SemCache: Semantics-aware Caching for Efficient GPU
Offloading

Nabeel AlSaber and Milind Kulkarni
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN, USA

{nalsaber, milind}@purdue.edu

ABSTRACT

Recently, GPU libraries have made it easy to improve appli-
cation performance by offloading computation to the GPU.
However, using such libraries introduces the complexity of
manually handling explicit data movements between GPU
and CPU memory spaces. Unfortunately, when using these
libraries with complex applications, it is very difficult to op-
timize CPU-GPU communication between multiple kernel
invocations to avoid redundant communication.

In this paper, we introduce SemCache, a semantics-aware
GPU cache that automatically manages CPU-GPU commu-
nication and dynamically optimizes communication by elim-
inating redundant transfers using caching. Its key feature is
the use of library semantics to determine the appropriate
caching granularity for a given offloaded library (e.g., ma-
trices in BLAS). We applied SemCache to BLAS libraries
to provide a GPU drop-in replacement library which han-
dles communications and optimizations automatically. Our
caching technique is efficient; it only tracks matrices in-
stead of tracking every memory access at fine granularity.
Experimental results show that our system can dramati-
cally reduce redundant communication for real-world com-
putational science application and deliver significant perfor-
mance improvements, beating GPU-based implementations
like CULA [9] and CUBLAS [18].

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming— Parallel Programming; D.4.2 [Operating Systems]:
Storage Management— Distributed Memories

Keywords
GPU offloading; GPGPU; Communication optimization

1. INTRODUCTION

With the rise of general purpose GPU (GPGPU) pro-
gramming, programmers have increasingly turned to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’13, June 10-14, 2013, Eugene, Oregon, USA.

Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

GPU as a cheap (both in cost and in energy) means of
boosting the performance of their application. Recent years
have shown that GPU implementations of linear algebra ker-
nels [9, 18, 21, 23], graph algorithms [15], stencil codes [5],
among others, can vastly outperform CPU implementations.
However, while these results hold for individual kernels, it
is still unclear how best to leverage GPUs to improve the
performance of applications.

Consider how a developer of a large-scale computational
science application might attempt to use GPU resources.
One option would be to try and run the entire application
on the GPU (in a sense, taking the same approach as kernel
developers, but applying it to the entire program). Clearly,
such a tactic is impractical. Not only are GPU program-
ming models (e.g., CUDA [17]) somewhat cumbersome, but
not all portions of an application are well-suited to running
on a GPU; while computation-heavy portions of an applica-
tion (e.g., loops performing linear algebra operations) may
perform well, more control-heavy portions that do not have
much parallelism may instead run slower on the GPU than
on the CPU. Hence, our programmer may invest significant
time in porting an application to the GPU only to find her
efforts wasted as GPU performance fails to meet expecta-
tions.

Instead of porting the entire application to the GPU, the
programmer might instead adopt a heterogeneous approach:
portions of the application well-suited to GPU execution
will be offloaded, while the remainder of the application will
be run on the CPU. The programmer may attempt to use
systems designed to facilitate such heterogeneous schedul-
ing [14, 19], but these approaches require changes to the
programming model, and work only for specific domains,
necessitating significant porting work. Alternately, the pro-
grammer may offload portions of their code to the GPU, tar-
geting specifically those kernels that are well-suited to GPU
execution. Note, however, that a major cost in offloading
computations to the GPU is data movement overhead: get-
ting data to and from the GPU requires transferring data
over a (relatively) slow PCle bus, and hence data movement
consumes a significant portion of the overall time required to
perform operations on the GPU. While some data movement
is unavoidable, when targeting an application that performs
many offloadable operations, much of this data movement is
redundant.

Consider the simple case of a series of matrix multiply
operations, as shown in Figure 1. Each matrix multiply re-
quires that the source matrices be on the GPU and the result
matrix be transferred back to the CPU. However, the naive

U W N~

GEMM(A, B, C): //C = A x B
GEMM(B, C, D); //D = B % C

GEMM(C, D, E); //E = C D

Figure 1: Simple example with repeated matrix mul-
tiplication

approach of transferring the sources to the GPU and the
results back on every operation results in redundant com-
munication. Some source matrices (e.g., B) are transferred
to the GPU twice, while other matrices (e.g., C in the sec-
ond operation) are transferred to the GPU even though they
were computed on the GPU originally. A better approach
is to transfer B just once, and use it for both operations,
while consuming C directly from the GPU for the second
operation.

There exist libraries of GPU kernels (e.g., CULA Standard
Interface) that attempt to ease the process of offloading com-
putation to the GPU by automatically handling data move-
ment and execution on the GPU. Because these libraries tar-
get specific operations (e.g., linear algebra), using them is
often as simple as replacing operations in an application with
equivalent GPU versions; in fact, because computational ap-
plications are often already implemented with libraries such
as BLAS [4] and LAPACK [2], CULA implementations of
those operations can be used with essentially no modifica-
tions to program code and no need for GPU expertise. Un-
fortunately, such drop-in replacement libraries come with
drawbacks. The libraries do not consider the composition of
library calls, instead implementing each offloaded operation
as a self-contained unit. As a result, the libraries do not
consider the possibility of redundant data movement across
operations (in other words, they adopt the naive communi-
cation approach described above). Because each operation
is offloaded in isolation, the composition of operations may
not be implemented efficiently.

To correctly minimize data movement and avoid redun-
dancy when offloading computation to the GPU, the com-
position of offloaded operations must be considered. While
lower-level libraries (such as CUBLAS, CULA’s “device in-
terface,” or MAGMA [23]) give the programmer precise con-
trol over data movement (so that, e.g., he can avoid trans-
ferring matrix B to the GPU twice in the previous example),
it is often difficult to reason about which data movement
might be redundant and which might be necessary. This
is especially true in large, modular applications, where op-
erations might be quite distant from one another both in
the code and during execution, and where a single piece of
static code may exhibit data redundancy based entirely on
when and where the code is invoked during execution (con-
sider a method called from several places in an application
that performs several linear algebra operations on matrices
passed in as parameters). In such a scenario, any attempt
to statically determine whether communication is necessary
is doomed to failure; simply providing low-level control of
data movement is not enough to allow eliminating redun-
dant communication.

What is needed is an automatic approach to managing
data movement between GPU and CPU that can dynam-
ically determine whether data movement is necessary and
hence provide drop-in replacements for computational li-

braries. Such an approach will allow programmers to achieve
efficient communication for heterogeneous computing with-
out adopting a new programming model.

1.1 Semantics-aware GPU Caching

In this paper, we propose a semantics-aware GPU cache to
reduce redundant communication between the CPU and the
GPU. At a high level, our software caching approach treats
the CPU and GPU memory spaces as two caches, and uses
an MSI (modified/shared/invalid) protocol to maintain co-
herence between them. When a method is called to execute
on the GPU, the cache state of the data used by the method
is inspected, and data is transferred to the GPU only if it
does not already reside there. When data is modified on the
CPU, the cache is used to invalidate any corresponding data
on the GPU.

