
THE GALOIS SYSTEM: OPTIMISTIC
PARALLELIZATION OF IRREGULAR PROGRAMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Milind Vidyadhar Kulkarni

August 2008

c© 2008 Milind Vidyadhar Kulkarni

ALL RIGHTS RESERVED

THE GALOIS SYSTEM: OPTIMISTIC PARALLELIZATION OF IRREGULAR

PROGRAMS

Milind Vidyadhar Kulkarni, Ph.D.

Cornell University 2008

The last several years have seen multicore architectures become ascendant in

the computing world. As a result, it is no longer sufficient to rely on increas-

ing single-threaded performance to improve application performance; instead,

programmers must turn to parallelization to realize the performance gains of

multicore architectures. While much research over the past three decades have

focused on parallelizing regular programs which operate over arrays and matri-

ces, much less effort has been focused on irregular programs which operate over

pointer-based data structures such as trees and graphs. In fact, it is not even

clear that a significant amount of parallelism even exists in these applications.

We identify a common type of parallelism that arises in irregular programs

that operate over worklists of various kinds, which we call amorphous data-

parallelism. Due to the data-dependent nature of these applications, static com-

piler analysis does not suffice to uncover any parallelism. Instead, successful

parallelization requires speculative, or optimistic, parallelization. However, ex-

isting speculation techniques, such as thread-level speculation, are too low-level

to recognize and extract useful parallelism from these applications.

We present the Galois system for optimistic parallelization which uses high-

level abstractions to express amorphous data-parallelism in irregular programs,

and uses semantic properties of data structures to automatically parallelize such

programs. These abstractions allow programs with amorphous data-parallelism

to be written in a sequential manner, relying on run-time support to extract

parallelism.

We then develop abstractions which allow programmers to succinctly cap-

ture locality properties of irregular data structures. We show how these ab-

stractions can be used to improve locality, improve speculation performance

and reduce speculation overhead. We also present a novel parallel scheduling

framework which allows programmers to leverage algorithm semantics to in-

telligently schedule concurrent computation, improving performance.

We demonstrate the utility of the Galois approach, as well as the extensions

that we propose, across a wide range of irregular applications demonstrating

amorphous data-parallelism. We find that the Galois approach can be used to

extract significant parallelism with low programmer overhead.

BIOGRAPHICAL SKETCH

Milind Kulkarni was born in Chapel Hill, North Carolina on August 19th, 1982

but soon moved to Durham, North Carolina. Living in Durham proved benefi-

cial, as it meant he could attend the North Carolina School of Science and Math-

ematics while still being able to come home every weekend for home cooking.

He graduated from NCSSM in 1998.

As a North Carolinian born-and-bred, Milind had to pick sides among the

great college basketball powerhouses of Tobacco Road. Rather than taking the

easy way out, he found himself at North Carolina State University, where he

made lifelong friends and discovered the joys and sorrows of rooting for a

perennial underdog (Wolf! Pack!). He graduated from NC State in 2002 with

degrees in both Computer Science and Computer Engineering, and a plan to

pursue a Ph.D. in “either Artificial Intelligence or Compilers.” Soon after join-

ing the Department of Computer Science at Cornell University, he chose the

latter.

He spent four years in upstate New York, learning to love snow and long

winters, and then jumped at the opportunity to move to Austin, Texas, where

there is no snow and “winter” means occasionally wearing a long-sleeve shirt.

He has lived in “the ATX” for the past two years.

iii

To my parents

iv

ACKNOWLEDGEMENTS

Pursuing a Ph.D. is a long and often arduous process. The list of people who

helped me along the way is equally long, and attempting to acknowledge each

of them and thank them appropriately is similarly arduous. Because I have

no hope of adequately expressing my gratitude to all those who got me to this

point, I must instead list a few and hope that others not recognized understand

that the omission is one of forgetfulness and oversight, not of intent.

I must first, of course, thank my parents, Radhika and Vidyadhar Kulka-

rni. They have always been supportive and encouraging, not only by word and

deed but by example. Both of them have Ph.D.s, which made it clear to me

that in order to have the kind of life that I wanted, it was necessary that I, too,

obtain a Ph.D. Their memories of pursuing a Ph.D. served me in good stead

as I encountered the ups and downs common to any grad school experience. I

must also thank my brothers, Ashwin and Arvind, as they made coming home

to decompress from work a worthwhile experience.

