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ABSTRACT

An important emerging problem domain in computational
science and engineering is the development of multi-scale
computational methods for complex problems in mechanics
that span multiple spatial and temporal scales. An attrac-
tive approach to solving these problems is recursive decom-
position: the problem is broken up into a tree of loosely cou-
pled sub-problems which can be solved independently and
then coupled back together to obtain the desired solution.
However, a particular problem can be solved in myriad ways
by coupling the sub-problems together in different tree or-
ders. As we argue in this paper, the space of possible orders
is vast, the performance gap between an arbitrary order and
the best order is potentially quite large, and the likelihood
that a domain scientist can find the best order to solve a
problem on a particular machine is vanishingly small.

In this paper, we present a system that uses domain-
specific knowledge captured in computational libraries to
optimize code written in a conventional language (C). The
system generates efficient coupling orders to solve compu-
tational mechanics problems using recursive decomposition.
Our system adopts the inspector-executor paradigm [9], where
the problem is inspected and a novel heuristic finds an effec-
tive implementation based on domain properties evaluated
by a cost model. The derived implementation is then ex-
ecuted by a parallel run-time system (Cilk) which achieves
optimal parallel performance. We demonstrate that our cost
model is highly correlated with actual application runtime,
that our proposed technique outperforms non-decomposed
and non-multiscale methods. The code generated by the
heuristic also outperforms alternate scheduling strategies,
as well as over 99% of randomly-generated recursive decom-
positions sampled from the space of possible solutions.

Categories and Subject Descriptors

D.3.4 [Processors|: Compilers, Optimization; G.1.8 [Partial
Differential Equations|: Finite element methods
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1 Introduction

Multi-scale methods for computational mechanics have been
an area of significant research interest in recent years [11, 12,
18]. These methods allow mechanical systems, both static
and dynamic, to be simulated with vastly differing spatial
and temporal scales in different parts of the domain. This
allows areas of interest to be investigated at fine granularity
but at high computational cost, while other portions of the
problem can be approximated with a much coarser-grain
simulation. Multi-scale methods thus hold the promise of
simulating complex systems at the necessary level of resolu-
tion without incurring the cost of such fine-grained simula-
tion throughout the problem domain. The multi-scale strat-
egy is thus even more targetted towards achieving computa-
tional efficiency than well-studied strategies such as adaptive
mesh refinement (AMR) that only adopt multiple spatial
scales.

An attractive approach to multi-scale simulation that has
been investigated in recent work is recursive domain-decom-
position [3, 5, 13, 16, 20, 26]. A large problem is broken up
into a set of loosely-coupled subdomains; these subdomains
can be solved independently, except for points on potential
shared interfaces that connect them. These shared inter-
faces require that the solutions of each individual subdomain
be coupled to ensure that their solutions at the interface are
consistent. As long as the interfaces are small relative to
the subdomain sizes, it is computationally advantageous to
decompose a large system versus solving the system as a
single entity. For the particular case of recursive bisection
adopted in this study, coupling is a pair-wise operation, and
as subdomains are coupled, a solution is obtained for the
combined, larger domain. Hence, by hierarchically coupling
the subdomains, the solution for the overall system can be
obtained. We describe this coupling order using a coupling
tree. Figure 1 shows a sample decomposition, where the
problem domain is decomposed into six subdomains that
are solved independently and coupled together according to
the coupling tree depicted in the figure.

A critical point about this hierarchical approach to solv-
ing multi-scale problems is that the structure and topology
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Figure 1: A Decomposed Problem Domain and Cor-
responding Recursive Coupling Order

of the coupling tree has a significant effect on the perfor-
mance of the algorithm. Because the coupling operation is
both commutative and associative, a vast number of unique
coupling trees are possible (945 for a problem with just 6
subdomains), making it highly unlikely for all but the sim-
plest problems that a domain scientist will adopt an effec-
tive coupling order. Furthermore, because the various rel-
evant parameters associated with computational costs are
problem-dependent, finding the optimal coupling tree be-
comes even more difficult, as no single approach for finding
an optimal tree coupling order may work for all different
problems.

To tackle this problem, we have developed a run-time op-
timization system based on the inspector-executor approach.
We first inspect the original program to infer the high level
computational structure of the problem. We then use se-
mantic properties of the coupling operation, as well as a
domain-specific cost model to obtain cost values that re-
flect the coupling of multi-scale subdomains. Next, we gen-
erate an optimal coupling order based on those cost val-
ues. Finally, the optimized schedule is run using the Cilk
framework to exploit available parallelism. We find that our
approach yields sequential and parallel performance that is
significantly better than other available techniques.

Finally, we discuss how our overall approach to optimiz-
ing domain applications might be generalized, both in terms
of other computational algorithms that can benefit from
our system in particular, and more broadly how similar
semantics-exploiting approaches might be applicable in other
domains.

2 Background

In this section we provide a general description of the physi-
cal problems encountered in mechanics that we will be solv-
ing using parallel recursive domain decomposition. The dy-
namical behavior of almost all mechanical systems is gen-
erally governed by laws of physics expressed as partial dif-
ferential equations (PDEs) of continuum mechanics. These
PDEs are most commonly solved by expressing them in in-
tegral forms and using numerical methods, such as finite
elements, finite volumes, finite differences etc. to evaluate

these integrals. For instance, the PDE:

—ptt +dive +b=0 Ve € Q) (1)

describes the displacement w and stresses o at all points @
in a body €2, being acted upon by forces b. The density is
denoted by p and a superimposed dot (") represents a deriva-
tive with respect to time (3 t) The “div” operator represents
vector divergence, or the sum of partial derivatives in each
spatial dimension (dive = g—; + g—; + %) . Note that Equa-
tion (1) is simply an expression of Newton’s 2nd law for
every point x in €). Upon writing this time-dependent PDE
in integral form and numerically discretizing, one obtains a
system of ordinary differential equations (ODEs):

M ii(t) + Du(t) + K u(t) = p(t) (2)

where M , D and K represent the mass, damping and stiff-
ness matrices respectively, associated with the discretiza-
tion, p(t) is a vector of time-dependent forces acting on the
body, and u(t) is the vector of displacements that needs to
be solved for. Most commonly, these ODEs are solved by
finite-difference schemes by approximating the time deriva-
tives using difference formulas. This allows one to solve for
the state wn4+1 & u(tnt1) of the system at some time tn41
from a known state w, = wu(¢,) by advancing through a
small time-step At where t,+1 = t, + At.