This type of software caching has been proposed before
for other architectures, such as distributed shared memory
systems [1, 7, 10, 16] and accelerator-based systems like the
Cell [8, 12]. The key drawback of these prior approaches is
that the granularity of caching is fixed (e.g., OS pages for
DSM approaches, or fixed line sizes for accelerators), and
did not take into account program behavior. As a result,
the cache granularity might be too big, resulting in exces-
sive data movement, or too small, resulting in too many
cache lookups and more data transfers and hence higher
overhead. In contrast, our system adopts a semantics-aware
approach: the granularity of our caching is determined by
the semantics of the libraries being offloaded to the GPU.
For example, when applying our approach to the BLAS li-
brary, rather than caching at the granularity of pages, our
cache will track data at the granularity of the arrays in the
application. Hence the granularity of the cache is depen-
dent not only on the libraries in a program but also on the
specific way those libraries are used in an application. By
matching our cache granularity to the libraries, we can more
efficiently use the space on the GPU (by caching only data
that is needed for computations) and reduce caching over-
heads (by performing fewer cache lookups per library call).
We also show how the same caching principles can leverage
additional library semantics to not only save data movement,
but also eliminate redundant computations.

Crucially, the cache we develop is generic: the system it-
self is not tied to any particular library. Instead, all of the
semantic information is provided in the library implemen-
tation, allowing the same caching system to be reused for
different libraries, in each case providing tuned cache im-
plementations that use the correct granularity for a given
library.

1.2 Contributions

This paper makes the following contributions:

e The design and implementation of SemCache, a generic
GPU cache that automatically manages CPU-GPU com-
munication and dynamically optimizes communication.
It is augmented with semantic information to provide
tuned, library-specific caching.

e A generalization of this caching solution (akin to mem-
oization) that creates semantic links between data on
the CPU and GPU, allowing SemCache to automati-
cally eliminate redundant computation and translate
between different layouts.

e An annotated GPU BLAS library that provides a drop
in replacement for existing BLAS libraries that, in con-
junction with SemCache, delivers optimized communi-
cation between the CPU and GPU.

e Experimental results showing, both for microbench-
marks and a large, real-world computational science
application, that SemCache can dramatically reduce
redundant communication, and deliver significant per-
formance improvements, beating not only CPU imple-
mentations but also GPU-based implementations us-
ing existing, tuned libraries.

2. RELATED WORK

There are multiple libraries that optimizes the perfor-
mance of Linear Algebra Kernels on GPUs. CUBLAS [18] is
an implementation of BLAS [4] (Basic Linear Algebra Sub-
programs) on top of the NVIDIA’s CUDA driver that allows
access to the computational resources of NVIDIA GPUs.
MAGMA [23] and CULA [9] have implemented hybrid GPU
accelerated linear algebra routines (LAPACK and BLAS li-
braries). CULA provides a standard interface that needs
no GPU knowledge in addition to the advanced interface.
These approaches all focus on individual kernels; across ker-
nels, data management must be handled by the programmer.

SuperMatrix [22] and StarSs [3] have a runtime system
to solve dense linear systems on platforms with multiple
hardware accelerators. Both systems use software-caching
schemes to reduce data transfer cost within a single ker-
nel. Fogue et al. ported the PLAPACK library to GPU-
accelerated clusters [6]. They require that CPUs compute
the diagonal block factorizations while GPUs compute all
the remaining operations. They also store all data for a sin-
gle kernel in GPU memories to reduce communication. Our
caching approach is different from these libraries since we
optimize communication across kernels (at the application
level).

Other programming models are designed to facilitate het-
erogeneous scheduling. Intel’s Merge [13] is a program-
ming model for heterogeneous multi-core systems. Qilin is a
generic programming system that can automatically map
computations to GPUs and CPUs through off-line train-
ings [14]. MDR [19] is a performance model-driven runtime
for heterogeneous parallel platforms. Such systems try to
optimize CPU-GPU communication across the entire pro-
gram. However, to use them, the programmer must rewrite
their application using the specified programming model. In
contrast, we are targeting existing large-scale applications,
with the goal of optimizing communication without signifi-
cant programmer effort.

Prior work implemented automatic data management and
communication optimization systems for GPUs [7, 10, 11].
Jablin et al. have developed a fully automatic CPU-GPU
communication management system (CGCM) [11]. CGCM
manages data using a combined run-time and compile-time
system without programmer annotations. CGCM requires
static analysis (type-inference and alias analysis) because
it manages data and optimizes communication at compile-
time. The imprecision of static analysis limits CGCM’s ap-
plicability and performance. In contrast, SemCache uses
a more sophisticated run-time system that keeps tracks of
data validity status and hence can better optimize commu-
nication with less overhead than a static compiler analysis.

DyManD [10] and GMAC [7] attempt to manage com-
munication between the GPU and CPU automatically by
adopting distributed shared memory (DSM) techniques [1,
16]. The two systems use the operating system’s page-
protection mechanism to detect when data needs to be trans-
ferred. While these techniques are fully automated, they suf-
fer from two primary limitations compared to SemCache’s
approach. First, to effectively use page-based systems, the
layout of data must be changed to align data with page
boundaries, avoid false sharing, etc., which precludes using
such systems with existing custom allocators. Second, as
DSM systems, GMAC and DyManD require direct mappings
between the CPU and GPU memory spaces. As a result, the
amount of data shared between the CPU and GPU is lim-
ited to the GPU memory size; in fact, the largest inputs that
we used in our case study (Section 7.2) cannot be handled
by existing systems. Furthermore, this direct mapping pre-
cludes more complex semantic mappings between the CPU
and the GPU, such as transforming row-major layout to
column-major layout, or SemCache’s computation caching
(Section 5).

3. OFFLOADING LIBRARIES TO GPUS

Over the past few years, graphics processing units (GPUs)
have become attractive platforms for computing. The pro-
grammable vector units on GPUs offer the potential for mas-
sive, energy efficient parallelism. There are two downsides,
to GPU computing, though. First, to achieve their energy ef-
ficiency, GPU cores are very simple, and only provide perfor-
mance benefits when executing carefully parallelized code.
Hence, attempting to port general code to GPUs is a te-
dious task, and often results in ineffective code. Instead, it
is more effective to execute only those portions of an appli-
cation that are amenable to GPU-style parallelism, such as
linear algebra code, on the GPU, leaving the remainder of
the application code on the CPU. Because writing efficient
implementations on a GPU is difficult even for algorithms
well-suited to parallel execution, there has been a prolif-
eration of libraries that provide GPU implementations of
common linear algebra kernels (often providing the BLAS
interface [4]), easing the task of offloading these operations
to the GPU.

The second downside to using GPUs for general purpose
computing is that most GPUs use separate memory from
the CPU. In other words, the GPU uses a separate address
space from the CPU, and hence the two processing units
cannot readily share data. Instead, data must be explicitly
transferred between the CPU and the GPU. This limitation
is especially problematic when only portions of a computa-
tion are offloaded to the GPU: because both the CPU and
the GPU perform operations on the same data, the data
must be transferred back and forth as necessary. Worse,
transferring data between CPU and GPU is slow, especially
in comparison to the speed of each processing unit’s own
memory. Performing data transfers are often a significant
cost of GPU computation, and there have been several ap-
proaches that have attempted to avoid even offloading com-
putation when data transfer costs exceed the benefit of GPU
computation [14, 19, 24].

