Hybrid CPU-GPU scheduling and execution of tree
traversals

Jianqgiao Liu, Nikhil Hegde and Milind Kulkarni
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN, USA

{liu1274, hegden, milind}@purdue.edu

ABSTRACT

GPUs offer the promise of massive, power-efficient parallelism.
However, exploiting this parallelism requires code to be carefully
structured to deal with the limitations of the SIMT execution model.
In recent years, there has been much interest in mapping irregu-
lar applications to GPUs: applications with unpredictable, data-
dependent behaviors. While most of the work in this space has
focused on ad hoc implementations of specific algorithms, recent
work has looked at generic techniques for mapping a large class
of tree traversal algorithms to GPUs, through careful restructuring
of the tree traversal algorithms to make them behave more regu-
larly. Unfortunately, even this general approach for GPU execu-
tion of tree traversal algorithms is reliant on ad hoc, hand-written,
algorithm-specific scheduling (i.e., assignment of threads to warps)
to achieve high performance.

The key challenge of scheduling is that it is a highly irregular
process, that requires the inspection of thread behavior and then
careful sorting of those threads into warps. In this paper, we present
a novel scheduling and execution technique for tree traversal algo-
rithms that is both general and automatic. The key novelty is a
hybrid, inspector-executor approach: the GPU partially executes
tasks to inspect thread behavior and transmits information back to
the CPU, which uses that information to perform the scheduling it-
self, before executing the remaining, carefully scheduled, portion
of the traversals on the GPU. We applied this framework to six tree
traversal algorithms, achieving significant speedups over optimized
GPU code that does not perform application-specific scheduling.
Further, we show that in many cases, our hybrid approach is able
to deliver better performance even than GPU code that uses hand-
tuned, application-specific scheduling.

CCS Concepts

eTheory of computation — Scheduling algorithms; eComputing
methodologies — Massively parallel algorithms; Parallel pro-
gramming languages;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICS 16, June 01-03, 2016, Istanbul, Turkey

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4361-9/16/05. .. $15.00

DOIL: http://dx.doi.org/10.1145/2925426.2926261

Keywords

Heterogeneous architectures, GPU, Scheduling, Irregular applica-
tions, Tree traversal

1. INTRODUCTION

GPUs offer the promise of massive, energy-efficient parallelism,
providing hardware that can execute hundreds of simultaneous par-
allel threads. As aresult, the last decade has seen intense efforts to-
wards mapping applications and kernels to GPUs to take advantage
of that parallelism. Unfortunately, achieving such highly efficient
parallelism requires compromises: GPUs present a somewhat lim-
ited SIMT (single-instruction, multiple-thread) execution model,
where, to take full advantage of the parallel execution resources,
threads that are executing simultaneously must perform the same
computation (avoiding control divergence) and access memory in
a predictable way (avoiding memory divergence). In other words,
while GPUs appear to be well-suited to executing data-parallel al-
gorithms, the full power of the GPU cannot be exploited unless the
data-parallel tasks are similar to each other. As a result, most suc-
cessful GPU algorithms are regular, with predictable control flow
and memory access patterns.

There has been considerably less success tackling irregular al-
gorithms. These algorithms, which feature data structures such as
trees and graphs and data-dependent behavior, are much more dif-
ficult to map to GPUs, as the input-dependence precludes grouping
together threads to minimize control divergence and the pointer-
based data structures means that even if threads are performing sim-
ilar operations, their memory accesses are likely not predictable, in-
creasing memory divergence. As a result of these difficulties, most
attempts to map irregular applications to GPUs have been one-off
implementations: for each new algorithm, a new, ad hoc imple-
mentation for GPUs must be developed [5, 6, 8, 10, 11, 16, 17,
23].

Recently, Goldfarb et al. developed a general framework for
mapping a class of kernels, recursive tree traversals, to GPUs [7].
These applications, which include classic algorithms such as Barnes-
Hut [3] and kd-tree—based nearest neighbor searches [4], perform
multiple recursive traversals of tree structures. The multiple traver-
sals expose tremendous amounts of data parallelism. However,
since the behavior of each traversal is input dependent, the data
parallel tasks are not identical, making GPU execution challeng-
ing. If the tasks are merely mapped to SIMT threads, each thread
ultimately experiences substantial memory and control divergence.
To overcome this, Goldfarb et al. developed two transformations,
autoroping and lockstepping, that restructure these tree traversal al-
gorithms so that they execute effectively on GPUs (see Section 2.2
for more details).

Unfortunately, to achieve maximum performance using their frame-

work, Goldfarb et al. used application-specific “sorting” optimiza-
tions. To minimize control divergence while avoiding memory di-
vergence, Goldfarb et al. reorganized the set of traversals to be per-
formed so that the traversals that were grouped into SIMT thread
groups were likely to touch similar portions of the tree. Figuring
out a fast, effective way to perform this sorting requires careful un-
derstanding of an algorithm’s behavior. In other words, this prior
work relies on application-specific sorting to achieve high perfor-
mance. What is missing is an approach to tackling these problems
that does not rely on application-specific knowledge to be effective.

In this paper, we take advantage of a key insight about the behav-
ior of tree traversal algorithms that allows us to perform effective
scheduling without performing application-specific sorting: even
though traversals are data-dependent and hence inherently unpre-
dictable, if the behavior of a single traversal is examined part of
the way through its execution, its future behavior is highly corre-
lated with its past behavior. In other words, two traversals that have
behaved similarly for the first half of their execution are likely to
behave similarly for the second half, as well.

The insight that past traversal behavior is correlated with future
behavior has been exploited before, in narrower, or application-
specific contexts by Zhang et al. [31] and Pingali et al. [22], and
in a more general tree-traversal context by Jo and Kulkarni [13,
12]. Fundamentally, these approaches all interleave the schedul-
ing component (tracking past behavior and reorganizing compu-
tations based on that behavior) with the execution (perform the
next phase of computations). This tight coupling has an advan-
tage: by interleaving tracking and scheduling with execution, the
schedule can be continuously adapted in response to the profiling
information. However, these approaches also have a serious disad-
vantage: because the tracking and scheduling occur continuously,
and are highly irregular processes, this tightly-coupled approach is
ill-suited to execution on a GPU.

In this work, we introduce a completely different way of auto-
matically scheduling tree traversals. We base our approach on an
extension of the prior insight about traversal behavior. The depth-
first nature of recursive traversals means that the behavior of a
traversal as it explores the “lower half” of the tree (i.e., nodes at
depth more than half the tree height) is largely determined by its
behavior in the “upper half” of the tree (i.e., which nodes in the
upper half of the tree the traversal visits, and in which order). In
other words, two traversals that have similar behaviors in the upper
half of the tree will behave similarly in the lower half of the tree,
as well. However, the vast majority of the work performed by the
traversal occurs in the lower half of the tree. As a result, it is possi-
ble to examine the behavior of traversals as they visit the upper half
of the tree, and use just that information to reschedule the traversals
as they execute the lower half of the tree.

Crucially, since this upper-half execution is a small fraction of
the overall execution time, it is not burdensome to perform that ex-
ecution more than once. This fact suggests a automatic, hybrid,
insepctor-executor approach that can be readily mapped to a GPU.
We perform the “top half” of all of the traversals on the GPU once,
to collect profiling data about the behavior of each traversal. This
inspector stage is highly data-parallel, with a small memory foot-
print, and is well-suited to the GPU. The GPU then transmits that
profiling data back to the CPU, which performs the highly irregular
scheduling process to determine a new schedule of execution. This
new schedule of execution is then used to execute the original tree
traversal algorithm on the GPU, using strategies such as Goldfarb
et al.’s. Even though the inspector and scheduler phases add ad-
ditional overhead to the application, the gains from the optimized
schedule during the execution phase win out.

Contributions

This paper makes several contributions.