MUyt =Py —NU, (3)

This process can be repeated successively to advance the
solution in a time-stepping manner [19]. However, depend-
ing on the problem, the size of the this system of equations
can be very large making its solution as a single complete
system very computationally intensive. One way to avoid
solving this system as a whole is by using domain decompo-
sition. This approach divides the problem into smaller sub-
domains, solves them independently (possibly in parallel),
and couples them back by enforcing continuity constraints
on the interfaces between the sub-domains.

2.1 Solving a Recursively Decomposed Do-
main

In this section we illustrate a non-iterative hierarchical im-
plementation of the recursive domain decomposition method.
Given a finite element mesh partitioned into S subdomains,
a hierarchy of subdomains can be built by combining two
subdomains at a time until the original undecomposed mesh
is recreated. Such a hierarchy can be effectively represented
by the tree structure as shown in Figure 1. The leaf nodes in
the tree represent the subdomains that are not further sub-
divided. The original undecomposed structure €2 is called
the root node. In general, for any node €24 p) in the tree,
the problem is substituted with two coupled sub-problems
for Q4 and Qp replacing Equation (3) with:

MA cA U, , n+1 — NAUA
ME | cB UB — | pB,, - NPUP
BA BB | 0 A(A+é) +1 0
n+1

(4)
Note that the matrices C4,B4 and Cp,Bp represent con-
nectivity matrices associated with the subdomains Q4 and
Q3 respectively for the interface I*®) between them exclu-
sively. The matrix system (4) can be solved in a decomposed



manner (instead of as solving it as a whole), using the fol-
lowing sequence of operations at each time step:
(i) Solve the smaller uncoupled problems

M° VS, =Py, — N°US, (5)
for both subdomains s = {4, B}.

(ii) Solve for the interface Lagrange multipliers Ag’if)'
A, A,B A,B
H( B) A'E'LJrl ) = f7<L+1 ) (6)

where the matrix H“5), that represents the interface op-
erator required to enforce continuity of the solutions UQH
and UEH across the interface I'™®)  is computed only once
as discussed in the remark below. The vector ff;"f” ) is
obtained from the uncoupled solution in step (i) above as
D) =CAVAL +CPVE,.

(iii) Update the individual subdomain solutions:

Usyy = Vi — Y ALD (7)

again for both subdomains s = {4, B}, and where the matri-
ces Y® are also precomputed once as discussed in the remark
below.

Remark: The Y® matrices are precomputed once for both
subdomains as:

M*Y*® = C* (8)
and do not change during the rest of the computation (for
linear problems), so they are saved and used for every time-
step. The interface operator H“®) is then simply obtained
by matrix multiplication:

HAWB _pAyA  gBy? (9)

and it also does not change for the duration of the compu-
tation.

A representative pseudocode for solving a general node
Q(4,p) in the tree is given by the recursive subroutine Tree-
Solve presented in Figure 2(a), where the inputs are Q4 p)

(the node to be solved), P“5) (applied external forces to

;A,B) (

the mechanical system) and U the current state of the

subdomain at time-step ), and the output is Ug{i‘f) (the
desired state of the subdomain at the next time-step tn41).
Note that each call to TreeSolve requires computation involv-
ing the Y matrices, which are computed with the recursive
BuildY subroutine presented in Figure 2(b). This function
uses the various degrees of freedom (dof) on the interface
I4B) o calculate the Y matrices. Input to the subroutine
is a tree node (4, 5) and the outputs are the Y matrices for
coupling its two daughter nodes Q24 and Qp.

The coupling tree is solved with a single call to the re-
cursive function: TreeSolve(Q2, P, U, U,41) for a given load
P and initial conditions U,,. Leaf nodes are solved for their
responses to external forces using a conventional time inte-
gration scheme using the Newmark method [19] and these
responses are later coupled in the hierarchy to obtain the
full system solution. As for the coupling operations, they
only require one multiplication on a smaller (interface-sized)
matrix H“P) and vector Aiﬁr’{g). The subroutine BuildY
makes calls to TreeSolve which requires the Y matrices to
have already been computed apriori. With our ordering of
the recursive calls in the subroutines, we ensure that all Y
matrices below the particular coupling node have already
been computed before we attempt to couple its children.

TreeSolve(Q4, 5. pAB) yiB), Ug‘i’f))
If Qa,B) is a Leaf Node then
Solve Q(A,B)
Else
Call TreeSolve(Q24, P4, Ui, VA4, 1)
Call TreeSolve(Q5, PB, UZ, VB, )
Compute Agf,_’fg) from H4B) Aifk’f) = f<A’B)
Update Uzlyy = Vi, — YGE DAL D
Update Uy y = Viip — YSBA'B)Agi’F)
End if
END TreeSolve

a) Subroutine to solve a general node (4 gy in the tree.

BuildY(Q(a.5), Y{P, Y2y
Do for K = A, B
If Qx is NOT a Leaf Node :
Call BuildY(Qx, YLKe&Child(K): YgghtChild(K))
Do for each dof J in I“,()A’B)
If K =A: PX = 41 load on dof J in Qx
If K =B :PX = —1load on dof J in Q
Call TreeSolve(Qx, P, 0, column J on&?’B))
End do
End Do
END BuildY

(b) Subroutine to build the Y matrices for a general node.