The necessity for explicit data movement between GPU
and CPU makes providing modular libraries that provide
GPU kernels more difficult. Consider the example code in
Figure 1. As discussed in the introduction, there are several

(a) Communication un-optimized (b) Communication optimized

CPU | GPU | | CPU | GPU
A B
st SMIAB start _Send A, B .
- - — (=
Receive C C=A*8 C=A%B
Send B, C b=B*C
i D=B*C ’ .
Receive D Write/ ReceiveE p_cxp
ReadE
Send C, D)
) E=C*D Time
Write/ Receive E Savings
Read [S i

Figure 2: Communication comparison for optimized
and un-optimized communication

distinct linear algebra operations performed in this exam-
ple, each of which would be performed by a different library
call. In the interests of modularity and encapsulation, some
libraries handle communication between the CPU and GPU
“under-the-hood” like CULA standard interface. While this
makes using the library easier, it results in redundant com-
munication. The library calls are implemented to execute
in isolation, and as self-contained units, they assume that
the data resides on the CPU. When invoking a method, a
library call must (i) allocate space for the arguments and re-
sult on the GPUj (ii) transfer the arguments from the CPU
to the GPU; (iii) perform the computation on the GPU; and
(iv) transfer the result back to the CPU. As a result, even if
multiple library calls could make use of the same data, new
space is allocated and the data is transferred for each call.
Hence, as we see in Figure 2(a), at each call two matrices
are transferred to the GPU and one is transferred back, for
a total of 9 matrix transfers.

Clearly, full encapsulation introduces too many perfor-
mance problems. Instead, other library approaches, such as
CUBLAS [18], give the programmer control over data alloca-
tion and movement. Hence, as in Figure 2(b), the program-
mer can explicitly transfer A and B to the GPU, allocate
space for the results matrices in GPU memory (assuming
matrices fit in the GPU memory), and operate only in GPU
memory until the final result, E, is transferred back to the
CPU. This results in the minimal amount of communication,
3 matrix transfers. Unfortunately, forcing a programmer to
explicitly manage data requires the programmer to reason
about the composition of GPU operations. This is a global
task that may be impractical for large codes.

In fact, for highly modular codes, it may not be possible to
manually manage data movement. Consider, for example, if
the three matrix-multiply calls of our example occurred dur-
ing different invocations of the same larger method within an
application. In other words, the three matrix multiplies oc-
curred from library calls from the same line of code, just with
different arguments. Clearly, there is no way to introduce
data transfer operations statically to such code to correctly
transfer the matrices only when necessary. Whether or not
data needs to be transferred to the GPU is a purely run-
time property, based on what other library methods have
been called, and what arguments are being passed to a par-
ticular library invocation.

The following section describes SemCache, our approach
to tracking exactly this dynamic information in a manner

that can be readily encapsulated into easy-to-use libraries
for offloading GPU computations.

4. SemCache

This section introduces SemCache, a variable-granularity,
Semantics-aware Cache that can be used to efficiently and
easily manage sharing and transferring data between the
disjoint CPU and GPU address spaces.

4.1 High Level Overview

A software cache between CPU and GPU, at a high level,
is simple and intuitive. One variant, using a MSI (modified,
shared, imvalid) protocol might operate as follows: a given
piece of memory (e.g., a contiguous block of memory, a page,
etc.) is tracked by a run-time system. The run-time tracks
whether the contents of the piece of memory are currently
valid on both devices (shared), valid only on the GPU (mod-
ified on the GPU, invalid on the CPU) or valid only on the
CPU (invalid on the GPU, modified on the CPU). When-
ever memory is read on a particular device, the cache can be
consulted to determine whether the local memory has valid
data; if not, communication between GPU and CPU is nec-
essary, and the cache state is changed to shared. When a
piece of memory is written on a device, the local cache state
is changed to modified, and the state for the other device is
changed to invalid.

Such an implementation has been used in numerous pre-
vious projects targeting different architectures, from dis-
tributed shared memory systems (e.g., [1, 16]) to software
caches between Cell processing units (e.g., [8, 12]). The
downside to prior implementations is that the granularity
at which memory was tracked was constant (e.g., an entire
OS page, or a fixed-size block of contiguous memory). How-
ever, a fixed granularity may not be appropriate for a given
application. If the granularity of the cache is too large (the
blocks being tracked are too big), excessive communication
will happen, both from transferring unnecessary data and
from performing too many invalidations due to false shar-
ing. If the granularity of the cache is too small, more cache
lookups will be necessary for a given set of operations, and
communication will be broken up into more transfers, result-
ing in more overhead. Unfortunately, it is difficult to tell for
a given application, what the appropriate cache granularity
should be, and different applications may require different
granularities.

The key insight of SemCache is that when using libraries
to offload computation to GPUs, the correct granularity for
a cache can be inferred. In particular, the appropriate gran-
ularity for the cache should be the data structures operated
on during offloaded library calls. Moreover, the library’s
semantics directly capture what the relevant data structures
are. As a result, by tying SemCache’s granularity to a li-
brary’s semantics, we can track data at exactly the right
granularity for a given application.

For example, when SemCache is used in conjunction with
a linear algebra library, the data structures being operated
on are matrices; as a result, SemCache will track data at
the granularity of the matrices used in a particular applica-
tion. In contrast, if SemCache is used in conjunction with a
graph library, the data structures being operated on might
be adjacency lists. SemCache will correctly track data at the
granularity of entire adjacency lists representing the graphs
being operated on.

CPU CPU Status GPU
Start Address | End Address Start Address _

... CacheTranslation Record .

Matri

Main Memory Cache Directory GpU Memory
Figure 3: Structures of the Caching Directory

SemCache is composed of multiple, interlocking compo-
nents: (a) a variable-granularity cache structure and inter-
faces for performing cache lookups, triggering data transfers,
and performing invalidations; (b) a strategy for setting the
granularity of the cache based on library behavior; and (c)
instrumentation and protocols for tracking and maintaining
the correct cache state for memory. The following subsec-
tions describe these components.

4.2 Cache Design and Structure

The basic design of SemCache is shown in Figure 3. There
is a single data structure, consisting of a set of translation
records that tracks the status of the various data structures
used in a program. Note that even though data may re-
side on either the CPU or the GPU, it is the CPU that is
in charge of maintaining the cache data, and of perform-
ing all lookups and invalidations. This is due to the basic
approach used for GPGPU computation. Operations are
dispatched to the GPU by transferring data (if necessary)
to the GPU and invoking a single kernel method. Once the
kernel method completes, control transfers back to the CPU
and any necessary data is transferred back. In other words,
the CPU alone is responsible for controlling execution and
for transferring data between the two memory spaces. As
a result, SemCache consists of a single set of translation
records maintained by the CPU.

The primary data structure of SemCache is the set of
translation records that maintain a mapping between CPU
data and the corresponding data on the GPU, as well as the
current location of the data. In a sense, SemCache serves as
a translation lookaside buffer (TLB), except that its entries
point to variable-length regions of memory rather than fixed-
size pages. The cache entries are hence indexed by both a
start address (cpus) and an end address (cpu.) of the data’s
location on the CPU. Each entry also contains a status field
(status) to keep track of the data’s status. These statuses
can be one of C| for valid only on the CPU, G, for valid
only on the GPU, or S, for valid at both locations. Finally,
the translation record contains the putative location of the
same data on the GPU (gpus)*.

SemCache’s interface provides a number of operations. A
memory range [s,e) refers to start and end addresses for a
memory range on the CPU.

L This location is putative because it is only valid if the status
of the range is S or Gj if the status is C, the next time the
data is sent to the GPU, new space will be allocated for the
data

lookup(s, €) Retrieves the translation record associated with
memory range [s,e). If the memory range is not cur-
rently tracked, create a new entry for the range, and
set the status to C.

transferToGPU (entry) Assumes that the status of the
entry is S or C. Transfers the contents of memory
range [cpus, cpue) on the CPU to the GPU, allocating
new space on the GPU. Sets the GPU start address
appropriately. Sets the status of the entry to S.

transferToCPU (entry) Assumes that the status of the
entry is S or G. Transfers the contents of memory
range [gpus, gpus + (cpue — cpus)) from the GPU back
to the CPU. Sets the status of the entry to S.

invalidateOnGPU (entry) Sets the status of entry to C.
invalidateOnCPU (entry) Sets the status of entry to G.