1. We formulate the general scheduling problem, and show that
it is NP-hard, necessitating scheduling heuristics.

2. We introduce a hybrid, inspector executor-based, dynamic
scheduling algorithm that performs partial traversals on the
GPU, then reschedules the traversals on the CPU, before com-
pleting the work on the GPU.

3. We develop optimized versions of this scheduling algorithm
that exploit structural properties of traversal algorithms to
further improve our dynamic scheduling.

4. We develop a new skeleton for writing the GPU kernel por-
tion of tree traversals that minimizes unnecessary memory
accesses.

5. We implement a framework that performs this dynamic schedul-
ing in a general, application-agnostic manner, allowing pro-
grammers to produce hybrid CPU-GPU implementations of
tree traversal algorithms.

We compare our framework for hybrid traversal algorithms to
Goldfarb et al.’s approach (the best available general framework for
traversal algorithms on GPUs). We demonstrate on six benchmarks
that (a) our approach produces substantially faster implementations
than Goldfarb et al.’s application-agnostic GPU implementations
and (b) our approach yields performance that nears, or even sub-
stantially exceeds, Goldfarb et al.’s hand-tuned implementations,
which use application-specific traversal schedules.

2. BACKGROUND

This section describes the necessary background for the remain-
der of the paper. We briefly cover the SIMT execution model of
GPUs and Goldfarb et al.’s approach for mapping traversal algo-
rithms to GPUs.

2.1 GPU execution model

GPUs use a SIMT (single-instruction, multiple-thread) execution
model that allows multiple threads to execute efficiently in parallel.
SIMT execution is, essentially, vector execution: multiple threads
can execute in parallel provided that all the threads are perform-
ing the same instruction. In the simplest case, consider a group
of threads that each perform exactly the same operation on differ-
ent pieces of data in an array. In a SIMT execution, some number
of threads will be combined into a single group (called a “warp” in
NVIDIA parlance, and a “wavefront” by AMD; for brevity, we will
use the term “warp” hereafter). These threads will execute in lock-
step, each executing the same instruction simultaneously. As long
as all the threads perform the same instruction, and all memory ac-
cesses performed by the threads are well-structured (e.g., adjacent
locations in an array), the GPU will deliver large amounts of effi-
cient parallelism.

The key to the SIMT execution model, which both lends it its
ease of use and hides a series of performance pitfalls, is how it
deals with situations when threads do not perform exactly the same
instruction (control divergence), or do not access memory in well-
structured ways (memory divergence). In the presence of diver-
gence, GPU utilization can drop precipitously, at which point the
parallelism advantages of a GPU are moot: execution on a CPU
can often be faster. Unfortunately, irregular applications often in-
cur both types of divergence. Because of data-dependent behavior,

threads often suffer from control divergence. Because of the dy-
namic memory allocation inherent in pointer-based data structures,
threads often access unpredictable memory locations on loads, lead-
ing to memory divergence. As a result, most attempts to map irreg-
ular applications to GPUs have required very careful, application-
specific tricks and techniques to achieve good performance.

2.2 Autorope and lockstep traversal

Goldfarb et al. described an approach for mapping a general
class of irregular applications—those that perform repeated tree
traversals—to GPUs [7]. These applications are characterized by
the following structure: a set of “points” each traverse a single tree
in a recursive, depth-first manner. However, GPU implementations
of recursive tree traversals suffer from a specific performance pit-
fall. After a thread finishes traversing along a particular path in
the tree, it must return to upper nodes in the tree to reach other
branches. Thus the interior nodes are repeatedly traversed, an over-
head that is compounded by the expense of numerous recursive
calls on a GPU. To mitigate this overhead, Goldfarb et al. proposed
a transformation called autoropes [7].

Ropes are a common technique for mapping traversal algorithms
to GPUs. Rather than letting threads discover which nodes to visit
through a series of recursive calls, ropes are additional pointers in-
stalled in the tree that directly point to the next node to be traversed
(e.g., to a sibling node in the tree), avoiding the expense of revisit-
ing interior nodes. Ropes provide a linearization of the tree. Unfor-
tunately, the particular targets of rope pointers are application spe-
cific, and are complicated when multiple traversal orders are possi-
ble. Autoropes is an application-agnostic transformation that uses
a stack of dynamically-instantiated rope pointers to linearize trees.
When visiting a node using autoropes, the thread pushes pointers to
the children nodes onto a rope stack in the reverse order they will
be traversed. Then, instead of making recursive calls, the autorope
traversal just iterates over the rope stack, eliding the overhead of
recursion, and ensuring that each node is visited just once.

Autoropes replaces the recursive call stack with a simple iter-
ation over the rope stack. As a result, threads experience signif-
icantly less control divergence (because they are all simply iter-
ating over a stack). Unfortunately, this means threads in a warp
can diverge in the tree, with different threads touching very dif-
ferent portions of the tree, resulting in unnecessary memory traf-
fic. Lockstepping mitigates this problem by introducing additional
control flow that keeps threads in sync in the tree during traversal.
When a thread is truncated at certain node @, it doesn’t move to the
next node through autorope stack directly. Instead, if other threads
in the warp want to continue the traversal to the subtree rooted at
node @, the thread will be carried along by others, masked out from
any computation. A warp only truncates its traversal when all its
threads in the warp have given up the traversal. To ensure that
lockstepping does not result in many threads being dragged along
through the tree doing no useful work, it is important to carefully
schedule the computation so that threads with similar traversals get
grouped together into a warp. Together with autoropes, lockstep
traversal delivers high performance for well-scheduled inputs [7].

3. TRAVERSAL SCHEDULING

As explained by the previous section, efficiently mapping tree
traversals on GPUs requires carefully scheduling those traversals
so that traversals that are grouped together into the same warp are
as similar as possible. This ensures that lockstep traversal is able to
exploit substantial commonality in the memory accesses performed
by traversals while not overly expanding the amount of work done
by a warp. This section shows that the general scheduling prob-

lem, Schep is NP-hard, necessitating the use of heuristics. It then
summarizes prior scheduling and sorting heuristics for tree traver-
sal algorithms.

3.1 Scueo is NP-hard

The general scheduling problem for tree traversals, which we
call ScHEp, is simple to define. Given a point p that represents a
traversal, define #(p) as the set of nodes visited during p’s traversal
of the tree. For two points, p; and p;, define the difference between
the traversals, 6(p;, p;) as #(p;) U t(p;) — (t(p;) N 1(p;))—in other
words, the nodes that exist in one traversal but not in the other. Note
that these are the nodes that result in non-convergent computation,
as only one point needs to visit them.

ScHED is the following problem. Given a set of points, {py, ..., P},
produce a sequence s of those points that minimizes:

n—

A= 16(si, 5100l

1
i=1

In other words, ScHED minimizes the total differences between con-
secutive points in the sequence—it produces a sorted sequence.

THeEOREM 1. ScHED is NP-hard.

Proor. To show that ScHep is NP-hard, we reduce from Hamil-
tonian Path: given an undirected graph G = (V, E), find a path that
visits each vertex once. We show how to design a tree traversal
problem based on G where solving ScHeD for that problem solves
the Hamiltonian Path problem.

First, build a tree with |E| + 2 leaves. Let the first leaf in the tree
be x and the last leaf in the tree be y. Label each of the other |E|
leaves in the tree according to the edges in E; call these edge-based
leaf nodes. Then, attach subtrees with 4|E| nodes to x and y. For
each vertex v; € V, we specify a point p; with a traversal defined
as follows: p; visits all of the nodes in the tree except the subtrees
rooted at x and y and any edge-based leaf node corresponding to an
edge not incident on v. The only leaf nodes visited by p; correspond
to the edges incident on v;, E(v;). Then define two additional points
px and p,, which truncate at x and y, respectively, and otherwise
visit all of the other nodes in the tree except the edge-based leaf
nodes.

