a way to
reduce the number of times that PYSE invokes the constraint
solver.

Since PYSE approximates Q(st, at) by the Q-network, the
convergence to the optimal branching policy π∗(st), i.e., find-

ing the path of the worst-complexity is not always guaranteed,
although most of our experiment results are confirmed to be
the true worst case. However, as can be seen in Table II, PYSE
can still be used as a black-box tool to find out a long enough
path within a reasonable time bound in the cases where other
solutions cannot.

PYSE holds any inherent limitations of symbolic execution
(such as the difficulty in handling environment interactions),
but common remedies to them (such as redirecting access to a
pre-defined environment model) are also applicable to PYSE.

In this work, we define the complexity of a program as
the length of an execution path. Different metrics such as
execution time or memory usage can be considered in PYSE
easily, by changing definition of the reward function rt in
(2) accordingly. For example, when the worst case of memory
usage is the matter, rt can be defined as the amount of memory
increase caused by action at.

VII. CONCLUSION

In this paper, we proposed PYSE that can generate inputs
that cause a program to execute in the worst case mode.
This tool can thus be used for stress testing. PYSE uses
symbolic execution to run a program and collects behavioral
information. PYSE then updates a branching policy using
the collected behaviors based on a reinforcement learning
framework. By iterating the symbolic execution and policy
update, PYSE gradually increases the length of an execution
path towards a path of the worst-case complexity. PYSE limits
the search scope to variations of the path determined by the
branching policy that is updated at each iteration. By this,
PYSE can prune out most of unnecessary paths and handle a
large scale program, where exhaustive search is infeasible due
to the path explosion problem. PYSE’s learning procedure is
fully automatic and it can learn a complex or irregular pattern
of branching decisions, which WISE-like algorithms cannot
handle. We demonstrated that in various Python programs
and scales, PYSE can effectively find a path of worst-case
complexity and has benefits against exhaustive search and
WISE-like algorithms.

REFERENCES

[1] Z. M. Jiang and A. E. Hassan. A survey on load testing of large-
scale software systems. IEEE Transactions on Software Engineering,
41(11):1091–1118, Nov 2015.

[2] Wikipedia. Load testing. https://en.wikipedia.org/wiki/Load testing,
2018. Accessed : 5-Oct-2018.

[3] Tse-Hsun Chen, Mark D. Syer, Weiyi Shang, Zhen Ming Jiang,
Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. Analytics-
driven load testing: An industrial experience report on load testing of
large-scale systems. In Proceedings of the 39th International Conference
on Software Engineering: Software Engineering in Practice Track,
ICSE-SEIP ’17, pages 243–252, 2017.

[4] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu. A framework to evaluate
the effectiveness of different load testing analysis techniques. In 2016
IEEE International Conference on Software Testing, Verification and
Validation (ICST), pages 22–32, April 2016.

[5] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. Select—a
formal system for testing and debugging programs by symbolic exe-
cution. In Proceedings of the International Conference on Reliable
Software, pages 234–245, New York, NY, USA, 1975. ACM.

[6] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized
symbolic execution for model checking and testing. In Proceedings
of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’03, pages 553–568,
Berlin, Heidelberg, 2003. Springer-Verlag.

[7] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei
Tsitovich. The opensmt solver. In Proceedings of the 16th International
Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems, TACAS’10, pages 150–153, Berlin, Heidelberg, 2010.
Springer-Verlag.

[8] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[9] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated
whitebox fuzz testing. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2008, San Diego, California, USA,
10th February - 13th February 2008, 2008.

[10] Manuel Costa. Bouncer: Securing software by blocking bad input. In
Proceedings of the 2Nd Workshop on Recent Advances on Intrusiton-
tolerant Systems, WRAITS ’08, New York, NY, USA, 2008. ACM.

[11] Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer. Automatic
generation of load tests. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’11,
pages 43–52, Washington, DC, USA, 2011. IEEE Computer Society.

[12] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, pages 209–224, Berke-
ley, CA, USA, 2008. USENIX Association.

[13] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated
test generation for worst-case complexity. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages
463–473, Washington, DC, USA, 2009. IEEE Computer Society.