SemCache maintains the invariant that the ranges tracked
by its translation records are disjoint. If a range being looked
up is a subset of some tracked memory range, then lookup
returns the entry associated with the larger memory range.
If a range being looked up spans multiple tracked ranges,
SemCachemerges all the matching translation records and
creates a new record that tracks a range that spans all of
the merged records.

To perform lookups and merges efficiently, SemCache main-
tains the entries sorted by start address. To look up the
range [s,), SemCache searches for the entry with the largest
start address less than or equal to s. If the end address of
the found entry is less than or equal to s, SemCache creates
a new entry for the range. If the end address of the found
entry is greater than or equal to e, it returns the entry. If
the end address of the found entry is greater than s and less
than e, SemCache iterates through the subsequent entries
until it finds all the entries that overlap with the current
range. It then merges the ranges together, performing ap-
propriate data movement operations so that the eventual
state of the new entry is C.

Managing available GPU memory. The amount of data
sent to the GPU might be too large to fit the available
GPU memory. In such a situation, to allocate new data
in the GPU memory, cached data must to be freed. To de-
termine which address ranges should be freed, SemCache
keeps track of the number of hits for each tracked range
in the cache, and, when necessary, removes infrequently
used ranges from the GPU. The simple strategy we adopted
produced the minimal “miss rate” for our test applications.
Note that depending on the application other polices such
as least-recently-used may result in better handling of ca-
pacity misses. Multiple replacement polices can be easily
integrated with SemCache and the programmer can have
the option to choose between them.

4.3 Determining Granularity

SemCache by itself is simply a variable-granularity cache
that supports a few methods to transfer data between the
CPU and GPU. The key to SemCache’s utility is that the
granularity of the cache is determined by the semantics of
the GPU libraries being used in a program. In particular,
we note that the address ranges tracked by the cache are
determined during cache lookup: if a particular range has

CPU/GPU Read GPU Read/Write

GPU Write

CPU Read

CPU
Write

CPU Read/Write

Figure 4: Write-back
GPU/CPU //Shared)

protocol (States:

not been seen before, a new entry for that range is created.
Hence, if a library call takes as input matrices A and B and
produces as output a matrix C, the three matrices can be
individually tracked by performing lookups on their address
ranges. For example, if A were an n xn matrix (of floats), in-
voking lookup(A, A + 4 * n * n) would cause SemCache
to start tracking matrix A, and whether it existed on the
GPU or not. Note that the current implementation of Sem-
Cache only tracks contiguous memory ranges; data struc-
tures that are not contiguous ranges have to be tracked with
multiple entries.

4.4 SemCache Instrumentation and Protocols

The interfaces of SemCache can be used to implement a
basic protocol to manage data movement between the CPU
and GPU. The protocol tracks reads and writes on both de-
vices, and transfers data when necessary. Figure 4 shows the
basic protocol, which behaves similarly to an MSI coherence
protocol. Data that is computed on the GPU remains on
the GPU until the CPU needs to read it. Similarly, data
computed on the CPU remains on the CPU until the GPU
needs it. If either the CPU or GPU writes a piece of data,
that data is invalidated on the other device. Adopting the
terminology of Quintana-Orti et al., we call this a write-
back protocol [21]. Figure 5 shows the operations performed
on the various devices to implement this protocol. Note
that these methods return the translation record, as invok-
ing methods on the GPU may require knowing the addresses
where the necessary data is stored. Section 6 discusses how
a library writer can use these interface methods to manage
data movement for a particular library.

While writeGPU and readGPU are used before and after in-
vocations of library calls offloaded to the GPU, in the worst
case, every read and write on the CPU must be guarded by
writeCPU and readCPU (as in software caching approaches
for accelerators like the Cell). Section 4.5 discusses two ap-
proaches to inserting these guards.

We introduce a further protocol simplification. Because
reads on the CPU are much more prevalent than writes, and
because most results computed by the GPU are eventually
needed on the CPU, we eagerly transfer any data written by
the GPU during a library operation back to the CPU. This
affects how library operations that modify data are handled.
In the write-back protocol, writeGPU is invoked to invali-

© 00O Uk W -

//execute

TranslationRecord writeCPU (s,
entry = lookup (s, e);
invalidateOnGPU (entry) ;
return entry;

after writing CPU address range

e) {

[s,€)

//execute before reading CPU address range [s,e)
TranslationRecord readCPU(s, e) {

entry = lookup (s, e);

if (entry.status == G) //CPU data not current

transferToCPU (entry)

return entry;
}
//called after a GPU method that writes [s, e)
TranslationRecord writeGPU (s, e) {

entry = lookup(s, e);

invalidateOnCPU (entry) ;

return entry;
//called before a GPU method that reads [s, e)
TranslationRecord readGPU (s, e) {

entry = lookup (s, e);

if (entry.status == C) //GPU data not current

transferToGPU (entry) ;
return entry;

}

Figure 5: Operations to implement write-back pro-
tocol

CPU Write

GPU/CPU Read CPU Read/Write

GPU
Write
(updates
CPU) w
GPU Read/Write
Figure 6: Write-through protocol (States:
CPU/Shared)

date the data on the CPU. In the write-through protocol,
writeGPU is never invoked, but instead readCPU is immedi-
ately called to transfer the data back to the CPU. Section 6
gives a concrete example of how the implementation of a
library changes based on the protocol.

In the write-through protocol, data is never in the G state;
it can only be in C' or S. The simplified protocol is shown
in Figure 6. Because data is eagerly written back to the
CPU, we again adopt previous terminology and call this a
write-through protocol [21]. Note that because data is never
in the G state, we no longer need to instrument CPU reads,
reducing instrumentation overheads.

4.5 Instrumenting CPU Reads and Writes

SemCache provides two approaches to inserting instru-
mentation to implement the write-back and write-through
protocols: statically-inserted instrumentation (either by the
programmer or the compiler), and dynamic instrumentation
using the operating system’s page-protection facilities.

4.5.1 Statically-inserted Instrumentation

Conservatively, the programmer or compiler must guard
every read or write on the CPU with appropriate instru-
mentation. In practice, because data movement between the
CPU and GPU can only occur when GPU libraries are in-
voked, simple analyses can reduce this instrumentation over-

head. For example, any data that will never be sent to the
GPU (i.e., can never be passed to a method call executed on
the GPU) does not need to be instrumented. Furthermore,
reads or writes to array locations that occur in loops can
be guarded by a single call, with the parameters determined
by array analyses that determine what portions of an array
are accessed in a loop. These analyses, of which many exist,
are beyond the scope of this paper; we assume that such an
analysis has already been performed, allowing array accesses
to be efficiently guarded.

The run-time nature of SemCache tolerates instrumenta-
tion imprecision. In particular, looking up address ranges
that are not shared with the GPU does not introduce extra
communication, nor does invalidating the same range more
than once; these operations merely introduce extra caching
overhead. Conservatively invalidating an address region is
also safe: while this unnecessary invalidation causes unnec-
essary communication, it does not affect the correctness of
the program.

Note also that although we instrument particular reads
and writes, as well as particular GPU operations, to perform
our caching, the cache lookups, etc., are based on address
ranges. As a result, program behaviors such as aliasing do
not present correctness problems; the caching is performed
based on the underlying memory, not the specific name given
to that memory.