When I first arrived at Cornell, I was assigned an office randomly. As luck

would have it, a few of my first year officemates became my closest friends

through grad school. For shared experiences, from adjusting to life as a graduate

student, to movie nights, to heading off to Montreal in the summer on a whim,

I must thank Kamal and Ganesh sincerely. I also must acknowledge friends, in

Ithaca and Austin, and old friends from home, who kept me sane and happy:

Vinney, Chethan, Siggi, Nick, Mike, Ben and many others.

My group-mates over the years provided invaluable advice to me, from how

to manage time, to how to balance the demands of graduate school and one’s

social life, to how to best catch my advisor for meetings. Most importantly, they

provided a productive and enjoyable work environment. The cast of characters

v

is continually changing, but I thank them all: Greg, Dan, Kamen and Rohit at

Cornell, and Patrick, Martin and Dimitrios at UT.

I have the utmost gratitude to my Special Committee members, Kavita Bala,

José Martı́nez and Radu Rugina, who taught me, read revisions of this doc-

ument, collaborated on papers and provided advice. Without their help, this

work would be less advanced and presented far more crudely. And, of course,

I must thank my advisor, Keshav Pingali, who has molded my academic career,

influenced my perspectives on research, provided ideas and in general been a

mentor to me.

Finally, I would like to thank Monique Shah. Her support and companion-

ship have been the foundation that I needed to finish my research, begin writing

this thesis and finally complete my Ph.D.

This research has been supported by the US Department of Energy High-

Performance Computer Science Fellowship program, administered by the Krell

Institute.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 The need for parallel programs . 1
1.2 Amorphous data-parallelism . 3
1.3 Existing approaches to parallelizing irregular programs 6
1.4 Our approach . 11
1.5 Contributions and organization . 15

2 Application Studies 17
2.1 Delaunay mesh refinement . 17
2.2 Delaunay triangulation . 20
2.3 Agglomerative clustering . 23

2.3.1 Priority queue-based clustering 24
2.3.2 Unordered clustering . 26

2.4 Boykov-Kolmogorov maxflow . 27
2.5 Preflow-push maxflow . 29

3 The Galois system 32
3.1 Overview . 32
3.2 Programming model . 34

3.2.1 Optimistic set iterators . 34
3.2.2 Memory model . 36
3.2.3 Execution model . 36
3.2.4 Discussion . 37

3.3 Class libraries . 40
3.3.1 Consistency through atomic methods 42
3.3.2 Isolation through semantic commutativity 43
3.3.3 Atomicity through undo methods 49
3.3.4 Object wrappers . 50
3.3.5 Discussion . 55
3.3.6 A small example . 66

3.4 Run-time system . 68
3.4.1 Scheduler . 69
3.4.2 Arbitrator . 69
3.4.3 Commit pool . 71
3.4.4 Conflict logs . 73

vii

3.5 Case studies . 74
3.5.1 Delaunay mesh refinement 75
3.5.2 Priority queue-based agglomerative clustering 83
3.5.3 Performance on 4-core Xeon 87

3.6 Summary . 88

4 Partitioning For Performance 90
4.1 Overview . 90

4.1.1 Scalability issues . 90
4.1.2 Locality vs. parallelism . 91
4.1.3 Achieving scalability . 94

4.2 Partitioning . 95
4.2.1 Abstract domains . 98
4.2.2 Data partitioning . 99
4.2.3 Computation partitioning 104

4.3 Reducing conflict detection overhead 106
4.3.1 Partition locks . 107
4.3.2 Overdecomposition . 109

4.4 Implementation . 112
4.5 Case studies . 116

4.5.1 Delaunay mesh refinement 117
4.5.2 Boykov-Kolmogorov maxflow 121
4.5.3 Preflow-push maxflow . 124
4.5.4 Unordered agglomerative clustering 126