Figure 2: Subroutines for Recursive Solution Pro-

cedure

The final algorithm for solving a linear dynamics problem
can be summarized in the following steps:

1. Construct the hierarchy of subdomains and build their
interface matrices.

Form the individual subdomain system matrices.

Call BuildY (2, Yiert, Yright)-

Form and factorize H matrices for all coupling levels.

Compute initial acceleration on the global mesh.

ST ol S

Loop over number of time steps FOR n = 1: N
— Call TreeSolve(Q2, P, Uy, Upy1).

It is important to note here that the initial acceleration
calculations and BuildY routines are required to be per-
formed only once at the beginning of the computation. Espe-
cially in the case of the BuildY routine, these initialization
functions are quite costly in terms of computational cost
compared to the final TreeSolve routine. However, long term
simulation of physical models may require running thou-
sands or millions of timesteps, which amortizes all other
costs aside from TreeSolve. Later, when discussing perfor-
mance of our TreeSolve algorithms, we omit the time taken
by other routines.

2.2 Multiple Time Scales

In section 2.1 we discussed a method that utilizes the same
time-step for discretizing all the different subdomains in a
tree. However, this approach is most beneficial when differ-
ent subdomains are solved at different timescales. The in-
clusion of multiple timescales allows for a more fine-grained



simulation of specific subdomains within the global problem
which contain physically interesting features. The use of dif-
ferent timescales for different subdomains necessitates some
key modifications to the TreeSolve algorithm. The main dif-
ference is that subdomains with smaller timescales are solved
multiple times in a single TreeSolve to advance by a large
timestep. We will briefly discuss how two subdomains with
different timestep granularities are coupled together. Finer
details of the multi-time-scale method can be obtained from
the references [22-24].

We describe the method to couple two subdomains, sub-
domain A at timestep AT and subdomain B at timestep
At where AT = mAt, m being an integer timestep ratio.
This method can be extended for more layers of coupling
of subdomains at different timestep ratios. Using the New-
mark method, we wish to advance both subdomains A and
B from time tg to to+ AT, shown in Figure 3. However, sub-
domain A will only require advancing by one large timestep
AT, whereas subdomain B needs to advance m times by
the small timestep At. In the context of our TreeSolve al-
gorithm, this means that subdomain B will perform the leaf
solve m times while subdomain A performs it a single time.
We handle the different timestep ratios by keeping track of
the largest AT at each coupling node, and calling TreeSolve
m times depending on the timestep ratio between its left
and right subtrees.

AT
Subdomain A i, o +AT
Ar
o M e
Subdomain B I 1' 1' \[ : : 1\ Iy+m At
Time Subscripts [ ! ! } } ! | t,
fj

Figure 3: Representation of Time Steps for two Sub-
domain Case

The multi-time scale coupling requires one other modifi-
cation in the algorithm which we call load transfers. These
load transfers are required when there is a common interface
between subdomains with different timesteps. Because cou-
pling only occurs at the larger timesteps, linear interpolation
is used to approximate the interface reactions at the smaller
timesteps. When advancing at a smaller At timestep, these
load transfers are introduced to preserve equilibrium with
the subdomain at the larger time step AT. The following
equation defines these load transfers Sj:

&:(1-%)% Vie[L,2, ,m] (10)

where m is the time step ratio (AT /At) for the coupling,
j is the intermediate timestep of subdomain B, and Ay is
the value of AP) obtained from the coupling operation in
Equation (6) for the previous timestep. Since the A vector is
computed in our initial acceleration calculation at time zero
and at each coupling operation, we are guaranteed S; will
be available at every timestep for every subdomain solve,
to allow simultaneous solution of different subdomains in
parallel.

The final solution algorithm is presented in Figure 4, where
subtrees are solved multiple times depending on their timestep
ratio at an interior node, and load transfers are saved at each

RecursiveSolve(Node)
If Leaf(Node)
LeafSolve(Node) [with load transfers]
Else
For(Timestep ratio on Left)
RecursiveSolve(Left)
For(Timestep ratio on Right)
RecursiveSolve(Right)
Couple(Left, Right)
Save Load Transfer Matrix A
End If

Figure 4: Pseudocode for Multi-Timestep TreeSolve

subdomain and handled correctly at every leaf solve. Due to
the additional complexity of handling multiple timescales,
additional constraints are placed to make our solver feasi-
ble. In our problems, we ensure that timestep values are
all a fixed ratio of a base timestep value. We also constrain
our tree so that child nodes are always at a lower or equiv-
alent time step of its parent node. Finally, in order to cor-
rectly handle load transfers required by the multi-timescale
method, we require that all subdomains at each timescale be
coupled as separately, and each tree then coupled together
with the tree of the next smallest timescale, and so forth
in the final coupling tree. Although, this restricts the space
of trees in the solution space, the entire space still grows
exponentially with the number of subdomains.

3 Semantics of Coupling Trees

In this section we describe the properties of our coupling
trees, which lays the foundation for creating valid tree or-
derings. Our inspector phase takes these contraints to find
a suitable objective function which is optimized to find the
best coupling order. We show that the number of distinct
valid trees is exponentially large and that it is not an easy
task to find an optimal ordering. To obtain a good solution,
we introduce a cost model which correlates with the compu-
tational time taken to complete the TreeSolve routine, which
becomes the target of our optimization.

The important properties of a coupling operation are that
they are both associative and commutative. Coupling two
subdomains A and B is identical regardless of order, and
coupling (A B) with C is no different than coupling A with
(B C). Thus, given a particular coupling tree, we can create
a new, equivalent tree by re-associating the coupling oper-
ations. This is equivalent to performing tree-rotations on
any pair of coupling operations, as shown in Figure 5(a) or
by performing commutative swaps of the tree, as shown in
Figure 5(b).