Even after removing unnecessary instrumentation through
the above analyses, and avoiding the instrumentation of
reads on the CPU with the write-through protocol, invoking
writeCPU before every write to data that may reside on the
GPU still introduces unnecessary instrumentation. For ex-
ample, on a write to data that has already been invalidated
on the GPU, it is redundant to look up the data and “re-
invalidate” it. Developing an analysis to remove redundant
instrumentation is a subject for future work.

4.5.2 Page-protection-based Instrumentation

Rather than using statically-inserted instrumentation of
CPU reads and writes to drive its protocols, SemCache can
also use the operating system’s virtual memory system to
detect when readCPU and writeCPU should be invoked. For
each data structure that SemCache tracks on the CPU, Sem-
Cache sets page protection flags for all the pages the data
structure spans. The page protection flags are set according
to the state of the data structure. If the structure is in G
state, its pages are set to PROT_NONE; if the structure is in S
state, its pages are set to PROT_READ; and if the structure is
in C state, the pages are set to PROT_READ | PROT_WRITE. If a
CPU access triggers a page fault, SemCache invokes readCPU
or writeCPU as appropriate to change the data structure’s
state in the cache and perform any necessary communica-
tion. The structure’s page protection flags are then reset to
correspond to its new cache state.

Note that although detection of accesses that require com-
munication occurs at the page granularity, communication
does not: if a structure needs to be communicated from
the GPU to the CPU, SemCache transfers the entire struc-
ture, and changes the status of all of the associated pages
on the CPU. This preserves SemCache’s variable-granularity
advantages.

The advantage of page-based invalidations over statically-
inserted invalidations is that these invalidations are handled
fully automatically; no additional instrumentation or com-

(a) SemCache (Write Back) (b) SemCache (Write Through)

CPU | GPU | | CPU | GPU
Send A, B
Start SendA, B . Start enes .
— (= R =
C=A%B Receive C C=A*B
D=B*C

ReceiveD D=B*C
AL
. E=C*D
Write/ Receive E

T ——— Write/
Read E

- *
Receivef E-C'D

Figure 7: SemCache communication model

piler analysis is required. However, there are disadvantages
as well: to work correctly with page-protection operations,
and to avoid false sharing issues, page-based invalidations
require that a program’s memory layout must be changed
to ensure that all data structures that may be communi-
cated to the GPU are page-aligned and padded out to page
boundaries.

We note that this page-based strategy is similar to that
used by DyManD [10]. However, unlike DyManD, Sem-
Cache still tracks data structures and maintains mappings
between the CPU and GPU according to semantic informa-
tion, rather than requiring direct memory mapping between
the CPU and GPU. In addition to allowing programs whose
working sets exceed GPU memory, SemCache’s approach
allows for semantic links to be formed between data on the
CPU and data on the GPU, as the next section explains.

4.6 SemCache in Practice

Figure 7 shows the data movement performed by our sys-
tem on the simple example of Figure 1 using the two dif-
ferent protocols. We note that when using the write-back
protocol (Figure 7(a)), SemCache performs the minimum
required data movement (cf. Figure 2(b)). At the first in-
vocation of matrix-multiply, A and B are transferred to the
GPU, and SemCache tracks them in S state. When C is
computed, it is tracked in G state. Because both B and C
are current on the GPU, later invocations of matrix mul-
tiply need not perform any more data transfer. Finally, E
will be transferred back to the CPU once that matrix is
read by other portions of the program. In the write-through
protocol (Figure 7(b)), the amount of communication from
the CPU to the GPU is minimal. However, because GPU
results are eagerly communicated back to the CPU, we see
that some extra communication is performed from the GPU
to the CPU.

Crucially, because all of the necessary instrumentation is
either automatically inserted or encapsulated in a GPU li-
brary (see Section 6), programmers can simply use SemCache-
enhanced GPU libraries as drop-in replacements for their
existing libraries.

5. SEMANTIC MAPPING WITH SemCache

This section discusses how the basic principles of Sem-
Cache can be extended and generalized to achieve additional
savings. In particular, we describe how ancillary structures
can be added to SemCache to allow it to “cache” the re-
sults of arbitrary functional computations, essentially al-
lowing SemCache to serve as a memoizing service for GPU

computations. This facility can be used for many purposes,
from avoiding expensive recomputations (e.g., storing only
the factorized forms of matrices on the GPU) to perform-
ing data layout transformations (e.g., mapping row-major
data structures on the CPU to column-major layouts on
the GPU). In essence, instead of directly mapping between
CPU and GPU data, SemCache can create a semantic link
between data on the CPU and a transformed version of that
data on the GPU.

To see how SemCache can create these semantic links, we
note that memoization effectively maps a particular input
of a function to its pre-computed output. That is, for a
function f : X — Y, a memoized input z is used to look
up its previously-computed output y, rather than evaluat-
ing f(z). If we consider z as data residing on the CPU,
and y as data residing on the GPU, then we can abstract
SemCache’s default behavior as simply the memoization of
the identity function f(x) = z. For a given input (i.e., data
on the CPU), SemCache provides the previously-computed
(i.e., previously-communicated) output (i.e.. data on the
GPU). In other words, SemCache is indexed by inputs on
the CPU and provides a map to the results of the identity
function stored on the GPU.

We can see that there is no need for SemCache’s opera-
tion to be restricted to memoizing the identity function on
to the GPU. The results of other functions can be memo-
ized as well. Consider performing matrix factorization (e.g.,
LU factorization) as an intermediate step in equation solve
(GESV), the factorization is not saved. Such factorizations
on the GPU are time consuming, so repeatedly factorizing
a matrix can be wasteful. Instead, we can use an extended
version of SemCache to cache the results of the factorization
on the GPU, instead of just the inputs to the factorization
operation.

Figure 8 shows how SemCache is extended. The same ad-
dress ranges tracked by the baseline cache are used to index
into a computation cache, which stores the GPU location of
the results of a particular computation. Since this data is
computation-specific, each type of computation to be mem-
oized will need separate lookup tables. Note that the com-
putation structures need not separately track the status of
the data. If the data in the main cache is ever invalidated on
the GPU (i.e., its status is changed to C), the corresponding
entries in any computation caches are simply removed.

To attempt to skip performing a GPU computation on
an address range [s, e), SemCache takes the following steps.
First, the range is found in the main cache. If the status of
the range is S or G, the lookup is repeated in the computa-
tion cache, and, if a result is found, the GPU computation
can be elided. If the status of the range is C, or there is
no entry in the computation cache, the GPU computation
is performed, the status of the range is set to S, and the
computation cache is updated.

We note that the particular set of lookups, and particu-
lar data stored, is based on the semantics of the computa-
tion being cached. Using SemCache to create semantic links
hence requires adding instrumentation to GPU libraries to
perform the necessary lookups, etc. Nevertheless, this in-
strumentation can be completely encapsulated in a library,
and its effects need not be visible to the programmer, pre-
serving the library as a drop-in replacement.