Note that for any two vertices v; and v;, [6(p;, pj)l = |E(vi)| +
|E(v))|=2|E(v;)NE(v;)|. Note that the last term is zero unless v; and
v; share an edge. Also, for all vertices v;, |0(px, pi)l = 0(py, pi)l =
AE| + [E(v))].

Now we solve ScHED across all the points—those corresponding
to the vertices of G as well as p, and p,. Note, first, that minimizing
A requires that p, and p, be scheduled first or last—otherwise their
4|E| difference penalty is accounted for twice. Each other point ap-
pears in two pairs in the scheduled sequence. Every edge therefore
is accounted for four times—twice for each vertex it is incident
on—unless it is incident on both vertices of a pair. We thus have
that A is:

8IE| + 4E] - 20

Where Q is the number of point pairs in the sequence produced by
ScHED that share a leaf node—in other words, the number of vertex
pairs that share an edge. A is minimized when Q is maximized. In
other words, A is minimized when all vertex pairs in the sequence
share an edge—a Hamiltonian Path. Hence, if a Hamiltonian Path
exists, Scuep will find it. [

Note that ScHeD merely refers to an arbitrary set of tree traver-
sals. However, we are not interested in arbitrary tree traversals—

1

1
2
3
4
5
6
7
8
9
0

void recurse(node root, point pt) {
if (!can_correlate(root, pt))
return ;
if (is_leaf(root))
update_correlation (root, pt);
else {
recurse (root.left ,
recurse (root.right,
}
}

pt);
pt);

Figure 1: Point correlation

we are interested in tree traversals that are generated from recur-
sive tree traversal algorithms, as Point Correlation algorithm in
Figure 1. It is straightforward to construct such an algorithm for
a given graph. When building the tree for the graph, color each
of the nodes that should be visited by all of the points white, all
of the nodes visited only by p, red, all of the nodes visited only
by p, green, and all of the other nodes blue. It is clear that the
can_correlate predicate in Figure 1 can be modified to ensure
that the points visit exactly the nodes they are supposed to: if a node
is white, then can_correlate is always true; if a node is red or
green, can_correlate is true only if the point is p, or p,, re-
spectively; if a node is blue, can_correlate looks up whether
the graph vertex associated with the point is incident on the edge
associated with the node. This modified recursive algorithm, when
presented with a set of points derived from the vertices of the graph
in question, and a tree built as specified above, produces exactly the
set of traversals needed for Schep to find a Hamiltonian path if one
exists.

3.2 Prior sorting heuristics

Because ScHep is NP-hard, we must instead turn to heuristics
to schedule traversals. The typical approach for tree-traversal ap-
plications is to use ad hoc, application-specific sorting heuristics,
based on a programmer’s understanding of the behavior of the tree-
traversal algorithm. As a result, there have been several strategies
proposed for specific traversal algorithms. For Barnes-Hut alone,
researchers have proposed sorting using space-filling curves [2], Z-
curves [9], orthogonal bisection [26], or the structure of the Barnes-
Hut tree itself [28]. For ray tracers, researchers have suggested var-
ious ray-reorganization techniques [21, 20, 19, 1, 18]

Rather than devising new sorting strategies for each new traver-
sal algorithm, several researchers have looked at using the past be-
havior of computations to predict their future tree accesses, and
hence dynamically schedule them with minimal application-specific
knowledge [31, 22, 13, 12]. Most directly relevant, as they target
the same types of algorithms as this paper, is Jo and Kulkarni’s
traversal splicing work [13, 12]. Traversal splicing operates by
tracking each traversal’s behavior during execution. Each traversal
is partially executed until it either truncates its execution at a node
in the tree, or reaches some pre-specified maximum depth in the
tree. Traversals that are truncated at the same node in the tree (in-
cluding those that make it to the pre-specified maximum depth) are
considered similar, and a new execution order is constructed based
on this information. Then all of the traversals are again partially
executed until they truncate again or reach another pre-determined
stopping point, and the process repeats.

Traversal splicing is based on the insight that traversals that trun-
cate at the same part of the tree are behaving similarly, and hence
are likely to behave similarly in the future. Unfortunately, traversal
splicing requires very careful bookkeeping, monitoring of traver-
sals, sorting, and interleaving the execution of the traversals with

(a) top tree

Nodes
1 2 4 8 9 5 10 11 3 6 12 13 7 14 15

Points

I &6 " m O o0 @ >

(b) point traversal

Figure 2: Tree traversal algorithm

the highly irregular scheduling process. As a result, traversal splic-
ing incurs noticeable runtime overhead [13]', and is very ill-suited
to execution on GPUs.

Hence, we are left with a dilemma: known scheduling approaches
are either application-specific, or require highly-irregular computa-
tion that is poorly matched to GPUs’ SIMT execution model. In
the next section, we present a novel hybrid scheduling approach
that splits the tasks of scheduling and execution, and hence is sub-
stantially simpler than prior dynamic scheduling approaches, incurs
less runtime overhead, and is well-suited to mapping to GPUs.

4. DESIGN

This section describes our hybrid CPU-GPU scheduling strat-
egy, a novel scheduling and execution technique for tree traversal
algorithms that is both general and automatic. We do not rely on
any application-specific or semantic knowledge. Instead, our tech-
nique uses two GPU kernels: one that runs a portion of the traver-
sal code on the GPU while inspecting the behavior of individual
traversals. The CPU then uses this information to dynamically re-
order the traversals so that when the second kernel is called, threads
grouped into warps perform similar work, improving SIMT effi-
ciency. This strategy is, essentially, an instance of the inspector-
executor model [27], where the initial GPU kernel acts as the in-
spector, the CPU is used to perform the re-scheduling, and the sec-
ond GPU kernel acts as the executor. The key phases of the tech-
nique are:

1. Profiling. A carefully constructed GPU kernel runs a small
portion of every traversal in the algorithm to collect behav-
ioral information that is used during scheduling. (Section 4.1).

2. Scheduling. The CPU analyzes the profiling information and
groups threads into different buckets. Threads in one bucket
are more likely to access the same branches of the tree and
hence exhibit better locality. (Section 4.2).

3. Execution. This schedule is then used to execute a second
GPU pass that performs the rest of the traversal, using an
optimized kernel (Section 4.3).

In Section 4.4, we argue that this scheduling strategy is sound.

'Though this overhead is often mitigated by gains in locality.

1
2
3
4
5
6
7
8
9

10
11

void profiling (node root,
stack stk = mew stack ()
stk .push(root);
while (!stk.is_empty()) {
root = stk.pop();
if (!can_correlate(root, pt))
continue ;
// update information here
if (is_leaf(root)) {
matrix [pt.id][root.id] =
} else {
stk .push(root.right);
stk .push(root.left);

point pt) {

root.id;

Figure 3: Profiling for point correlation

1 2 4 8 9 5 10 11 3 6 12 13 7 14 15
A 1 2 4 8 9 3 6 7 14 15
B 1 2 4 5 10 11 3 6 12 13 7
C 1 2 4 8 9 3 6 12 13 7
D 1 2 4 5 10 11 3 6 12 13 7 14 15
E 1 2 4 8 9 3 6 7 14 15
F 1 2 4 5 10 11 3
G 1 2 4 8 9 5 10 11 3
H 1 2 3 6 12 13 7 14 15
Result ACEG BDFG BCDH ADEH

Figure 4: Scheduling matrix for point correlation

4.1 Profiling

In the profiling stage, we run a GPU kernel that performs each
traversal only in the top half of the tree. Because the top portion of
the tree is small relative to the rest of the tree, this profiling step ac-
counts for a very small proportion of the overall computation, and
hence even if the points are poorly scheduled, the overall impact on
performance is small.