By performing a series of these commutative and asso-
ciative manipulations, we see that any binary tree with a
particular set of leaf nodes represents a valid coupling order
for a given problem. However, trees with only their left and
right children swapped will have the same behavior in terms
of coupling, and will hence have the same performance. The
question we ask is “How many possible distinct trees T (s)
are there for a given number of subdomains s?” It can be
shown that the number of possible trees for s subdomains,
T (s), is given by:
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Figure 5: Possible Optimizing Operations on Trees

(2s —2)!

T6) = 3G

Intuitively, this is related to the Catalan numbers, which
represent (among other things) the total possible configura-
tions for a binary tree. For a tree with s leaves, we start
with the s — 1'* Catalan number, S(?(Ss:%l, This must then
be multiplied by s! to account for all possible commuta-
tive reorderings, and then divided by 20~V to disregard
left-right reflections that have no impact on performance.
This quantity grows very quickly: 7(8) = 135,135, and for
any reasonable number of subdomains (even small problems
may have 32 subdomains), the space of possible trees is too
large to exhaustively search for an optimal solution. In the
multi-time-scale case, the constraint that trees of different
timescales must be coupled at a single point somewhat re-
duces the possible number of orderings, as not all trees ad-
here to the coupling constraints. Nevertheless, the above
expression reflects the number of orderings present in each
of the subtrees.

Given the large number of trees, how might we select the
correct tree for a given problem? In this paper, we adopt
an approach that is based on the inspector-executor model
for program optimization. In this approach, an inspector
evaluates the given tree coupling order by a user, and uses
heuristics to find an optimal tree coupling order that mini-
mizes computational cost, thus reducing execution time and
gaining performance. In order to set a performance-based
objective, we modeled the computational cost after the se-
quence of computations being carried out by the algorithm.

4 Cost Model & Heuristics

To automatically find optimal coupling schedules for our de-
composed problems, we adopt a model to quantify the cost of
any particular coupling configuration. Using this model, we
develop an optimization scheme that selects from the con-
figuration space of all coupling schedules one that produces
a low cost. This section discusses the cost model and the
optimization system we developed based on these models.

4.1 Cost Model

A cost model was developed to accurately reflect the execu-
tion time of the TreeSolve code prior to solving the coupling
tree. This is done by inspecting the coupling tree and mod-
eling its costs based on the properties of the input, namely
the interface and subdomain sizes. Once the tree structure

Cost per leaf Cost per interior node

TL? ZiEC n?mi:v Update of Y
jec MMy Calculating H
My Calculating A

2 icc MiMiw Updating X

v'eC Z'LGU’ MM Mz Solving F
v'eC mem., Calculating A
Y wrec dicy MiMinMiw  Updating Y

Table 1: Cost Model Contributions from Coupling
Tree

is determined, we then measure the matrix sizes for all op-
erations to estimate the time it will take to run during ac-
tual execution. There are several different cost components
that contribute to the TreeSolve cost. Most of them are
matrix-matrix or matrix-vector multiplications as well as a
few matrix-matrix and matrix-vector solves. We character-
ize their costs based on the sizes of the matrices and the
amount of work necessary to compute their solutions. The
following variable definitions are used to come up with the
costs:

1. m; : number of equations in subdomain S;

2. m, : number of equations in the coupling interface for
interior node v

3. my., : number of equations in interface of v that are
associated with subdomain S;

4. C : Descendant leaf nodes of an interior node

’
5. v,v : interior nodes

For a given tree (or subtree), the total cost of that tree
comes from the leaf nodes in that (sub)tree, which represent
the decomposed subdomains, and the interior nodes of the
(sub)tree, which represent the coupling cost of the tree. The
values of these costs are given in Table 1.

The different matrices Y, H, A, X, F' and A (some tempo-
rary) are used in the final TreeSolve and BuildY subroutines.
Details of the equations and computations for these matrices
can be found in the reference [22]. We note one important
fact: each interior node’s cost is determined by the number
of leaf nodes under that interior node, and hence interior
nodes higher in the tree (i.e., coupling operations higher in
the tree) have higher costs than those lower in the tree.

With this cost model, our inspector can access cost values
of different trees without having to solve them. In our re-
sults, we show that the cost values correlate well with actual
runtimes, enabling us to use heuristics based on the models
to create effective coupling trees.

Figure 6 shows CDF of tree cost for 1000 randomly gen-
erated trees, for a given computational mechanics problem
decomposed into 8 subdomains. It is observed that by pick-
ing only 1000 randomly coupled trees out of the whole tree
space (< 1% of the space), the costs vary substantially, and
between two coupling configurations, the costs can differ by
an order of magnitude. Our work presents a way to find
a configuration that obtains a near-optimal runtime among
the space of coupling trees.
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Figure 6: CDF of 1000 Random Trees based on tree
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4.2 Tree Building Heuristics

With a large space of existing possible trees for a given prob-
lem, the probability of a domain scientist choosing a low
cost tree is small. A domain scientist with limited comput-
ing knowledge might couple subdomains based simply on
the partition ordering of the subdomains (i.e., the order in
which partitioners such as METIS [14] produce mesh parti-
tions). We call this the Default approach, and it represents
the baseline coupling order for a problem. As described
above, our system adopts the inspector-executor paradigm
that analyzes the input of a given hierarchical multi-scale
computational mechanics problem and automatically deter-
mines effective coupling orders based on our cost model be-
fore solving the coupling tree.

Given that the cost model developed in the previous sec-
tion computes costs on a per-subtree basis, an intuitive ap-
proach would be to develop a greedy algorithm that builds
the coupling tree from the bottom up. Recall that when two
subdomains are coupled after being solved for a time step,
their coupled solution is similar to first joining together the
equations and then solving the larger, merged subdomain.
As a result, a greedy approach might proceed by coupling
together subdomains based on some heuristic such as cou-
pling subdomains with the largest shared interface, and then
treating the coupled subtree as a new, larger subdomain and
repeating the process. At each step, the cost model can be
used to evaluate the coupling heuristic for the current set of
subdomains to be coupled.