—
OO0~ U W~

=
N

N =

N\

CPU
Start Address

CPU
End Address

GPU
Start Address

Status

Communication Cache

N

CPU
Start Address

GPU Address
Pre-computed Value

Computation Cache

N\ J

Figure 8: Caching Directory Components

Caching Directory

cudaMalloc (A)
cudaMalloc (B)
cudaMalloc (C)

//Allocate space on device mem.
//Allocate space on device mem.
//Allocate space on device mem.

device
device
device

cublasSetMatrix (A)
cublasSetMatrix (B)
cublasSetMatrix (C)

//Move matriz A to
//Move matriz B to
//Move matriz C to

cublasDgemm (TRANSA, TRANSB,M, N, K, ALPHA,
A,LDA,B,LDB,BETA, C,LDC)

cublasGetMatrix (C) //Get matriz C from device

Figure 9: Matrix multiply using CUBLAS code

6. IMPLEMENTATION

To demonstrate how SemCache can be used to improve
the performance of GPU computation libraries, we use it
to produce a drop-in replacement for BLAS. This allows
programmers to replace BLAS calls in their code with calls
to our library, automatically offloading computation to the
GPU and handling memory management transparently. The
GPU kernels of our library are based on the corresponding
CUBLAS implementations. Our library supports either the
write-back protocol or the write-through protocol, controlled
by a compile-time flag. If instrumentation-based invalida-
tion is used, then CPU reads and writes must be instru-
mented as described in Section 4.4. If page-based invalida-
tions are used instead, no instrumentation need be inserted,
but malloc calls must be modified to page-align allocations
and pad to page boundaries to avoid false sharing, as de-
scribed in Section 4.5.2.

Figure 9 shows the sequence of calls that would be re-
quired to use CUBLAS to perform matrix multiply, with all
communication explicitly managed by the programmer. In
contrast, Figure 10 shows the interface for the SemCache-
enhanced version of matrix multiply.

Figure 11 shows how matrix multiply is implemented. Un-
der the hood, we still invoke the CUBLAS matrix multiply
method. However, all communication is managed by Sem-
Cache, and is only performed when necessary. When Sem-
Cache is called, the caching directory is searched for each
matrix using the start and end address in the main memory.
The start address is the pointer address and the end address
is calculated using the matrix size. The cache keeps a record

SemCacheDemm (TRANSA, TRANSB,M, N, K,ALPHA,
A,LDA,B,LDB,BETA, C,LDC)

Figure 10: SemCache library interface

SemCacheDemm (TRANSA, TRANSB, M, N, K, ALPHA,
A,LDA,B,LDB,BETA, C,LDC)
{

//A stored on CPU in memory range [A, A+MxKx8))
//A will be read by GPU, its state will be 7S7”
entryA = readGPU(A, A 4+ (M«xKx%8));

//B stored on CPU in memory range [B, B+(KxNx8))
//B will be read by GPU, its state will be 7S”
entryB = readGPU(B, B + (K*Nx8))

[C, C+(MxNx8))
will be ”S7”

//C stored on CPU in memory range
//C will be read by GPU, its state
entryC = readGPU(C, C 4+ (Mx«Nx8))

cublasDgemm (TRANSA, TRANSB,M, N, K, ALPHA,
entryA .gpu_s ,LDA,
entryB.gpu_s ,LDB,BETA,
entryC.gpu_s ,LDC)

//C was written by cublasDgemm
#ifdef WRITEBACK
//If we’re wusing write—back,
called to invalidate, C state
writeGPU (C, C 4+ (MxN=x8))
#else
//If we’re wsing write—through,
communicate to the CPU, C state
readCPU(C, C + (MxNx%8))
#endif
¥

writeGPU must be
will be "G”

we eagerly
will be 7S7”

Figure 11: Implementation of SemCache matrix
multiply (DGEMM)

of the start and end address in the main memory for each
matrix accessed using our library. If the matrix does not ex-
ist, it is transferred to the GPU and cached. A new record
is created for it in the cache. If the matrix is found in the
cache and it is in S state, then it is a hit and there is no need
to transfer the matrix to the GPU. The matrix address in
the GPU memory is taken from the translation record. This
address is used to access the matrix using CUBLAS. If the
matrix is not valid on the GPU (it is in C state), it is trans-
ferred to the GPU and the record in the cache is updated.
After all of the matrices are transferred or located in the
GPU memory, the CUBLAS call is executed. Then the re-
sult is transferred back to the main memory.

CUBLAS does not provide an implementation of general
equation solve (GESV), instead only providing triangular
solves for factorized matrices. While there exist several effi-
cient GPU implementations of LU factorization [23, 25], our
implementation instead implements equation solve in two
steps: we compute the LU factorization on the CPU, then
perform the equation solve on the GPU using CUBLAS’s
triangular-solve routines. We then use SemCache’s compu-
tation caching capability to avoid performing the factoriza-
tion whenever possible. This implementation was chosen to
demonstrate SemCache’s generalized memoization ability.

7. EXPERIMENTAL EVALUATION

Experiments were run on a server with 24 AMD Opteron
6164 HE Processors (1.7 GHz, 512 KB L2 cache), 32 GB
memory, running 64-bit Fedora Linux, and NVIDIA Tesla
C2070 card (6 GB memory) with a peak memory bandwidth
of 144 GB/s. Three libraries were used: CUBLAS version
4.0, CULA Dense R15 and MAGMA version 1.2. Each test
was run 3 times, distributed over a wide range of time, on
an unloaded machine and the median time selected.

M CUBLAS* (Baseline) B SemCache (WB) @ SemCache (WT) OCULA OMAGMA*

2.0

1.8

-
o

|
x

Normalized Execution Time
o B op
oo o ~N

[o]
e ° o o
o N B o

T T T
512 1024 4096 8192
Matrix Size

Figure 12: Test case normalized execution time
*(Communication in CUBLAS and MAGMA is
hand optimized)

We evaluated our library in two ways. First, we used a test
case based on a series of matrix multiplications (as in Fig-
ure 1). The simplicity of the test case allowed us to perform
several comparisons with other libraries, as well as test the
two SemCache protocols. Nevertheless, the primary target
for our work is large-scale computational applications where
hand-tuning is infeasible. To study SemCache’s effectiveness
in this setting, we used our modified BLAS libraries (see Sec-
tion 6) on a large-scale, real-world computational mechanics
application, which uses finite element methods and domain
decomposition to solve a structural dynamics problem.

As described in Section 4.4, SemCache can perform in-
validations either with statically-inserted instrumentation
at CPU reads and writes, or using a page-protection-based
mechanism. We found empirically that the two approaches
perform equivalently; in the experiments presented here, we
use instrumentation to perform invalidations.

7.1 Test Case Performance Evaluation

Figure 12 shows the total execution time for the test case.
The results are collected using CUBLAS, CULA Standard
Interface (which automatically manages communication be-
tween the CPU and GPU), MAGMA and SemCache using
both write-back and write-through policies. Communication
in CUBLAS and MAGMA are hand tuned. The total exe-
cution time is normalized to CUBLAS execution time. The
best performance is achieved by hand tuning the memory
transfers using CUBLAS. CULA performance was slowed
down due to the repeated unnecessary transfers. SemCache
write-back performance matches the optimal communica-
tion performance using CUBLAS, but is slightly slower due
to caching overhead. SemCache write-through performance
is the next closest to the optimal communication perfor-
mance. The slowdown is due to the eager copying back of
the result to the CPU after each multiplication. MAGMA'’s
performance varies based on the matrix size (as it uses dif-
ferent kernels tuned to different matrix sizes), but overall
uses slower implementations than CUBLAS.

Communication savings. Figure 13 breaks down the
communication performed for a medium-sized squared ma-
trix (N=4096), distinguishing between data sent and data
received. We collected data for CUBLAS, MAGMA, Sem-
Cache write-back, SemCache write-through and CULA. Hand-
tuned communication for CUBLAS and MAGMA minimize
the memory transfers. SemCache write-back performs ex-
actly as much communication as hand-tuned libraries. It

W Transfered To GPU

OReceived from GPU

N
%
=]

—

.
u
o

Data Size in MB
N
o
o

[N
o
[S]

o
o

CUBLAS, SemCache (WB)
& MAGMA

Figure 13: Test case
(N=4096)

SemCache (WT) CULA

communication results

performs the minimum amount of data transfers, as the data
is already cached on the GPU and is only sent back when
needed. In SemCache write-through, the data sent to the
GPU is minimized. However, data is always copied back,
introducing redundant communication. CULA shows the
most overhead since matrices are sent to the GPU for every
calculation. The results are also sent back to main memory
after each calculation, introducing extra communication.