4.6 Summary . 128

5 Flexible Scheduling 131
5.1 Overview . 131
5.2 Scheduling framework . 133

5.2.1 Comparison with scheduling of DO-ALL loops 134
5.2.2 Our approach . 135

5.3 Sample policies . 137
5.3.1 Clustering . 138
5.3.2 Labeling . 140
5.3.3 Ordering . 141

5.4 Applying the framework . 142
5.5 Iteration granularity . 143

5.5.1 Iteration coalescing . 144
5.5.2 Discussion . 148

5.6 Case studies . 148
5.6.1 Delaunay mesh refinement 149
5.6.2 Delaunay triangulation . 153
5.6.3 Boykov-Kolmogorov maxflow 156
5.6.4 Preflow-push maxflow . 160

viii

5.6.5 Unordered agglomerative clustering 162
5.6.6 Summary of results . 164

5.7 Summary . 166

6 Context and Conclusions 167
6.1 Other models of parallelism . 167

6.1.1 Decoupled software pipelining 167
6.1.2 Task parallelism . 168
6.1.3 Stream parallelism . 170
6.1.4 Functional and data-flow languages 171

6.2 Summary of contributions . 172
6.3 Future work . 175

Bibliography 178

ix

LIST OF TABLES

3.1 Mesh refinement: committed and aborted iterations for meshgen 76
3.2 Mesh refinement: instructions per iteration on a single processor 78
3.3 Mesh refinement: L3 misses (in millions) for meshgen(r) 80
3.4 Agglomerative clustering: committed and aborted iterations in

treebuild . 82
3.5 Agglomerative clustering: instructions per iteration on a single

processor . 82
3.6 Agglomerative clustering: L3 misses (in millions) 83
3.7 Results on dual-core, dual-processor Intel Xeon 88

4.1 Performance of random worklist vs. stack-based worklist for De-
launay mesh refinement . 92

4.2 Execution time (in seconds) for Delaunay mesh refinement. . . . 119
4.3 Uniprocessor overheads and abort ratios 120
4.4 Execution time (in milliseconds) for B-K maxflow. 122
4.5 Uniprocessor overheads and abort ratios 123
4.6 Execution time (in seconds) for preflow-push. 124
4.7 Uniprocessor overheads and abort ratios 125
4.8 Execution time (in seconds) for agglomerative clustering. 127
4.9 Uniprocessor overheads and abort ratios 127

5.1 Execution time (in seconds) and abort ratios for Delaunay mesh
refinement . 152

5.2 Execution time (in seconds) and abort ratios for Delaunay trian-
gulation . 155

5.3 Execution time (in ms) and abort ratios for B-K maxflow 157
5.4 Execution time (seconds) and abort ratios for preflow-push

maxflow . 161
5.5 Execution time (in seconds) and abort ratios for agglomerative

clustering . 163
5.6 Highest-performing scheduling policies for each application . . . 164

x

LIST OF FIGURES

1.1 Pseudocode of the mesh refinement algorithm 4
1.2 Mesh refinement . 5
1.3 The goal of the Galois system . 14

2.1 A Delaunay mesh . 18
2.2 Fixing a bad element. 18
2.3 Pseudocode of the mesh refinement algorithm 19
2.4 Processing triangles in parallel . 19
2.5 Pseudocode for Delaunay triangulation 21
2.6 Delaunay triangulation: Adding a point to a mesh, then flipping

an edge . 22
2.7 Agglomerative clustering . 23
2.8 Pseudocode for agglomerative clustering 25
2.9 Psuedocode for unordered agglomerative clustering 26
2.10 Pseudocode for Boykov-Kolmogorov algorithm 28
2.11 Pseudocode for preflow-push . 30

3.1 High-level view of Galois execution model 33
3.2 Delaunay mesh refinement using set iterator 35
3.3 Interleaving method invocations from different iterations 42
3.4 Generic Galois wrapper . 51
3.5 Example commutativity specification for a Set 53
3.6 Transactional memory vs. concrete commutativity 57
3.7 Problems with return-dependent methods 60
3.8 Example demonstrating race due to return-dependent methods . 61
3.9 Using semantic undo for rollback 63
3.10 Example accumulator code . 66
3.11 Iteration record maintained by run-time system 69
3.12 Mesh Refinement: execution times 76
3.13 Mesh refinement: self-relative speed-ups 76
3.14 Mesh refinement: breakdown of instructions and cycles in mesh-

gen . 78
3.15 Mesh refinement: breakdown of Galois overhead 79
3.16 Agglomerative clustering: execution times 81
3.17 Agglomerative clustering: self-relative speed-ups 81
3.18 Agglomerative clustering: commit pool occupancy by RTC itera-

tions . 81
3.19 Agglomerative clustering: breakdown of instructions and cycles 82
3.20 Agglomerative clustering: breakdown of Galois overhead 83
3.21 Commit pool occupancy over time 86