Figure 2(a) shows the top portion for a binary tree, with nodes
indexed in heap order. In the following sections, we call this top
portion the top-tree. Figure 2(b) shows the traversals of eight points
using the algorithm shown in Figure 1. The vertical axis shows dif-
ferent input points that would traverse the tree, while the horizontal
axis records which nodes a point may visit. Each circle in the di-
agram represents a computation step during execution. Note that
each point does not visit all the nodes.

During profiling, the traversal of each thread is traced and recorded
into a scheduling matrix. The scheduling matrix has one row for
each point, and one column for each node in the top tree. When
a point visits a node, the appropriate cell in the table is marked.
Figure 3 shows how the point correlation code is augmented with
this profiling data. Note that the stack manipulation in lieu of re-
cursive calls to visit different portions of the tree is due to the au-
toropes transformation (Section 2.2). Figure 4 shows the resulting
scheduling matrix for the set of traversals in Figure 2(b). Note,
we only need the leaf node columns, which are marked in gray,
for scheduling. This matrix is transferred back to the CPU for use
during scheduling, as described in the next section. The profiling
overhead is discussed in Section 6.

Guided traversals In some algorithms, such as nearest neighbor,
the particular order a point visits nodes is governed by point-specific
data. For example, based on characteristics of a point, one point
might visit the tree root’s left child before its right, while another
might visit the right child before the left. Following Goldfarb et
al.’s terminology, we call algorithms that have this property guided
traversals, in contrast to algorithms like point correlation that are
unguided [7]. Note that whether a traversal is guided or not can be
determined by a simple static analysis that determines whether the

1
2
3
4
5
6
7
8

9
10

11
12

void profiling (node root,
stack stk = mew stack ()
stk .push(root);
int index = 0;
while (!stk.is_empty()) |
root = stk.pop();
if (!can_correlate(root,
continue ;
// update information here
if (is_leaf(root)) {
matrix [pt.id][index++] = root.id;
} else {
if (closer_to_left(root,
stk .push(root.right);
stk .push(root.left);
} else {
stk . push(root.
stk . push(root.

point pt) {

pt))

pt)) {

left);
right);

Figure 5: Profiling for nearest neighbor

order of recursive calls is control dependent on any point-specific
data.

Because the traversal order of each point in a guided traversal
is different than in an unguided traversal, our profiling code must
also encode that traversal order. Figure 5 shows that code. Note,
first, that the particular order of tree traversal is determined by
the predicate closer_to_left (line 13), making the traversal
guided. Second, the structure of the scheduling matrix is now dif-
ferent. Rather than each column representing a particular node in
the tree, column i represents the ith node visited by a particular
point. Line 11 shows how the particular traversal order of a given
point is encoded into the matrix.

4.2 Scheduling
4.2.1 Scheduling unguided traversals

The profiling matrices we generate in the profiling step provide
information that lets us reason about the behavior of the points. In
Table 4, we see that points ACEG all visit the leaf nodes and
@ of the top tree. Since all of these points reached the same leaf
nodes of the top tree, it is more likely that they will behave similarly
as they traverse the rest of the tree. Similarly points BDFG all
visit nodes and @, so we expect them to behave similarly in
the rest of the tree. (Note that point G shows up in both groups;
we conclude that it behaves somewhat similarly to both groups of
points).

We can scan the columns of the scheduling matrix to construct
scheduling buckets. The last row of Table 4 shows the resulting
buckets. Note that even though the top tree has eight leaf nodes,
there are only four buckets. This is because sibling leaf nodes have
the same information in our example.

These buckets represent points that have some similarity of be-
havior. Scheduling according to this information can greatly im-
prove locality. However, points in the same bucket are still unopti-
mized. Since each bucket may contains millions of points, the di-
vergence in a single bucket can still be considerable. Indeed, intra-
bucket scheduling can be even more important than inter-bucket
grouping. We hence perform intra-bucket scheduling while build-
ing each bucket.

At a high level, the idea behind intra-bucket scheduling is simple.
In the result row of Table 4, A and E appear in two buckets together,
while they only appear in one bucket with D and H. Hence, in the

bucket where all four points appear, , we would like to execute
A and E consecutively, and then D and H. In other words, nodes
that appear in several buckets together should be considered more
similar, and hence scheduled together. Unfortunately, building the
buckets and then searching for such similarity is very expensive.
We thus use an intra-bucket scheduling algorithm that orders the
points on the fly.

Intra-bucket scheduling Rather than treating the construction of
each bucket as a separate process, we consider these steps a con-
tinuous process: we use the outcome of building one scheduling
bucket as a guide to the construction of the next. The procedure is
illustrated in Figure 6. The vector sandpile records scheduling re-
sult of each scheduling step. Before first step, it is initialized with
original input points’s index, from A to H.

In the scheduling process executed on node ®), sandpile is fil-
tered into two subsets: taken and untaken. The taken subset con-
tains points that would traverse node (8 while untaken collects the
rest. Then we join taken and untaken together and take the new
formed sandpile as the input for node . Notice that the new
sandpile still has the same elements as the old one, but already
contains scheduling information.

In node , we check whether points visit this node in the order
they lay in the sandpile which is transferred from node ®. Point A,
C and E show no record in matrix, so we push them into untaken
subset. Point G, B, D and F visited node and should be pushed
into taken. After we insert point H into untaken, we join the two
subsets again and create another new sandpile. Figure 7 shows
the pseudo-code of the partition-join process. At the end of the
scheduling, the sandpile is re-arranged as DHAEBCGEF. Points D
and H are put together because both of them visit node , as are
AE (node ®), BC(node (12) and GF(node (10).

By continuously refining the schedule as we build the scheduling
buckets, the sandpile eventually yields a final schedule that cap-
tures the similarity of points across multiple scheduling buckets.
This process is quite efficient, as building a schedule for one mil-
lion points across 256 scheduling buckets takes just a few tenths of
a second.

4.2.2 Scheduling guided traversals

The scheduling matrix for guided traversals keeps both the node
ID and traversal order for each point. Points’ traversal are repre-
sented by a sequence of numbers, like the gene. What we would
like to do is group together points with similar sequences together,
as they will perform similar work. To do this, we iterate through
each traversal sequence, partitioning points based on the order in
which they visit nodes.

In Figure 8, the input points are filtered into four buckets based
on the first leaf node they access: points ABFH would traverse
node @ first, while CE prefer node , D goes to node @ and G

visits node @ Node ®’s bucket contains so many elements that
we need to schedule them in finer granularity. In the second step?,
both point A and F traverse node @ first then node (10) while B and
H visit node (10) then @ Point A and F present more similarity and
thus should be arranged closer than others, so as point B and H. We
could implement the same scheduling iteration multiple times until
the end of the row, but we need to consider the cost. If there are only
a few points left in a bucket, the divergence would be tolerable. We
cut off our recursive scheduling process when the number of points
is below some limits. A common example of such limit is thirty-

2We define the traversal of two sibling nodes with the same parent
as a step. A step that visits node ® then node Q) is recognized as
different from a step traverses node @ then node ®.

two, the number of threads in a warp (line 17 in Figure 9).

Figure 9 shows the pseudo-code for guided traversal optimiza-
tion. Assume that the number of input points is npoints, and the
top tree has nnodes leaf nodes. We initialize a vector with npoints
well-aligned elements that presents the original order of input points,
and an empty sequence as the output. According to the first tra-
versed node, we distribute npoints points into nnodes buckets. For
the points in a bucket, we repeat the schedule until the number of
points falls below a threshold. After all the points in the one bucket
is well sorted, the program moves to the next bucket.

Since the number of nodes that a point would traverse varies, the
length of a row may also change. In above pseudo-code, each node
has an ID from 1 to nnodes, while the cells in matrix are initialized
as zero. When the entry in a row changes from non-zero to zero,
that means the traversal of a thread finishes. The thread that ends
up earlier than others should be removed from further scheduling.
We insert it in the bottom of the output buffer (line 12).