We experimented with several greedy heuristics; however,
there is a fundamental drawback with this greedy approach.
Although it optimizes the cost for each instance of coupling,
it ignores the future cost of coupling subtrees necessary to
solve the decomposed system, causing poor performance.
Recall that coupling operations higher in the tree inherently
cost more than coupling operations lower in the tree. Hence,
bottom-up algorithms, which cannot even predict what the
costs higher in the tree will be until the lower levels have
been assembled, are not appropriate.

Instead, we adopt a top down approach, focusing on min-
imizing the coupling costs at higher levels of the tree. Be-
yond this, we would also like to maintain the balance of the
tree, with both left and right subtrees for any node having

roughly equal solution times; this will improve the potential

parallelism of the resulting tree.

B D
. ()

Figure 7: Graph Representing a 5 Subdomain Sys-
tem

To implement our top-down approach, the inspector phase
analyzes the input problem and views the partitioned mesh
as an undirected graph, as shown in Figure 7. In the graph,
each node represents a subdomain, and edges represent shared
interfaces between them. In other words, the graph repre-
sents the topology of the subdomains. One approach to
building a tree top-down given this abstraction is to simply
perform a series of graph bisections. The graph is divided
into two partitions, with nodes from each partition repre-
senting the subdomains that will be in the left and right
subtrees of the root. This process can be repeated recur-
sively to construct the entire subtree. In the multi-time-scale
case, we produce multiple graphs, one for each timestep in
the problem (as subdomains at each time step must be cou-
pled together before moving on to larger time steps).

Note that even performing this top-down bisection relies
on domain knowledge: because this tree-building approach
can produce arbitrary results, it is only legal because we
know the domain semantics allow for any coupling order.
Nevertheless, despite leveraging domain semantics to build
the tree, this approach does not consider that leaf solve and
coupling costs are based on properties of the operations such
as the number of equations and interface sizes. This bi-
section technique is what an application programmer might
think as optimal for decomposing meshes in a top-down fash-
ion. However, this method (labeled cost-agnostic in our ex-
periments) does not take into account domain specific cost
information.

One of the key contributions of this work, labeled our
domain-specific heuristic, is a scheduling procedure that not
only integrates domain-specific semantic information, but
also domain-specific cost information. We use domain knowl-
edge obtained from our cost model and apply the coupling
and subdomain costs to the edge and node weights in our
graph prior to partitioning. In particular, a node’s weight
is calculated based on the leaf-node cost model, and is the
cube of the number of equations in the subdomain. Precise
edge weights are harder to determine, as they rely on the
overall structure of the subtree rooted at a coupling node.
However, the primary cost of a coupling operation is pro-
portional to the size of the interface between the domains
being coupled. Hence, edge weights are set to the interface
size of the two subdomains connected by that edge.

We then use METIS to perform repeated bisections of
this graph, as in the cost-agnostic approach. There are two
key differences, however. METIS attempts to create bal-
anced partitions while minimizing the weight of cut edges.
The cost of a coupling operation is proportional to the in-
terface size between the two domains being coupled. When
the graph is bisected, the two sets of nodes representing
the two domains that will be coupled, and the interface be-



tween those domains is exactly captured by the edges that
are cut. Hence, because edge weights are determined by in-
terface size, by minimizing the weight of cut edges, METIS
naturally produces low-cost coupling operations. Second,
the dominant cost in the TreeSolve algorithm is the cost of
solving leaf nodes for a tree. Because these costs are exactly
captured by the weights on nodes, by attempting to balance
the two partitions of a graph, METIS naturally produces
balanced trees. Hence, by incorporating knowledge of our
domain-specific cost models into the top-down tree-building
framework, we can produce low-cost, well-balanced trees.
This tree building strategy focuses on minimizing total work,
but still performs well for both parallel and serial execution.
Intuitively, the domain-specific heuristic produces well bal-
anced trees. Provided with sufficient parallelism, minimiz-
ing the total work also reduces the total parallel runtime,
resulting in optimal parallel performance as well.

After producing a coupling tree, the inspector transforms
this tree into an execution schedule, which is passed on to
the executor phase for execution. Our approach provides
two executors: a sequential executor and a parallel execu-
tor. Both executors use platform-optimized BLAS [6] and
LAPACK [2] routines to efficiently compute the matrix so-
lutions for a system using the hierarchical method. For our
parallel implementation, we use Cilk [7] to obtain optimal
parallel performance. Section 5 describes the parallel exe-
cution strategy.

5 Parallelization

This section describes the details of the TreeSolve parallel ex-
ecutor. We briefly discuss the semantics of Cilk and its role
in our parallel execution scheme. We then provide details
on how TreeSolve is parallelized, highlighting specific issues
that arise when running in parallel and how we overcome
them.

Cilk is an algorithmic multithreaded language used to op-
timize parallel programs. We chose to use Cilk because it
is a minimally intrusive parallelization tool which can deal
with irregular codes without introducing large synchroniza-
tion overheads. The parallel TreeSolve calls the Cilk mul-
tithreaded runtime system using fork-join parallelization at
each tree node. This allows each subtree path to run con-
currently, while Cilk’s work-stealing mechanism effectively
handles any load balance issues that arises due to complex-
ities of the the recursive algorithm and multiple timescales.

Running the TreeSolve along with Cilk requires adding
some minimally intrusive code to our existing algorithm.
Two Cilk constructs, spawn and sync, are used to direct
the parallel execution. The following pseudocode shows the
modified TreeSolve algorithm using Cilk.