4.1 Execution time of random worklist vs. stack-based worklist for
Delaunay mesh refinement . 93

xi

4.2 Data partitioning in the Galois system 99
4.3 Relationship between overdecomposition factor and performance 110
4.4 Relationship between overdecomposition factor and log(abort

rate) . 111
4.5 Class hierarchy for graphs . 113
4.6 Speedup vs. # of cores for Delaunay mesh refinement 119
4.7 Speedup vs. # of cores for B-K maxflow 122
4.8 Speedup vs. # of cores for preflow-push 125
4.9 Speedup vs. # of cores for agglomerative clustering 127

5.1 Scheduling framework . 136
5.2 Speedup vs. # of cores for Delaunay mesh refinement 152
5.3 Speedup vs. # of cores for Delaunay triangulation 155
5.4 Speedup vs. # of cores for B-K maxflow 158
5.5 Performance of inherited vs. partitioned clustering for B-K maxflow 160
5.6 Speedup vs. # of cores for preflow-push maxflow 161
5.7 Speedup vs. # of cores for agglomerative clustering 164

xii

CHAPTER 1

INTRODUCTION

1.1 The need for parallel programs

Since the advent of the microprocessor, computer performance has been dom-

inated by Moore’s Law [85]: the number of transistors on a single chip grows

at an exponential rate over time. This “law” has held for the past half-century,

and may well continue to hold in the future. However, a classic misstatement of

Moore’s Law holds that the performance of processors will grow exponentially,

and, indeed, double every 18 months. In other words, a given program would

run twice as fast on a current processor than it would on a year-and-a-half-old

processor. It is this misstated variant law that has held currency in the popular

consciousness, and striving to meet its dictates has driven much of the architec-

ture research of the past several decades. Unlike the original Moore’s Law, the

future relevance of this misstated law is still very much in question.

Over the past several decades, architects have successfully translated the

increased transistor density predicted by Moore’s Law into the higher per-

formance expected by the misstated law. Until recently, processor speeds

(as a proxy for processor performance) have adhered to this exponential

growth curve [99]. Unfortunately, this improved performance came at the cost

of increased power demands, as power consumption is proportional to fre-

quency [111]. As a result of this “power wall,” the frequency of processors has

leveled off in recent years; hence, uniprocessor performance no longer grows at

its historical rate.

Because increasing transistor density can no longer translate into increased

uniprocessor performance, architects have turned to multicore processors [95].

1

Rather than a single processor, CPUs now contain multiple processors on a sin-

gle chip. Furthermore, the number of cores on a chip is expected to increase

exponentially, to continue tracking with Moore’s Law. While multicore archi-

tectures successfully utilize the extra transistors at hand, the consequence of

this paradigm shift is that what was previously a hardware problem has instead

become a software problem.

In years past, programmers could count on increasing uniprocessor speeds

to improve the performance of their programs. In other words, the problem of

improving performance was solved by hardware. However, now that unipro-

cessor speed increases have stalled, programmers can no longer rely on hard-

ware to deliver the expected performance improvements. Instead, software must

improve to utilize the parallel processing capabilities afforded by multicore ar-

chitectures.

To take advantage of multicore processors, software must be multithreaded.

Unfortunately, writing parallel programs is significantly more difficult than

writing sequential code. In the past, the high barrier to entry of parallel pro-

gramming was not an issue. The only demand for parallel programs was in the

high performance computing space, and only a small subset of programmers

needed to be able to write correct, efficient parallel code. However, the coming

ubiquity of multicore processors means that we must cast the net of parallelism

wider, opening up more classes of programs to parallelization and making par-

allel programming accessible to more programmers.

It is thus imperative to investigate what kinds of parallelism exists in a wide

variety of programs and to ameliorate the difficulties of writing parallel pro-

grams. In this thesis, we focus on writing and efficiently executing parallel pro-

grams that exhibit amorphous data-parallelism, which we explain in the following

2

section.

1.2 Amorphous data-parallelism

There are two key issues that programmers must consider when writing mul-

tithreaded code: (i) dividing a program up among multiple processors, and (ii)

ensuring that multiple threads correctly coordinate access to shared data. Es-

sentially, these are the problems of finding parallelism and exploiting parallelism.