4.3 Execution

The final stage of our process is the execution phase. We sim-
ply run the original GPU kernel (with the addition of our optimized
lockstep skeleton, described in the next section) for the traversal
algorithm using the order of points determined during scheduling.
Since this order of points is based on points that we expect to be-
have similarly, this has an analogous effect to when Goldfarb et al.
ran their kernels on sorted input points.

Note that we re-run the entire traversal algorithm using the new
schedule of points. In the profiling step, we execute the tree traver-
sal algorithm for certain depth. Since the profiling work performs
some of the work of the original algorithm, we could store the com-
putation result of profiling, and restore from these break points in
execution step. However, this requires communicating tremendous
amounts of data back from the GPU after the profiling step. In-
stead, updates to points that occur during profiling on the GPU are
not communicated back to the CPU. All we communicate back is
the scheduling matrix.

While this strategy does result in redundant work, as the top tree
is traversed a second time during the execution phase, the amount
of time spent in the top tree overall is negligible, and hence this has
very little impact on performance. Indeed, our experiments have
shown that the expense of communicating point data back and forth
and restore from the partial traversal results can actually slow down
performance.

4.4 Correctness

Correctness is far more important than performance for any kind
of code transformation and scheduling. We argue that our hybrid-
scheduling is sound. Note that although scheduled code walks
through the tree in a different order from original, for each point,
scheduling does not change the nodes it visits, nor the order it visits
them. For a given node, points that visit it are the same set, and the
place where the value is updated is also preserved.

5. IMPLEMENTATION

This section describes an alternate lockstepping implementation
that performs far fewer memory accesses than Goldfarb et al.’s
original lockstep kernel, substantially improving performance.

Goldfarb et al.’s lockstep kernel operates as follows: each warp
has a bit vector with one entry per thread called the mask vector.
If a thread wants to truncate at a node, its bit in the mask vector
is set. If any thread in the warp does not truncate (i.e., not all bits
in the mask vector are set), all threads continue recursion. The
mask vector is used to supress the computation of threads that are

sandpile: ABCDEFGH ACEGBDFH
Profiling:

taken: 1 ACEG ! GBDF
untaken: L>BDFH L>ACEH

1 void schedule () {

2 vector<int> xsandpile = {A, B, ..., H};
3 foreach (Node n in nodes) {

4 vector<int> =xtaken, xuntaken;

5 for (i = 0; i < npoints; i ++) {
6 point_id = sandpile[i].id;

7 if (matrix [n—>id][point_id])

8 taken —>push_back (point_id);

9 else

10 untaken —>push_back (point_id);
1 }

12 foreach (j in untaken)

13 taken —>push_back (j);

14 delete sandpile, untaken;

15 sandpile = taken;

Figure 7: Intra-bucket scheduling code

ABCDEFGH

Figure 8: Guided optimization example

1 int sxbuffer = new int [npoints];

2 vector<int> sandpile = {A, B, ..., H};

3 schedule(sandpile , buffer, 0, 0);

4

5 void schedule (sandpile, buf, offset, index) {
6 clusters = nmew vector<int> [nnodes];

7 for (i = 0; i < sandpile.size(); i ++) {
8 pos = sandpile[i];

9 temp = matrix[index][pos];

10 if (!temp)

11 cluster [temp]. push_back (sandpile[i]);
12 else

13 buffer[offset++] = sandpile[i];

14 }
15 for(j = 0 ; i < nnodes; j ++) {

16 if (clusters[j].size() == 0) return;

17 if (index >= nnodes || clusters[j].size() <= 32)

18 for(k = 0; k < clusters[j].size(); k ++)

19 buffer[offset ++] = clusters[j][k];

20 else

21 schedule (cluster[j], buffer, offset, index + 2);
22 }

23}

Figure 9: Guided optimization code

GBDFACEH BDCHGFAE DHAEBCGF

DHAE

-->BCGF

[traverse } [truncate]

@

Figure 10: FSM state transfer

“carried along” with the warp even though they wanted to truncate
higher in the tree.

While this approach successfully implements lockstepping, it
has a performance penalty. The mask vector needs to be preserved
throughout a warp’s traversal. As a result, the mask vector is treated
as an argument to the recursive method, and hence is pushed and
popped as part of the function call stack, or, in the case of au-
toropes, the rope stack. Because this stack can get quite large, it
is stored in slower memory. Hence, the repeated pushes and pops
of the mask vector introduces substantial overhead.

We propose a new lockstep kernel that, rather than using a mask
vector that must be preserved on the (function or autoropes) stack
can instead be maintained in a register, dramatically reducing mem-
ory accesses. While the warp traverses the tree, each thread concep-
tually runs a finite state machine (FSM) with two states: truncated
and traversing. A thread only performs computation while it is in
traversing state. Figure 10 shows this state diagram and Figure 11
shows the pseudocode for the lockstep kernel, indicating when state
transitions are taken.

All the threads in a warp are initially in the traversing state.
When a thread reaches a condition that leads it to truncate its traver-
sal (line 15), it transitions to the truncate state. The question is,
when does the thread transition back to the traversing state? To
keep track of this, the thread stores the current depth of the stack,
sp in alocal variable critical. When the stack depth returns to
critical, the thread transitions back to traversing state (line 7).

The FSM lockstep kernel has two key features. First, as long as
a thread is truncated, it performs no computation (line 30). Second,
unlike Goldfarb et al.’s lockstep kernel, we need not track a mask
vector. Instead, each thread simply tracks whether it is truncated.
Nevertheless, all the threads are still carried along through the tree,
preserving the memory coalescing benefits of lockstep traversal.

We note one other feature of the lockstep kernel. If some threads
in the warp want to take one path through the traversal, while other
threads want to take a different path, lines 20-26 determine which
direction the majority of the non-truncated threads want to go, and
send all the threads in that direction. This behavior ensures that
all threads in the warp dynamically select a single path through the
tree.

Example In previous unguided traversal example, the warp di-
verges at node @ when the depth of stack is 2. Point B is trun-
cated (critical = 2) and wants to visit node 3, but the warp wants
to traverse the subtree rooted at node @. The warp pushes node
and © into the stack and increases the sp to 4. The stack keeps

__global__ void gpu_kernel () {
flag = 1; critical = INT_MAX; cond = O0;
sp = 1; //current depth of the warp—shared ropes stack

for (pidx = blockldx.x % blockDim.x + threadldx.x;
pidx < npoints; pidx += blockDim.x #* gridDim.x) {
while (sp >= 1) {
if (sp <= critical)

flag = 1; // transition 4
Sp ——3
if (flag) {
// compute condition
cond = ...;
if (!__any(cond))
continue ;
if (!cond) { // transition 2
flag = 0;
critical = sp;
} else { // transition 1
// compute branch condition
cond_left = ...}
cond_right = ...;
vote_left = __ballot(cond_left);
vote_right = __ballot(cond_right);
num_left = __popc(vote_left);
num_right = __popc(vote_right);

if (num_left > num_right)
// stack operation
else
// stack operation

}

} else {} // transition 3

Figure 11: FSM lockstep kernel

growing when node ® or node @ also has children, but the node ®
cannot be visited unless all these nodes above it have been popped.
In other words, the traversal of point B would never resume before
sp drops below critical value.

6. EVALUATION
6.1 Methodology

Platform We evaluate our benchmarks on a server with two AMD
Opteron 6164 HE Processors, each of which contains 12 cores run-
ning at 1700MHz. The GPU is an nVidia Tesla K20C with 5120
MB GDDRS5 memory and 2496 CUDA cores. The system has
32GB system memory and runs on Red Hat 6.6 with Linux ker-
nel v2.6.32.