Figure 8 captures the overall structure required by Cilk
to run the TreeSolve algorithm in parallel. Running the
Cilk version of TreeSolve will spawn new threads to concur-
rently execute the left and right paths at each interior node
of the tree. Threads eventually reach a leaf node, where
it then runs the routine for a subdomain solve to advance
a timescale. Once threads finish from both the left and
right paths, they arrive at the sync point, where the atomic
coupling operation updates the subdomains from the left
and right subtrees. Additional bookkeeping is required to
correctly couple subdomains of different timescales. Static
timescale values are stored at each node in our tree structure
to validate coupling of subtrees. Since subtrees are decou-

Cilk TreeSolve(Node)
If Leaf(Node)
LeafSolve(Node) [with load transfers]
Else
Spawn TreeSolve(Left)
Spawn TreeSolve(Right)
Sync
Couple(Left, Right)
Save Load Transfer Matrix A
End If

Figure 8: TreeSolve Algorithm using Cilk

pled from other subtrees from other paths, we can execute
them in parallel; however, each path may be executed differ-
ent number of times depending on their assigned timescales.

5.1 Difficulties

Optimal parallelization of TreeSolve is not an easy task.
Due to the recursive nature of the TreeSolve and multiple
timescales, algorithms using a typical fork-join model per-
forms poorly due to load imbalance. Previous versions of
TreeSolve which used these methods saw unpredictable par-
allel performance. Depending on the input and its coupling
order, parallel execution was extremely inefficient, some-
times taking an additional order of magnitude for extreme
cases. We also implemented a dynamic parallel algorithm
which did not use a fork-join model. This dynamic execu-
tion scheme maintained a task queue composed of coupling
and subdomain operations, and executed them as it became
available, then enqueuing new tasks once dependencies were
satisfied. This scheme resolved issues caused by load im-
balance, but required locks to synchronize at every coupling
operation of execution. Our Cilk implementation is very
similar to that approach; however, Cilk uses synchroniza-
tion methods which incur a lower overhead than traditional
locks, while using a work-stealing method to remedy load im-
balance. For most inputs, Cilk is able to outperform other
parallel implementations of the TreeSolve algorithm.

6 Evaluation

In this section, we validate our cost model against actual
runtime performance and evaluate the performance of the
cost-agnostic and domain-specific heuristics running both se-
quential and parallel TreeSolve algorithms. We focus on the
results of three physical systems, represented as finite ele-
ment meshes of hexahedral elements, as testing systems: 1)
a 128 subdomain cube mesh with 15625 elements 2) a 128
subdomain rocket mesh with 3632 elements and 3) a 128
subdomain stargrain mesh with 37152 elements. Each mesh
is partitioned by METIS to give an optimal partitioning.
These systems are simulated using the multi-scale solver run-
ning on an AMD Opteron 6176 SE system configured with
four 12-core processors (a total of 48 cores) running at 2.3
GHz. Each input contains two timescales, with an eighth of
the subdomains assigned to run at a smaller timestep and
the rest of the system at a larger timestep. The timestep ra-
tio is 10 for the cube and stargrain input, while it is 100 for
the rocket input. The timestep values are arbitrarily cho-
sen; however, for the rocket input, the smaller timesteps are
assigned to the subdomains of interest, containing cracked



regions of the physical system. Figure 9 shows the three
meshes after partitioning, as seen from the various colors.

(a) Example of a Partitioned Cube
Mesh

0.000

(b) Example of a Partitioned Rocket
Mesh

na

95.3
63.5
31.8

0.000

(c) Example of a Partitioned Stargrain
Mesh

Figure 9: Visualization of Finite Element Mesh
Models

6.1 Cost model validation

To validate our cost model, a set of 500 randomly generated
coupling trees was used to represent a sample of the entire
space of coupling trees. These trees are created by start-
ing with all subdomains in separate subtrees and randomly
selecting two subtrees to be coupled together until the full
tree is obtained. Note that this random coupling means that
occasionally two subdomains that do not share an interface
will be coupled. This schedule is mathematically and seman-
tically correct: the final solution will be computed correctly.
Nevertheless, such coupling orders are nonsensical from a
performance perspective, as there is no benefit in reduced
work to be gained from coupling subdomains that are not
adjoining.

The rocket input shown in Figure 9(b), partitioned into a
32 subdomain mesh (as a sample input), was used to explore

the space of trees. Figure 10 illustrates the correlation of
our cost model with the actual runtimes for solving the 32
subdomain mesh on single and multiple threads. For various
number of cores, actual runtimes are plotted against the
projected cost of the corresponding trees. The results show
that the correlation between the projected cost and expected
runtime has an average correlation coefficient of 0.77-0.85
for single and multiple threads. We estimate the parallel
costs using the same sequential model. We justify that the
parallel runtime correlates with total work during parallel
execution. Although we see that correlation does decrease
for higher number of threads, our cost model does strongly
reflect the execution time of the TreeSolve code. For the
remaining test inputs, the cost model shows similar results
with high correlation.
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Figure 10: Rocket: Cost vs Runtime Correlation of
500 Random Trees

6.2 Performance comparisons

We next compare the execution times for running our heuris-
tics on our three testing inputs. Given each partitioned
mesh, our heuristics generate new coupling orders to solve
each problem, subject to multiple timescales. In addition
to our domain-specific heuristic DS, we evaluate the cost-
agnostic tree CA and the Default DT, which is based on the
initial METIS numbering. As described in Section 4.2, DT
serves as a baseline; the initial coupling schedule produced
after METIS is used to partition the initial mesh into sub-
domains. This coupling schedule also serves as the input
to our inspector-executor system. CA uses a top-down ap-
proach to produce a new tree, but does not incorporate the
domain-specific cost models, while our DS heuristic refines
the top-down approach by incorporating knowledge of leaf
solve and coupling costs. For each input, we evaluate all
three schedules.