7.2 Computational Mechanics Case Study

We next tested SemCache’s performance in a real-world
setting. We studied a large computational mechanics ap-
plication. In this application domain decomposition is used
for the simulation of structural dynamics problems. Domain
decomposition methods solve a boundary value problem by
splitting it into smaller boundary value problems on sub-
domains and iterating to coordinate the solution between
adjacent subdomains. Then the Newmark-beta method of
numerical integration is used to solve differential equations.
The application we use solves the subdomains recursively.
This method was introduced by [20]. Typical structural dy-
namics problem include simulation of the effect of cracks in
structures, or buildings under stress.

Most of the application’s execution is spent performing
linear algebra routines. Three main double-precision lin-
ear algebra subroutines are used: matrix multiplications
(DGEMM) and scalar multiplication/vector addition (DXPY)
to couple and update the subdomains results and equation
solve (DGESV) to solve the system of equations at each
node. Because these operations make up a large fraction of
the application’s computation, they are attractive targets for
offloading. However, optimizing communication in this ap-
plication is essentially impossible. The application has tens
of thousands lines of code, and the relationship between var-
ious linear algebra operations is difficult to reason about due
to recursive calls and multiple abstraction layers.

We evaluated five versions of this application. A serial
CPU version that performed no offloading, a CUBLAS ver-
sion with hand-inserted unoptimized communication (com-
munication can’t be optimized manually due to program
abstraction), a CULA version that simply replaces all CPU
BLAS calls with CULA BLAS calls, a version using our Sem-
Cache write-through library, and another version using our
SemCache write-back library.

The SemCache versions of the application exploit com-
putation caching in two ways. First, as described in Sec-
tion 6, our implementation of equation solve leverages Sem-
Cache’s computation-saving capabilities to memoize the re-

EHCPU MBCULA mCUBLAS (Baseline) O SemCache(WT) O SemCache(WB)

4.04
12 . 565 3.55

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

Normalized Execution Time

0.0 -

Cubel0

Rocket32 Cubel4

Inputs
Figure 14: Testing application normalized execution
time

sults of matrix factorization. Second, the baseline CPU ver-
sion of the application uses row-major storage for its matri-
ces, while CUBLAS assumes column-major storage. Sem-
Cache thus creates a semantic link between the two repre-
sentations, avoiding performing the transformation unless
the data changes®.

We used three inputs with different characteristics, rang-
ing across various sizes: Rocket32, which has 7262 nodes
and takes 246 seconds to run on the CPU; Cubel4, which
has 3375 nodes and takes 130 seconds to run on the CPU;
and Cubel0, which has 1331 nodes and takes 10 seconds to
run on the CPU.

Execution time. Figure 14 shows the total execution time
for the five variants of the application, across the three in-
puts. Run time is normalized to the CUBLAS variant. All
inputs gained from three to six times speedups when running
on the GPU over the CPU version. CULA and CUBLAS
performance was very similar. CULA uses CUBLAS as
an underlying library with a few additional optimizations.
Both approaches incur the cost of extra communication. Us-
ing SemCache with write-through policy, the performance
improved (30% to 40%) over the GPU CUBLAS baseline
version due to the communication savings from caching.
SemCache with write-back gained an additional 4-10% over
write-through, as data was only transferred back to the CPU
when needed. The inputs speedup ranges are different based
on the structure of input and domain decomposition. In-
puts whose subdomains have larger shared interfaces gen-
erate more matrices that will be repeatedly reused. As a
result, caching yields more benefits.

Communication savings. Table 1 shows the amount of
data transferred to the GPU. The SemCache results show
the optimal communication for the application since all of
the calculations were computed on the GPU and the hit rate
was 100%. Using SemCache, more than 80% of the unop-
timized communication is reduced. Both write-through and
write-back policies reduced the size of the data sent to the
GPU. Write-back policy reduced the size of the data received
from the GPU. These savings are a result of eliminating re-
dundant transfers since the data in the testing application
is shared between different subdomains. The same matrices
will be reused multiple times for different subdomains.

?Because the row-major/column-major transformation is
only necessary due to an implementation detail of the orig-
inal application, we factor out the transformation time for
the non-SemCache versions in all our results.

35 —

O CUBLAS
2.5

B SemCache

—

-

Computation Time in Seconds

o

Rocket32 Cubel4 Cubel0
Inputs
Figure 15: Computation time for factorization
Input/Library CUBLAS SemCache
Sent | Received | Sent | Received
Rocket32 23.70 | 5.58 2.02 | 2.45
Cubel4d 10.67 | 1.53 1.01 | 0.63
Cubel0 3.01 0.33 0.29 | 0.13

Table 1: Size of transferred data using CUBLAS
versus SemCache (in GB)

Computation caching. We evaluated the savings of per-
forming computation saving for LU factorization. Figure 15
shows the LU factorization time on the CPU for out testing
application. Using SemCache, repeated computations are
eliminated since the factorized matrices are already cached.
Fewer factorizations are needed, which reduces the total
computation time by more than 80% .

Caching overhead. Table 2 shows the data transfer time
to GPU for different inputs. The results show that the
caching overhead is very low (less than 4% of SemCache
total runtime). The overhead comes mainly from searching
and updating the cache directory. The transfer time using
our library including the caching overhead is significantly
less than the transfer time for CUBLAS without caching.
We note, however, that our low caching overhead is due to
SemCache’s variable granularity, which requires fewer inval-
idations and fewer lookups.

Instrumentation statistics. For our testing application,
more than 10,000 lines of code and around 45 BLAS and
LAPACK calls are used. No writeCPU invalidations were
needed because the all of the calculations were computed on
the GPU. For the write back protocol, reads were instru-
mented using readCPU API. Seven API calls were needed.

Table 3 shows how many times matrix multiply (GEMM),
equation solve (GESV), scalar multiplication and vector ad-
dition (XPY), copy (COPY), lookup and invalidation op-
erations were executed. The lookup matches exactly the
number of matrices sent to the GPU (3 per GEMM, 2 per
GESV, XPY and COPY).

Comparison with fixed-granularity approaches. One
of the primary advantages of SemCache over distributed-
shared memory systems is its ability to track data and per-
form communication with variable granularity, rather than
using a fixed granularity. To quantify this benefit, we modi-
fied the page-protection version of SemCache (Section 4.5.2)
to perform communication in page-sized chunks, rather than
tracking entire data structures®. Figure 16 compares the

3This variant is not strictly correct, as without transfer-

Input/Library || CUBLAS SemCache
Transfer | Transfer | Caching Over.

Rocket32 11.09 0.86 0.38

Cubel4 5.27 0.47 0.05

Cubel0 1.32 0.12 0.023

Table 2: Data transfer time from CPU to GPU for
CUBLAS versus SemCache with overhead (in sec-
onds)

Input/Op. || GEMM | GESV | XPY | COPY | Lookup
Rocket32 6720 1209 3520 | 480 30578
Cubel4 944 233 688 104 4882
Cubel0 470 131 394 62 2584

Table 3: Operations count at runtime

CUBLAS baseline with this DSM-like approach as well as
SemCache’s variable-granularity approach on our case study®.
Clearly, fixed-granularity tracking does not perform as well
as SemCache.