Benchmarks We evaluate our scheme on six benchmarks:

Point Correlation (PC) is an important algorithm in bioinformatics
and data mining field. The two-point correlation can be computed,
for each point in a data set, by traversing a kd-tree to count the
number of other points that fall within a certain radius.

Nearest Neighbor (NN) finds the nearest neighbors of points in a
metric space. NN builds a kd-tree over a set of input points. It then
takes a set of query points, and for each query point traverses the
kd-tree to find its nearest neighbor.

k-Nearest Neighbor (kNN) is a non parametric instance-based learn-
ing algorithm widely used for classification and regression. Unlike
NN, which finds the nearest neighbor of a query point, kNN finds
the k nearest neighbors [4].

Ball Tree (BT) is a variation of nearest neighbor that uses ball trees,
where the multi-dimensional space is partitioned by hyperspheres.
Vantage Point (VP) is a variation of nearest neighbor search that
uses vantage point trees rather than kd-trees: subspaces are split
according to distance from a chosen vantage point.

Barnes-Hut (BH) performs an n-body simulation [3]. BH recur-
sively divides the set of n bodies into groups by sorting them in an
octree. Then each body traverses the tree to calculate the gravity
acting upon it. We replace the force computation part of the orig-
inal code with our GPU variants, but leave the remainder of the
code the same. We time the force computation phase of a single
iteration.
Inputs The first five benchmarks are evaluated with four inputs:
Covtype, Mnist, and Rand_Dim?7, each of which contains 400,000
7-dimensional points, and Geocity, which contains 400,000 2- di-
mensional points. For the four nearest-neighbor problems (NN,
kNN, VP, BT)?, we partition the 400,000 points into two subsets,
Sy and S,. §; is used to build the tree, while the points in S, are
the query points*. BH is evaluated with two 1-million bodies in-
puts: Plummer, which uses the Plummer model to generate bodies,
and Rand_Dim3, with uniformly randomly generated bodies.
Evaluation methodology For each benchmark, we evaluate five
variants: the original kernels (Goldfarb et al.’s original lockstep
code) and our new FSM lockstep kernel on both unsorted and sorted
inputs, and our hybrid scheduling approach on the unsorted input.
The hybrid scheduling variant uses the FSM lockstep kernel. We
choose the original kernel with unsorted input as the baseline, and
take the application specific sorting cost as the baseline overhead.
File I/O, tree building, etc. are not targets for optimization, so
we do not include those components in our timing. We measure the
runtime spent in GPU execution of tree traversals, as well as time
spent in profiling and scheduling.

6.2 Results

We begin by comparing the performance of the different im-
plementations of tree traversal algorithms. Figure 12 shows the
speedup of all of the implementations over the baseline. The columns
in every benchmark are arranged in the following order: the orig-
inal lockstep with unsorted input, the FSM lockstep with unsorted
input, the original lockstep with hand-sorted input, the FSM lock-
step with hand-sorted input and the FSM kernel with hybrid schedul-
ing strategy. The percentage value presents the speedup of hybrid
scheduling over the baseline.

The primary comparison is between Goldfarb et al.’s baseline
(Original lockstep with unsorted) and our full system (Hybrid schedul-
ing with unsorted), which implements both our hybrid scheduling
algorithm and our optimized traversal kernel. We see that our hy-
brid scheduling algorithm yields, even in the worst case, a 1.76x
speedup over the baseline. On average, our technique is 5.96x
faster than the baseline. Hence, when presented with the original
inputs, our new approach delivers enormous gains over the previ-
ous, best-known general implementations.

We also isolate the benefits of our optimized kernel by using the
original schedule, but using the optimized kernel (FSM lockstep
with unsorted). We see that across the board, the optimized kernel
is faster than the original kernel, though some times the gains are
minimal. Ultimately, we can conclude that most of the performance
gains from our new techniques come from the optimized schedule.

Finally, to show the effectiveness of our automatic scheduling
approach over a hand-tuned approach that uses application-specific
sorting routines to derive schedules for each application, we com-
pare our technique (Hybrid scheduling) to using the optimized ker-
nel on sorted inputs (FSM lockstep with sorted). We see that, with

3The implementation of BT we use does not work with two-
dimensional data, so we do not evaluate BT on the Geocity input.
“In the results we present, S and S, each contain 200,000 points.
We evaluated different random subsets of points, as well as different
sizes for §'; and S, and found qualitatively similar results.

m Original lockstep with unsorted m FSM lockstep with unsorted

4.01
310 351 3.72

2.51

8

6

4 2.82 251
2

0

adAno)
I
Awooan
adAno)
SN
Lung puey
Awooan
adAno)
SN
Lung puey

Lwig puey

Point Correlation Nearest Neighbor k-Nearest Neighbor

Figure 12:

FSM sorting overhead M FSM kernel runtime = Hybrid scheduling overhead m Hybrid scheduling kernel runtime

250%
200%

150%

100%
50% I I

0%

Barnes|
Hut

Point Correlation | Nearest Neighbor | k-Nearest Neighbor | Ball Tree Vantage Point

Figure 13: Overhead cost ratio comparison

the exception of Barnes-Hut, our technique is always faster. In
other words, on average, our automatic technique is 1.41x faster
than hand-tuned implementations!

Barnes-Hut is the one outlier in our comparisons to the baseline
(yielding the smallest improvement) and to hand-tuned schedules
(where the hand-tuned schedules are faster). In other words, our
hybrid scheduling is less effective for Barnes-Hut than for other
benchmarks. In Barnes-Hut, traversals each visit a larger fraction
of the tree than in other benchmarks. In other words, there is rel-
atively less divergence between traversals in the tree. Because our
scheduling algorithm relies on thread divergence as a signal for
sorting, Barnes-Hut’s lack of divergence limits the effectiveness of
our scheduling. Sections 6.3.2 and 6.3.4 explore this result in more
detail.

6.3 Performance breakdowns

The following subsections explore the performance results in
more detail. First, we investigate the performance of our tech-
niques relative to the hand-tuned techniques, studying both the cost
of scheduling and the cost of execution. Second, we explore how
our techniques’ effectiveness varies with the depth of the profiling
phase. Third, we isolate the performance of our optimized lockstep
kernel with Goldfarb ef al.’s original traversal kernels. Finally, we
directly assess the effects of hybrid scheduling on divergence.

6.3.1 Scheduling time ratio

Figure 13 shows the ratio that the overhead of hybrid scheduling
strategy and hand-tuned sorting over the whole runtime. In our
hybrid scheduling, the extra work includes the profiling execution,
matrix transmission from GPU to CPU, CPU scheduling, and final
result transmission back to the GPU®. For hand-tuned sorting, the

>Note that although the profiling matrix is large in size, we may

Original lockstep with sorted

Awooan

m FSM lockstep with sorted m Hybrid scheduling with unsorted

32.44
10.33

335 3.30 338

.78 .76

ISIUA
SN
gwig puey

Lwig puey
adAno)

adAno)
Lwig puey
Awooan
Jawwnig

eometric|
Mean

Ball Tree Vantage Point Barnes Hut

Speedup comparison

extra work is only the application-specific sorting procedure.

Our hybrid scheduling strategy shows consistent advantages over
application-specific sorting in the majority of benchmarks. We note
that in many cases, the advantage of our hybrid scheduling strategy
comes not from better schedules, but from the fact that the overhead
of sorting in the hybrid strategy is far smaller. This result justifies
our decision to perform profiling on the GPU, where the parallelism
advantages of GPU execution win out.

6.3.2 Profiling depth sensitivity analysis

Our hybrid scheduling tunes the execution order of the original
input sequence according to the information collected during the
execution of top tree. That means that the larger the top tree is,
the more knowledge our scheduling may learn, and thus the better
the resulting schedule, at the cost of additional inspection over-
head. Balancing the benefits of more profiling information against
profiling overhead is a classic problem in any profile-guided opti-
mization.