A common source of parallelism is data-parallelism [62]. In data-parallelism,

a loop iterates over some iteration space, and each iteration performs the same

operations on a different point in the iteration space. If the iterations are inde-

pendent of one another, these iterations can be executed in parallel. By focusing

on data-parallelism, we can reduce the problem of parallelization to (i) identi-

fying potentially data-parallel loops and (ii) correctly parallelizing such loops.

Data-parallelism in regular programs Data-parallelism often appears in reg-

ular programs, which manipulate dense matrices and arrays. Common linear

algebra operations such as matrix-vector multiply and matrix-matrix multiply

are naturally data-parallel. Many language extensions have been proposed

to allow programmers to express data-parallelism in their applications, from

DO-ALL loops in High-performance Fortran [75] to the parallel-for con-

struct of OpenMP [96]. Special purpose languages, such as ZPL, have also been

proposed for writing data-parallel, regular programs [22].

In order to successfully use these systems, a programmer must be able to

say precisely which loops are data-parallel, and hence have iterations that are

independent. For regular programs, several sophisticated dependence analyses

have been proposed to determine whether iterations of a loop are independent

3

1: Mesh m = /* read in initial mesh */
2: WorkList wl;
3: wl.add(mesh.badTriangles());
4: while (wl.size() != 0) {
5: Element e = wl.get(); //get bad triangle
6: if (e no longer in mesh) continue;
7: Cavity c = new Cavity(e);
8: c.expand();
9: c.retriangulate();
10: mesh.update(c);
11: wl.add(c.badTriangles());
12: }

Figure 1.1: Pseudocode of the mesh refinement algorithm

[35, 103]. These analyses can be integrated into a compiler, allowing program-

mers to simply write sequential programs while leaving the tasks of finding and

exploiting parallelism to compilers and run-time systems. In practice, though,

it is up to the programmer to determine which loops are data-parallel.

Data-parallelism in irregular programs While much of the parallelization re-

search of the last 30 years has focused on regular programs, parallelizing ir-

regular programs is much harder. Irregular programs use pointer-based data

structures such as lists, trees and graphs. Unfortunately, the techniques devel-

oped for parallelizing regular programs do not apply to irregular programs,

and, indeed, it is not apparent that irregular programs have significant amount

of coarse-grain parallelism to exploit.

We have performed several case studies and found that irregular programs

often exhibit a form of amorphous data-parallelism that manifests itself as itera-

tive computations over worklists of various kinds [77, 78, 79, 80]. Consider 2-D

Delaunay mesh refinement, an important irregular code used in graphics and

4

(a) Unrefined Mesh (b) Refined Mesh

Figure 1.2: Mesh refinement

finite-element solvers1. The input to the algorithm is an initial triangulation of

a region in the plane, as shown in Figure 1.2. Some of the triangles in this mesh

may be badly shaped (these are shown in black in Figure 1.2(a)); if so, an itera-

tive refinement procedure, shown in Figure 1.1, is used to eliminate them from

the mesh. In each step, the refinement procedure (i) picks a bad triangle from the

worklist, (ii) collects a bunch of triangles in the neighborhood of that bad trian-

gle (called its cavity, shown in dark grey in Figure 1.2(a)), and (iii) re-triangulates

that cavity (shown in light grey in Figure 1.2(b)). If this re-triangulation creates

new (smaller) badly-shaped triangles in the cavity, they are added to the work-

list. The shape of the final mesh depends on the order in which bad triangles are

processed, but it can be shown that every processing order will produce a final

mesh without badly shaped elements. From this description, it is clear that bad

triangles whose cavities do not overlap can be processed in parallel; moreover,

since each bad triangle is processed identically, this is a form of data-parallelism.

Abstractly, the worklist implements a set, and the data-parallelism arises from

computations performed on each element of that set.

The key difference between data-parallelism as found in regular programs

and the amorphous data-parallelism we see here is that iterations in an amor-

1This application is discussed in more detail in Section 2.1

5

phous data-parallel loop are not necessarily independent. In fact, the dependence

or independence of two iterations (for example, whether or not two iterations

in Delaunay mesh refinement produce overlapping cavities) in an amorphous

data-parallel program is often dependent on the input data and cannot be de-

termined statically.

We have found several instances of amorphous data-parallelism in our re-

search, including mesh refinement, Delaunay triangulation (generating the ini-

tial mesh) [47], augmenting-paths maxflow [29], preflow-push maxflow [42],

agglomerative clustering [125], SAT-solvers such as WalkSAT [117] and Chaff

[88], as well as several other applications. We believe that this is a common

pattern of parallelism in irregular programs and is the most promising type of

parallelism to exploit.