Interestingly, the total amount of data communicated is
the same for both the fixed-granularity and variable-granu-
larity versions. The performance difference arises because
fixed-granularity tracking breaks that communication into
more discrete communication operations, incurring additional
overhead. Clearly, taking advantage of semantic information
to perform variable-granularity tracking and communication
yields a notable performance benefit.

8. CONCLUSIONS

The proliferation of libraries of GPU kernels has made
it easy to improve application performance by offloading
computation to the GPU. However, using such libraries still
introduces the complexity of managing explicit data move-
ment. Unfortunately, when using these libraries with com-
plex applications with multiple levels of abstraction, it is
very difficult to reason about how multiple kernel invoca-
tions interact with one another, and hence avoid redundant
communication. In this paper, we introduced SemCache, a
semantics-driven caching technique that can tune its gran-
ularity based on the semantics of the GPU libraries in an
application. SemCache can automatically detect and avoid
redundant communication. We evaluated SemCache on a
large, real-world application and showed that our approach
can deliver significant performance improvements over state-
of-the-art GPU libraries.

There are many promising avenues of future work. Sem-
Cache’s computation-caching mechanism already supports
mapping a data layout on the CPU to a different layout on
the GPU. This facility can be extended to allow SemCache to
track non-contiguous data structures, for example mapping
a set of locations on the GPU to a single, contiguous, packed
location on the GPU. We also plan to extend SemCache to
support kernels distributed/offloaded across multiple GPUs
and to automatically manage and optimize communication
between the CPU main memory and several GPUs not only
for a single kernel but for the entire application.

ring data at matrix granularity, the semantic mapping be-
tween row-major and column-major representations cannot
be maintained. Nevertheless, this variant lets us explore the
penalty of page-granularity caching.

4Due to limitations of the page-based approach, large inputs
(such as Rocket32) cannot be run.

Normalized Execution Time

B CUBLAS (baseline) EDSM OSemCache(WB)

1.2

0.8 -

0.4 -

0.2 +

Cubel4d

Cubel0
Inputs

Figure 16: Testing application normalized execution
time for CUBLAS, SemCache write-back and DSM

9.

ACKNOWLEDGMENTS

We would like to thank Hasan Jamal, Chenyang Liu and
Arun Prakash for the computational mechanics application
code we used in our case study and for their support and
feedback during this work. We would also like to thank
the anonymous reviewers for their feedback and suggestions.
This research is supported by the Department of Energy
under contract DE-FC02-12ER26104. The GPU hardware
we used was provided by an equipment grant from Nvidia.

References

1]

2]

C. Amza, A. L. Cox, H. Dwarkadas, P. Keleher,

H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared memory computing on networks
of workstations. IEEE Computer, 29:18-28, 1996.

E. Anderson, Z. Bai, C. Bischof, S. Blackford,

J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK users’ guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition,
1999.

E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta,
R. Mayo, and E. S. Quintana-Orti. An extension of
the StarSs programming model for platforms with
multiple GPUs. In Proceedings of the 15th
International Euro-Par Conference on Parallel
Processing, Euro-Par '09, pages 851-862, 2009.

BLAS. Basic linear algebra subprograms.
http://wuw.netlib.org/blas/.

K. Datta, M. Murphy, V. Volkov, S. Williams,

J. Carter, L. Oliker, D. Patterson, J. Shalf, and

K. Yelick. Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures.
In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC '08, pages 4:1-4:12, 2008.

M. Fogue, F. D. Igual, E. S. Quintana-Orti, and R. A.
van de Geijn. Retargeting PLAPACK to clusters with
hardware accelerators. In HPCS, pages 444-451, 2010.

I. Gelado, J. E. Stone, J. Cabezas, S. Patel,

N. Navarro, and W.-m. W. Hwu. An asymmetric
distributed shared memory model for heterogeneous
parallel systems. In Proceedings of the fifteenth edition
of ASPLOS on Architectural support for programming
languages and operating systems, ASPLOS XV, pages
347-358, 2010.

M. Gonzalez, N. Vujic, X. Martorell, E. Ayguadé,

A. E. Eichenberger, T. Chen, Z. Sura, T. Zhang,

K. O’Brien, and K. O’Brien. Hybrid access-specific
software cache techniques for the Cell BE architecture.
In Proceedings of the 17th international conference on

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

20]

21]

(22]

23]

(24]

(25]

Parallel architectures and compilation techniques,
PACT ’08, pages 292-302, 2008.

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L.
Paolini, and E. J. Kelmelis. CULA: hybrid GPU
accelerated linear algebra routines. SPIE Defense and
Security Symposium (DSS), pages 770502-770502-7,
2010.

T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I.
August. Dynamically managed data for CPU-GPU
architectures. In Proceedings of the Tenth
International Symposium on Code Generation and
Optimization, CGO 12, pages 165-174, 2012.

T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson,
S. R. Beard, and D. I. August. Automatic CPU-GPU
communication management and optimization.
SIGPLAN Not., 47(6):142-151, June 2011.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. Shippy. Introduction to the
Cell multiprocessor. IBM Journal of Research and

Development, 49(4.5):589 —604, july 2005.

M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng. Merge: a programming model for
heterogeneous multi-core systems. SIGPLAN Not.,
43(3):287-296, Mar. 2008.

C.-K. Luk, S. Hong, and H. Kim. Qilin: exploiting
parallelism on heterogeneous multiprocessors with
adaptive mapping. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pages 4555, 2009.

D. Merrill, M. Garland, and A. Grimshaw. Scalable
GPU graph traversal. SIGPLAN Not., 47(8):117-128,
Feb. 2012.

B. Nitzberg and V. Lo. Distributed shared memory: a
survey of issues and algorithms. Computer, 24(8):52
—60, aug. 1991.

NVIDIA. CUDA. http:
//www.nvidia.com/object/cuda_home_new.html.
NVIDIA. CUDA toolkit 4.0 CUBLAS library.
http://docs.nvidia.com/cuda/cublas/index.html.
J. A. Pienaar, A. Raghunathan, and S. Chakradhar.
MDR: performance model driven runtime for
heterogeneous parallel platforms. In Proceedings of the
international conference on Supercomputing, ICS '11,
pages 225-234, 2011.

A. Prakash and K. D. Hjelmstad. A FETI-based
multi-time-step coupling method for Newmark
schemes in structural dynamics. International Journal
for Numerical Methods in Engineering,
61(13):2183-2204, 2004.

G. Quintana-Orti, F. D. Igual, E. S. Quintana-Orti,
and R. A. van de Geijn. Solving dense linear systems
on platforms with multiple hardware accelerators.
SIGPLAN Not., 44(4):121-130, Feb. 2009.

G. Quintana-Orti, F. D. Igual, E. S. Quintana-Orti,
and R. A. van de Geijn. Solving dense linear systems
on platforms with multiple hardware accelerators. In
Proceedings of the 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming,
PPoPP ’09, pages 121-130, 2009.

P. D. S. Tomov, R. Nath and J. Dongarra. MAGMA
version 0.2 users’ guide.
http://icl.eecs.utk.edu/magma/, 2009.

C.-Y. Shei, P. Ratnalikar, and A. Chauhan.
Automating GPU computing in MATLAB. In
Proceedings of the international conference on
Supercomputing, ICS ’11, pages 245-254, 2011.

V. Volkov and J. W. Demmel. Benchmarking GPUs
to tune dense linear algebra. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, SC
’08, pages 31:1-31:11, 2008.