Figure 14 shows the sensitivity of our benchmarks’ performance
to how deep in the tree the inspection phase runs for the binary
tree—based benchmarks (i.e., all but BH). In all cases, we see the
expected U-shaped curves: as depth increases, more profiling infor-
mation leads to better schedules, until the overhead of profiling out-
weighs the scheduling benefits. Interestingly, we see that the opti-
mal depth is roughly the same in all cases, regardless of benchmark
or input. This suggests that for binary tree—based benchmarks, the
profiling depth can be set in an application- and input-independent
manner.

We further explore the overhead/effectiveness tradeoff in Fig-
ure 15, which separately measures the runtime of the inspection
and execution phases. Figure 15(a) shows, for kNN, the expected
behavior: as profiling depth increases, kernel execution time de-
creases, but overhead increases. Figure 15(b) shows the same break-
down for BH. Here, we see further evidence for why our hybrid
scheduling underperforms for BH. While the trends match the other
benchmarks, BH’s octree means that overhead increases dramati-
cally with even a small increase in profiling depth. Hence, it is
impractical to try and capture more profiling information, resulting
in a poorer-quality schedule.

6.3.3 FSM kernel versus original kernel

Figure 12 lets us isolate the performance of our optimized lock-
step kernel. With unsorted input, the FSM lockstep kernel presents
similar or slightly better performance over baseline. The average
speedup for FSM lockstep is 1.22x. When the input point set is

overlap its transmission with profiling kernel execution through
CUDA streams.

18000
16000
14000
12000
10000

8000

6000 N

4000 g .

N\
S

o o ot

30000
25000
20000 ——Covtype
15000

A 10000 2000
™ 5000 1000
——— o

Mnist
Rand_Dim?7

N/

Geocity

1203 4 5 6 7 8 9 101 1R 1234567809 w00n
Depth Depth

(a) PC (b) NN

12345678095 001R

Depth

(c) KNN

o

1234567809011
Depth

(e) VP

1234567891000
Depth

(d) BT

Figure 14: Depth sensitivity analysis

14000
12000
10000

8000

~e—overhead
6000

Runtime (ms)

kernel
4000

2

. ___/ o —

123 4 5 6 7 8 9 1011 12 1 2 3
Depth Depth

(a) kKNN_Cov (b) BH_Rand_Dim3

2000 overall

Figure 15: Detailed depth sensitivity analysis

Baseline (ms)
runtime overhead
23904 861
2404 361
24261 870
13526 994
8869 1016
13694 1042
13103 1043
636 711
14996 850
14681 848
3335 864
4655 808
4305 806
6081 847
5004 332
12752 994
4835 987
7811 1005
4663 881
4395 680
2163 630

Average num of nodes visited by a warp
Unsorted Sorted Hybrid
147977 15785 31805
173048 3200 53574
158046 13321 27931
57865 271 1240
105896 11758 10976
150307 36288 33919
142820 40924 34981
19178 337 507
256560 53813 132900
265901 65607 136449
70676 8783 17937
131793 21779 103805
74660 8263 24373
112330 20478 42482
92135 13611 28207
256374 76047 80038
95624 26021 31664
156050 37605 54155
120388 22223 27312
22106 3346 19847
10797 984 9291

Benchmark

Input

Covtype
Mnist
Rand_Dim7
Geocity
Covtype
Mnist
Rand_Dim7
Geocity
Covtype
Mnist
Rand_Dim7
Geocity
Covtype
Mnist
Rand_Dim7
Covtype
Mnist
Rand_Dim7
Geocity
Plummer
Rand_Dim3

k-Nearest Neighbor

Vantage Point

Nearest Neighbor

Ball Tree

Point Correlation

Barnes Hut

Table 1: Scheduling effects on divergence

hand-sorted, the FSM lockstep kernel shows significant advantage
over baseline, and even the original lockstep traversal with the same
hand-sorted input. The average speedup for FSM lockstep with
hand-sorted input is 4.22%, while the original lockstep with hand-
sorted input only provides 3.45x speedup.

6.3.4 Hybrid scheduling effects on divergence

The lockstep kernels, which force traversals to “stay together”
in the tree, converts memory divergence (accessing different parts
of the tree) into branch divergence (forcing traversals to “pause”
while other traversals access a portion of the tree). Thus our hybrid
scheduling’s effect on reducing branch divergence can essentially
addresses both concerns.

In the lockstep kernel, all threads in a warp traverse the same por-
tion of the tree. We can thus evaluate the effectiveness of schedul-
ing by measuring the total number of nodes visited by a warp. If a
warp contains highly-convergent threads, it will visit fewer nodes
than if the threads diverge and want to touch more of the tree. Ta-
ble 1 shows the results. We see that hybrid scheduling results in a
large decrease in the number of nodes visited per warp compared
to the baseline: on average, warps scheduled using the hybrid ap-
proach traverse 7.15x fewer nodes than the baseline, a substantial
decrease in divergence.

We note that this evaluation shows that application-specific sort-
ing yields even better convergence (about 2x better, on average)—

an unsurprising result. However, as discussed in Section 6.3.1,
while hand sorting yields more convergence and hence faster ker-
nels, our hybrid approach spends less time in scheduling, yielding
better performance overall.

Note that these results further explain hybrid scheduling’s perfor-
mance on BH. Not only is our profile-guided sorting relatively in-
effective at reducing divergence (indeed, our 1.76x speedup comes
almost entirely from the optimized kernel), application specific sort-
ing is highly effective.

7. RELATED WORK

Most of the research work about tree traversal focuses on GPU-
only implementation, and is targeted at specific tree traversal al-
gorithms. Foley and Sugerman propose two variations of kd-tree
traversal that take advantage of bounding box to eliminate per-ray
stack, and rely on kernel masking and scheduling to reduce over-
head [6]. Horn et al. extends Foley et al.’s work by the usage of
packet, restarting from lower subtree instead of the root and stack-
based restart check [11]. Popov et al. develop another stackless
kd-tree traversal approaches for GPU ray tracing by adding ropes
to leaf nodes and using packets of rays [23].

Hybrid scheduling is mostly used in other irregular applications,
such as clustering and map-reduce. Ren er al. use a hybrid ap-
proach for k-means computing with very large data sets [29]. They
execute the map on the GPU, transfer the result back to the CPU,
and execute the reduction on the CPU. Rather than assign map
and reduce separately, Ravi et al. parallelize the computation by
splitting the input data set into sections and distribute every sec-
tion to either CPU or GPU [25]. Ravi and Agrawal also describe a
scheduling framework for data parallel loop by configuring applica-
tion with various behavior patterns for heterogeneous architecture
through a cost model [24].

Zhang et al. propose a generic framework for handling irreg-
ular GPU computation called G-Streamline [30]. G-Streamline
adopts a similar inspector-executor style approach as our hybrid
scheduling: the CPU determines the set of data accesses that a
set of GPU threads will perform and then remaps data or reorders
GPU threads to improve convergence. G-Streamline primarily tar-
gets accesses through indirection arrays and relies on knowing (or
approximating) which data a GPU thread will access prior to ex-
ecution. In addition, G-Streamline’s rescheduling heuristic relies
on each thread’s accessing a small amount of data. The tree ap-
plications our approach targets do not have these characteristics:
we must generate a GPU profiling pass to predict the similarity of
threads (unlike G-streamline, inspection is performed on the GPU
to avoid high profiling overheads), and then use a more sophisti-
cated scheduling algorithm to effectively handle tree applications.

Most other work on heterogeneous execution has focused on tak-
ing a set of tasks and dividing them between the CPU and GPU.
Qilin is an API and runtime programming system that automati-
cally maps computation to CPU and GPU cores [15]. It adopts
offline profiling to analyze programs and adaptively maps them to

an analytical performance model to determine actual job distribu-
tion. Kaleem er al. also propose two profiling based scheduling
algorithms that automatically partition workload between CPU and
GPU [14]. They showed that profile-based scheduling for inte-
grated GPU has very little overhead and presents comparable ef-
ficiency with offline model.