1.3 Existing approaches to parallelizing irregular programs

Current approaches for parallelizing irregular applications are of varying ap-

plicability to programs exhibiting amorphous data-parallelism, and each tech-

nique has drawbacks, reducing its utility for such programs. These techniques

can be divided into into static, semi-static, and dynamic approaches.

Static approaches. One approach to parallelization is to use a compiler to

analyze and transform sequential programs into parallel ones, using tech-

niques like points-to analysis [6, 26, 30, 33, 63, 81, 123, 135] and shape analy-

sis [23, 32, 40, 49, 65, 70, 82, 112]. The basic approach is to leverage such static

analyses to determine what portions of a program are independent of one an-

other and hence can be executed in parallel [41, 54, 126].

The weakness of this approach is that the parallel schedule produced by the

6

compiler must be valid for all inputs to the program. This means that these

compile-time techniques cannot handle data-dependent parallelism, which we

have found to be prevalent in amorphous data-parallel applications such as De-

launay mesh refinement. The compile-time nature of these approaches will lead

to their conservatively serializing the entire execution of an amorphous data-

parallel loop.

This conclusion holds even if dependence analysis is replaced with more so-

phisticated analysis techniques such as commutativity analysis [109]. While this

analysis allows for some dependences to be ignored by the parallelization anal-

ysis (because the operations executing in parallel commute), the static nature of

the analysis still leads to conservative results, as it must consider all possible

inputs to the program.

Hendren et al. proposed providing data structure abstractions to supple-

ment a traditional static analysis, in an attempt to expose further opportunities

for program transformations, including parallelization [55]. However, because

the eventual parallelization transformations must be valid for all inputs, this

approach nevertheless cannot handle the highly data-dependent parallelism

found in amorphous data parallelism.

Semi-static approaches. In the inspector-executor approach, [102], the compu-

tation is split into two phases, an inspector phase that determines dependences

between units of work, and an executor phase that uses the schedule to perform

the computation in parallel.

For the inspector-executor approach to be useful, a program must obey two

properties: (i) all the tasks that a program will execute must be known ahead of

time, and (ii) it must be possible to determine the dependences between tasks

without executing them. Unfortunately, in our applications, the data sets of-

7

ten change throughout execution, as in mesh generation and refinement (see

Sections 2.1 and 2.2). Even when the data sets do not change, the work per-

formed by the application is discovered dynamically, as in B-K maxflow and

preflow-push maxflow (see Sections 2.4 and 2.5). In these scenarios, the work

that needs to be scheduled cannot be determined until after the execution com-

pletes. Clearly, for our applications, the standard inspector-executor approach

is not sufficient.

One option is to combine the inspector executor approach with bulk-

synchronous parallelism (BSP) [130]. This approach can avoid the problem of

dynamically generated work as follows. The workset (which represents all cur-

rently discovered work) is processed to determine which iterations may con-

flict with one another. A maximally independent subset of these iterations is

then determined. These iterations can then be executed in parallel as a single,

parallel “super-step.” After execution, a new workset is generated (from the

iterations that have not yet executed, as well as any newly generated work),

which is then processed again. In essence, this approach utilizes the inspector-

executor paradigm once per super-step. Recently, Gary Miller et al. performed

a theoretical study of such an execution scheme for Delaunay mesh refine-

ment [66]. While this approach is theoretically feasible for extracting parallelism

from amorphous data-parallel applications, it may be too expensive to run the

inspector phase in practice.

Dynamic approaches. In dynamic approaches, parallelization is performed at

run-time, and is known as speculative or optimistic parallelization. The program

is executed in parallel assuming that dependences are not violated, but the sys-

tem software or hardware detects dependence violations and takes appropriate

corrective action such as killing off the offending portions of the program and

8

re-executing them sequentially. If no dependence violations are detected by the

end of the speculative computation, the results of the speculative computation

are committed and become available to other computations.

Fine-grain speculative parallelization for exploiting instruction-level par-

allelism was introduced around 1970; for example, Tomasulo’s IBM 360/91

fetched instructions speculatively from both sides of a branch before the branch

target was resolved [128]. Speculative execution of instructions past branches

was studied in the abstract by Foster and Riseman in 1972 [21], and was made

practical by Josh Fisher when he introduced the idea of using branch probabil-

ities to guide speculation [36]. Branch speculation can expose instruction-level

(fine-grain) parallelism in programs but not the data-dependent coarse-grain

parallelism in applications like Delaunay mesh refinement.