Figure 11 shows a CDF of the runtimes for running the
32 subdomain rocket input for various numbers of threads.
We compare the execution times of DS, CA, and DT, along
with the 500 randomly generated trees for single and mul-
tiple threads. Here we observe that DS outperforms all the
trees that we tested and we achieved a significant speedup
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Figure 11: Rocket: CDF of Runtimes for 500 Ran-
dom Trees with Heuristics

over randomly selected trees in the configuration space. In
other words, despite the vast configuration space, by incor-
porating domain-specific semantic and cost knowledge, we
are able to infer a very effective coupling order. We also
note that the other evaluated schedules, DT and CA per-
form worse than our domain-specific schedule. We see that
the default schedule is quite slow, while CA yields better
results. Nevertheless, our DS approach outperforms the CA
schedule by 7 to 20%.

6.3 Parallel performance

Figure 12 compares the execution times for each heuristic
across different number of threads for the cube, rocket and
stargrain input meshes. We note that in all cases, the DS ap-
proach delivers noticeably better performance than the CA
and DT. While the specific amount of improvement when
using our DS heuristic is problem-dependent, we see that
incorporating domain knowledge provides a consistent edge
across multiple inputs. Table 2 shows the speedup of CA
and DS over the baseline, DT, for each of the inputs at both
one and eight threads. Not only does the DS schedule per-
form the best in single-threaded execution, the advantage
increases at higher thread counts; DS provides better scala-
bility.

No. Thread = 1 No. Thread = 8

CA DS CA DS

Cube 0.94 1.33 1.04 1.52
Rocket 1.35 1.47 1.65 1.95
Stargrain 1.26 1.52 1.93 2.62

Table 2: Speedups of CA and DS schedules over
baseline DT

For all of the schedules, performance scales up to 4 threads
and speedup is obtained when increasing the number of
threads. For 8 threads and beyond, the results do not scale
well. Using the Cilk profiling tool, we found that for each
input, past 4 cores, the runtime of critical path equals the
runtime of the solver. This indicates that the parallelism
saturates at 8 threads and not much more parallelism can
be exploited. Increasing communication costs and paral-
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Figure 12: Execution times across different number
of threads

lel overhead plays a role here. This lack of scalability is
understandable because the structure of the input is inher-



ently imbalanced. Figure 13 shows a tree generated using
top-down heuristic using sample 32 subdomain rocket input.
We see that the left side of the tree has 4 subdomains and
the right side has 28 subdomains. This imbalance is due to
the fact that a small number of subdomains are at a lower
time scale, which requires fine grain calculations as com-
pared to other parts of the mesh and, due to limitations of
the coupling algorithm must be solved separately from the
rest of the mesh. In other words, there is a certain amount
of inevitable, application-specific load imbalance, especially
when there are only a few subdomains run at small time
scales. Additionally, the tree-based nature of the algorithm
and the fact that coupling occurs atomically limit available
parallelism.

Figure 13: A typical form of a tree generated from
input meshes

Available parallelism and scalability across heuristics

A natural question, given the inherent lack of scalability,
is whether our scheduling heuristics negatively impact the
available parallelism of the program. To investigate this
question, we used Cilk to profile the total work, critical path
length (span), and amount of parallelism (work/span) af-
forded by each schedule across all of the inputs. Table 3
summarizes these results.

There are two key take-aways from these results. First, as
expected, the DS scheduling heuristic, which incorporates
domain-specific semantic and cost information, yields the
best single-threaded performance (work), often by a signif-
icant margin. This is consistent with the raw performance
numbers shown above. Second, despite the heuristics focus-
ing on work minimization, with parallelism only of secondary
importance, parallelism is not adversely affected. In fact, on
two of the three inputs, DS provides better parallelism than
the other two schedules, and on the third input, DS exhibits
the same amount of parallelism as CA. The advantage of
DS in available parallelism is reflected in the scalability re-
sults of Table 2, where DS scales better in practice than the
alternative schedules.

Input Schedule | Work | Critical Path | Parallelism
(sec) (sec)

DT 16.54 10.65 1.55
Cube CA 17.60 10.02 1.76
DS 11.94 5.98 2.00
DT 2.18 1.55 1.41
Rocket CA 1.93 1.29 1.50
DS 1.27 0.67 1.90
DT 44.09 23.77 1.85
Stargrain CA 34.91 11.12 3.14
DS 29.12 9.23 3.15

Table 3: Inherent parallelism in coupling schedules

6.4 Inspector phase overhead

The inspector phase, which consists of analyzing the mesh
topology and creating the coupling tree, takes approximately
as much time as reading the input file. However, long term
simulation of physical models may require running thou-
sands or millions of timesteps, which amortizes all other
costs aside from the TreeSolve iterations, which is what we
measured. Depending on the problem, the time taken by
the inspector phase is 0.1% to 1% that of the total executor
phase time and less than the time it takes to run TreeSolve
for one timestep.

7 Related Work

Domain-specific languages There have been many projects
that have leveraged semantic properties of domains to per-
form domain-specific optimizations on applications that could
not be performed by traditional compilers. In the Spiral
project, digital signal processing applications are written in
a domain-specific language, SPL, and then manipulated us-
ing algebraic transformations before optimized code is gen-
erated [29]. In the Tensor Contraction Engine, a domain-
specific language is used to specify computational chemistry
problems as a series of operations on tensors [4]. Because
these operations possess simple semantic properties such
as commutativity and associativity, the number of possi-
ble tensor contraction “schedules” is vast; at compile time,
a search procedure identifies the minimal-cost implementa-
tion of the given problem and passes that implementation
to code-generation routines that perform further optimiza-
tions. Other projects have exploited semantic properties in
numerically intensive codes written in Matlab—Falcon [25],
MaJIC [1, 17] and Telescoping Languages [8, 15]. The key
unifying factor in all of these approaches is that they oper-
ate at compile-time. In contrast, our optimization approach
operates at run-time, as the structure of the problem is not
known until the input is seen. Section 8 discusses additional
key differences between our approach and prior work, and
explores the ramifications of these differences.