8. CONCLUSIONS

We describe a general, application-agnostic scheduling frame-
work for tree traversals that automatically uses partial execution to
inspect GPU threads’ behaviors, and then uses that information to
reorder execution on the CPU prior to re-execution on the GPU.
We show that the scheduling problem is NP-hard, and develop op-
timized version of scheduling according to structural properties of
traversal algorithms. We also introduce a new skeleton for GPU
kernels that uses a register-level finite state machine to minimize
memory access. Our experiments show that our work significantly
outperforms the baseline, and can even outperform hand-tuned,
application-specific scheduling.

Acknowledgments

The authors would like to thank the anonymous referees for their
suggestions and comments. This work was supported in part by
an NSF CAREER award (CCF-1150013) and a DOE Early Career
award (DE-SC0010295).

9. REFERENCES

[1] Timo Aila and Tero Karras. Architecture considerations for
tracing incoherent rays. In Proceedings of the Conference on
High Performance Graphics, HPG ’10, pages 113-122,
Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics
Association.

[2] Margarita Amor, Francisco Argiiello, Juan Lépez, Oscar G.
Plata, and Emilio L. Zapata. A data parallel formulation of
the barnes-hut method for n -body simulations. In
Proceedings of the 5th International Workshop on Applied
Parallel Computing, New Paradigms for HPC in Industry
and Academia, pages 342-349, 2001.

[3] J. Barnes and P. Hut. A hierarchical o(n log n)
force-calculation algorithm. nature, 324:4, 1986.

[4] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM, 18:509-517,
September 1975.

[5] Martin Burtscher and Keshav Pingali. An efficient CUDA
implementation of the tree-based barnes hut n-body
algorithm. In GPU Computing Gems Emerald Edition, pages
75-92. Elsevier Inc., 2011.

[6] Tim Foley and Jeremy Sugerman. Kd-tree acceleration
structures for a gpu raytracer. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, HWWS ’05, pages 15-22, 2005.

[7] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni.
General transformations for gpu execution of tree traversals.
In Proceedings of SC13: International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’13, pages 10:1-10:12, New York, NY, USA, 2013.
ACM.

[8] Johannes Gunther, Stefan Popov, Hans-Peter Seidel, and
Philipp Slusallek. Realtime ray tracing on gpu with
bvh-based packet traversal. In Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing, RT *07, pages
113-118, 2007.

[9] Hwansoo Han and Chau-Wen Tseng. Exploiting locality for
irregular scientific codes. IEEE Trans. Parallel Distrib. Syst.,
17:606-618, July 2006.

[10] Michael Hapala, Tomas Davidovic, Ingo Wald, Vlastimil
Havran, and Philipp Slusallek. Efficient Stack-less BVH
Traversal for Ray Tracing. In Proceedings 27th Spring
Conference of Computer Graphics (SCCG) 2011, pages
29-34,2011.

[11] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and
Pat Hanrahan. Interactive k-d tree gpu raytracing. In
Proceedings of the 2007 symposium on Interactive 3D
graphics and games, 13D *07, pages 167-174, 2007.

[12] Youngjoon Jo, Michael Goldfarb, and Milind Kulkarni.
Automatic vectorization of tree traversals. In Proceedings of
the 22nd international conference on Parallel architectures
and compilation techniques, PACT’ 13, pages 363-374.
IEEE, 2013.

[13] Youngjoon Jo and Milind Kulkarni. Automatically
enhancing locality for tree traversals with traversal splicing.
In Proceedings of the ACM international conference on
Object oriented programming systems languages and
applications, OOPSLA ’12, pages 355-374, New York, NY,
USA, 2012. ACM.

[14] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman,
Brian T. Lewis, Chunling Hu, and Keshav Pingali. Adaptive
heterogeneous scheduling for integrated gpus. In
Proceedings of the 23rd international conference on Parallel
architectures and compilation, pages 151-162. ACM New
York, NY, USA, August 2014.

[15] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin:
exploiting parallelism on heterogeneous multiprocessors
with adaptive mapping. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 45-55. ACM, December 2009.

[16] M. Méndez-Lojo, M. Burtscher, and K. Pingali. A gpu
implementation of inclusion-based points-to analysis. In
Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, pages
107-116. ACM, 2012.

[17] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu
graph traversal. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel
Programming, pages 117-128, 2012.

[18] Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio
Claudio, Hye-Sun Kim, Yun-Ji Ban, Seung Woo Nam, and
Sung-Eui Yoon. Cache-oblivious ray reordering. ACM Trans.
Graph., 29(3):28:1-28:10, July 2010.

[19] Paul Arthur Navratil. Memory-efficient, scalable ray tracing.
PhD thesis, 2010.

[20] Paul Arthur Navratil, Donald S. Fussell, Calvin Lin, and
William R. Mark. Dynamic ray scheduling to improve ray
coherence and bandwidth utilization. In Proceedings of the
2007 IEEE Symposium on Interactive Ray Tracing, RT *07,
pages 95-104, Washington, DC, USA, 2007. IEEE
Computer Society.

[21] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan.
Rendering complex scenes with memory-coherent ray
tracing. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages
101-108, 1997.

[22] Venkata K. Pingali, Sally A. McKee, Wilson C. Hseih, and
John B. Carter. Computation regrouping: Restructuring

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

programs for temporal data cache locality. In Proceedings of
the 16th International Conference on Supercomputing, ICS
’02, pages 252-261, New York, NY, USA, 2002. ACM.
Stefan Popov, Johannes Giinther, Hans-Peter Seidel, and
Philipp Slusallek. Stackless kd-tree traversal for high
performance GPU ray tracing. Computer Graphics Forum,
26(3):415-424, September 2007. (Proceedings of
Eurographics).

Vignesh T. Ravi and Gagan Agrawal. A dynamic scheduling
framework for emerging heterogeneous systems. In
Proceedings of the 2011 18th International Conference on
High Performance Computing, pages 1-10. IEEE Computer
Society Washington, DC, USA, 2011.

Vignesh T. Ravi, Wenjing Ma, , and Gagan Agrawal.
Compiler and runtime support for enabling generalized
reduction computations on heterogeneous parallel
configurations. In Proceeding of the 24th ACM International
Conference on Supercomputing, pages 137-146. ACM, June
2010.

John K. Salmon. Parallel hierarchical N-body methods. PhD
thesis, California Institute of Technology, 1991.

Joel H. Saltz and Ravi Mirchandaney. Run-time
parallelization and scheduling of loops. In IEEE Transactions
on Computers, volume 40, pages 603—612. IEEE, May 1991.
Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Anoop
Gupta, and John Hennessy. Load balancing and data locality
in adaptive hierarchical n-body methods: Barnes-hut, fast
multipole, and radiosity. J. Parallel Distrib. Comput.,
27(2):118-141, 1995.

Ren Wu, Bin Zhang, and Meichun Hsu. Clustering billions
of data points using gpus. In Proceedings of the combined
workshops on UnConventional high performance computing
workshop plus memory access workshop, pages 1-6. ACM,
May 2009.

Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and
Xipeng Shen. On-the-fly elimination of dynamic
irregularities for gpu computing. In Proceedings of the
sixteenth international conference on Architectural support
Jfor programming languages and operating systems, pages
369-380. ACM New York, NY, USA ©2011, March 2011.
Xingbin Zhang and Andrew A. Chien. Dynamic pointer
alignment: Tiling and communication optimizations for
parallel pointer-based computations. In Proceedings of the
Sixth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP *97, pages 37-47, New
York, NY, USA, 1997. ACM.