[14] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Symbolic
complexity analysis using context-preserving histories. In 2017 IEEE In-
ternational Conference on Software Testing, Verification and Validation
(ICST), pages 58–68, March 2017.

[15] Wyatt Lee Baldwin. Dijkstar 2.2 — PyPI - the Python Package Index.
https://pypi.python.org/pypi/Dijkstar/2.2, 2009. Accessed : 5-Oct-2018.

[16] Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi. Vrisha: Using scal-
ing properties of parallel programs for bug detection and localization. In
Proceedings of the 20th International Symposium on High Performance
Distributed Computing, HPDC ’11, pages 85–96, New York, NY, USA,
2011. ACM.

[17] Bowen Zhou, Jonathan Too, Milind Kulkarni, and Saurabh Bagchi.
Wukong: Automatically detecting and localizing bugs that manifest
at large system scales. In Proceedings of the 22Nd International
Symposium on High-performance Parallel and Distributed Computing,
HPDC ’13, pages 131–142, New York, NY, USA, 2013. ACM.

[18] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[19] Theano Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688,
May 2016.

[20] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman
Jana. Slowfuzz: Automated domain-independent detection of algo-
rithmic complexity vulnerabilities. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’17, pages 2155–2168, New York, NY, USA, 2017. ACM.

[21] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song.
Perffuzz: Automatically generating pathological inputs. In Proceedings
of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, pages 254–265, New York, NY, USA, 2018.
ACM.

[22] Wikipedia. Genetic algorithm. https://en.wikipedia.org/wiki/Genetic algorithm,
2018. Accessed : 5-Oct-2018.

[23] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn
Song. Loop-extended symbolic execution on binary programs. In
Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, ISSTA ’09, pages 225–236, New York, NY, USA,
2009. ACM.

[24] Xiaofei Xie, Yang Liu, Wei Le, Xiaohong Li, and Hongxu Chen.
S-looper: Automatic summarization for multipath string loops. In
Proceedings of the 2015 International Symposium on Software Testing
and Analysis, ISSTA 2015, pages 188–198, New York, NY, USA, 2015.
ACM.

[25] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. Proteus:
Computing disjunctive loop summary via path dependency analysis. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 61–72, New
York, NY, USA, 2016. ACM.

[26] H. J. Bang, T. H. Kim, and S. D. Cha. An iterative refinement
framework for tighter worst-case execution time calculation. In 10th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC’07), pages 365–372, May
2007.

[27] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. Symbolic Loop
Bound Computation for WCET Analysis, pages 227–242. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[28] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore.
Reinforcement learning: A survey. Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[29] Jinkyu Koo, Xiaojun Lin, and Saurabh Bagchi. Rl-blh: Learning-based
battery control for cost savings and privacy preservation for smart
meters. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), June 2017.

[30] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, January 2016.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing
atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[32] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[33] Christopher Olah. Understanding lstm networks.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015.
Accessed : 5-Oct-2018.

[34] Wikipedia. Smith-Waterman algorithm.
https://en.wikipedia.org/wiki/Smith-Waterman algorithm, 2018.
Accessed : 5-Oct-2018.

[35] Queue A synchronized queue class. The Python Standard Library.
https://docs.python.org/2/library/queue.html, 2017. Accessed : 5-Oct-
2018.

[36] Wikipedia. Boyer-Moore string search algorithm.
https://en.wikipedia.org/wiki/Boyer-Moore string search algorithm,
2018. Accessed : 5-Oct-2018.

[37] Huyen Tran. python-grep. https://github.com/heyhuyen/python-grep,
2018. Accessed : 5-Oct-2018.

[38] Dmitry. Suboptimal Travelling Salesman Problem (TSP) solver.
https://github.com/dmishin/tsp-solver, 2017. Accessed : 5-Oct-2018.

	Introduction
	Related work
	Overview
	Design detail
	State representation
	How to update the branching policy
	Q-network architecture
	Basic mode and its issue
	Unique Path Finder
	A complete version of PySE

	Experimental results
	Discussion
	Conclusion
	References