Inspector-executor approaches The inspector-executor ap-
proach has been used to perform parallelization and opti-
mization in numerous situations where the computational
structure of a program is not known until run time. It is of-
ten used for parallelization, where the dependence structure
of an application is inspected, and a parallelization schedule
is determined [21]. In other settings, the dependence struc-
ture of a sparse-matrix application can be unfolded to drive
runtime reordering transformations that aim to improve lo-
cality [10, 27]. To our knowledge, most inspector-executor
approaches focus on identifying dependences so that an ex-
isting computational schedule can be restructured to im-
prove performance. Nevertheless, the underlying algorithm
(i.e., the operations performed and the dependence struc-
ture) remains the same. In contrast, we use inspection to
unfold the computational structure and then transform the
computation, producing a new computation with an entirely
new data flow and dependence structure. Note that because
our transformations change the dependence structure, they
necessarily must exploit semantic properties of the opera-
tions (since they violate existing dependences).



8 Lessons Learned

While the study presented in this paper is specific to one
method for solving computational mechanics problems, we
note that this same general approach applies to a large num-
ber of recursive-decomposition-based computational science
problems, which arise in domains ranging from computa-
tional mechanics to fluid dynamics to peridynamics. Hence,
we expect that our inspector-executor system can readily be
applied to these other problems.

Moreover, we feel that the approach we took to transform-
ing the problem leads to general lessons that can be applied
more broadly. In most instances of domain-specific trans-
formation systems (e.g., [1, 4, 8, 15, 17, 25, 29]), the initial
program is written in a domain-specific, high-level language
where the semantics needed to drive the optimizations are
explicit in the language. In contrast, in our work the compu-
tational solver is written in a traditional language (C). The
routines that unfold the computational structure are associ-
ated with the library interface, and hence can work with any
implementation of that interface, as well as any application
that uses the library.

At a high level, one can view the traditional approach of
performing domain-specific optimizations as optimize-lower.
That is, write an application in a domain-specific language,
optimize the application using the semantic properties ex-
posed by the DSL then lower the program into the target
low-level language where other domain-agnostic optimiza-
tions can be performed. In contrast, in this work we started
with an application written in a low-level language. Rou-
tines associated with the domain library were used to [lift
the program into a high-level representation that was then
transformed and subsequently lowered back into calls to the
low-level library routines. Hence, our approach is more aptly
termed lift-optimize-lower. The primary advantage to a lift-
optimize-lower approach is that the source program need not
be written in a domain-specific language, but instead can be
written using domain libraries familiar to domain scientists.

Another interesting point about our approach is that the
transformation routines are completely general. The trans-
formations performed on the computation tree merely take
advantage of commutativity and associativity. While these
properties are related to the semantics of the domain, the
transformations themselves are by no means domain-specific.
In fact, the very simplicity of these properties makes them
much more broadly applicable. Indeed, the same properties
are exploited in systems like the tensor contraction engine
(TCE) [4].

This commonality presents an attractive possibility. Con-
sider developing a high level intermediate representation,
which could represent programs as a composition of abstract
operations with domain-agnostic properties such as commu-
tativity and associativity. A program can be lifted into this
high level representation, with its domain-specific operations
mapped to the appropriate abstract operations (e.g., in our
domain, the Couple operation would be mapped to an asso-
ciative and commutative abstract operation). At this point,
a generic transformation engine can act on the high level
representation, and the transformed program can be low-
ered back to the original representation. Even though the
transformations are generic, they can be driven by domain-
specific cost models as in our application study, effectively
performing domain-specific optimizations while remaining
domain agnostic. This is similar in spirit to the approach

of Willcock et al. [28], where compiler transformations that
deal with basic types are extended to work on more com-
plex types, allowing for the same transformation pattern to
be used in multiple domains; the key difference is that in
our scenario, transformations are driven by domain-specific
cost models, rather than syntax.

Essentially, rather than performing domain-specific trans-
formations, with new systems being built for each new do-
main, the kernel of the proposed optimization framework
would be completely domain-independent, instantiated only
with cost models for operations and routines to translate
back and forth from the intermediate representation. Such
an approach would lead to a clean separation of concerns, as
domain scientists need only consider the high level properties
of the operations in their domains, while systems writers can
focus on efficient transformations and effective search heuris-
tics. Our case study of a computational mechanics solver
is an important proof-of-concept of this approach, as the
transformations and search heuristics are oblivious to the
details of the domain, relying only on the domain-specific
cost model to drive the search. Future work will be to map
other domains (such as tensor contraction, fluid dynamics,
etc.) to the same run-time transformation framework.

9 Conclusions

This paper presents an effective algorithm for optimizing
computational mechanics codes based on recursive domain
decomposition for static and dynamic systems. Solving a
decomposed problem is represented as solving a binary tree,
and the structure of the tree dictates the performance of the
solver. We show that the number of possible tree coupling
orders is exponentially large for systems even with a moder-
ate number of subdomains. Among the various trees, many
do not perform well, and it is not obvious which trees have
good performance.

We demonstrate for real problems that our heuristic can
generate near optimal coupling trees and execute them ef-
ficiently. We show that the inspector’s heuristics for build-
ing coupling trees consistently produce trees that rank in
the 99th percentile of possible trees for problems. Finally,
we show that the executor is able to deliver scalable per-
formance on multiple cores as long as there is parallelism
to be exploited, providing solutions in less time than ran-
domly selected coupling trees. It automatically provides
optimized, parallel implementations of multi-scale compu-
tational mechanics problems, allowing domain scientists to
take advantage of novel computational techniques without
devoting substantial time to the tedious process of optimiz-
ing a parallel implementation on a problem-by-problem ba-
sis.
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