One of the earliest implementations of coarse-grain optimistic parallel ex-

ecution was in Jefferson’s 1985 Time Warp system for distributed discrete-

event simulation [68]. In 1999, Rauchwerger and Padua described the LRPD

test for supporting speculative execution of FORTRAN DO-loops in which ar-

ray subscripts were too complex to be disambiguated by dependence analy-

sis [108]. This approach can be extended to while-loops if an upper bound on

the number of loop iterations can be determined before the loop begins exe-

cution [107]. More recent work has provided hardware support for this kind

of coarse-grain loop-level speculation, now known as thread-level speculation

(TLS) [27, 51, 76, 106, 108, 124, 131].

However, there are fundamental reasons why current TLS implementations

cannot exploit the parallelism in our applications. One problem is that many of

these applications, such as Delaunay mesh refinement, have unbounded while-

loops, which are not supported by most current TLS implementations since they

9

target FORTRAN-style DO-loops with fixed loop bounds. A more fundamen-

tal problem arises from the fact that current TLS implementations track depen-

dences by monitoring the reads and writes made by loop iterations to memory

locations. For example, if iteration i+1 writes to a location before it is read by

iteration i, a dependence violation is reported, and iteration i+1 must be rolled

back.

For irregular applications that manipulate pointer-based data structures, this

is too strict and the program will perform poorly because of frequent roll-backs.

To understand this, consider the worklist in Delaunay mesh refinement. Re-

gardless of how the worklist is implemented, there must be a memory location

(call this location head) that points to a cell containing the next bad triangle to

be handed out. The first iteration of the while loop removes a bad triangle from

the worklist, so it reads and writes to head, but the result of this write is not

committed until that iteration terminates successfully. A thread that attempts

to start the second iteration concurrently with the execution of the first iteration

will also attempt to read and write head, and since this happens before the up-

dates from the first iteration have been committed, a dependence conflict will be

reported (the precise point at which a dependence conflict will be reported de-

pends on the TLS implementation). The manipulation of other data structures,

such as the mesh, may also create such conflicts.

This is a fundamental problem: for many irregular applications, tracking depen-

dences by monitoring reads and writes to memory locations is correct but will result in

poor performance.

A second restriction of TLS is that it is tied to a particular loop ordering:

speculatively executing loop iterations must commit in the order they would

have executed when running sequentially. However, as we saw with De-

10

launay mesh refinement, these sequential ordering constraints are often over-

determined: the application will produce the correct result regardless of the

order of execution. We see in Chapters 4 and 5 how we can take advantage

of this flexibility to dramatically improve the performance of speculative par-

allelization. As these techniques depend on being able to re-order speculative

execution, they are not applicable to current TLS systems.

Finally, Herlihy and Moss have proposed to simplify shared-memory pro-

gramming by eliminating lock-based synchronization constructs in favor of

transactions [59]. There is growing interest in supporting transactions effi-

ciently with software and hardware implementations of transactional mem-

ory [5, 52, 53, 59, 58, 84, 86, 104, 113, 118]. Most of this work is concerned with

optimistic synchronization and not optimistic parallelization; that is, their starting

point is a program that has already been parallelized (for example, the SPLASH

benchmarks [52] or the Linux kernel [105]), and the goal is to find an efficient

way to synchronize parallel threads. In contrast, our goal is to find the right ab-

stractions for expressing amorphous data-parallelism in irregular applications,

and to support these abstractions efficiently; synchronization is only one part of

the bigger challenge of parallelizing irregular applications. Furthermore, most

implementations of transactional memory track reads and writes to memory lo-

cations, so they suffer from the same problems as current TLS implementations.

Open nested transactions [89, 90, 93] have been proposed recently as a solution

to this problem, and they are discussed in more detail in Section 3.3.5.

1.4 Our approach

The preceding discussion of parallelization techniques leads us to consider sev-

eral key features that an approach to parallelizing amorphous data-parallel ap-

11

plications should possess:

• A reasonable sequential programming model. In order for parallel program-

ming to become widespread, we must reduce the barrier to entry. As

programmers are used to thinking of algorithms sequentially, we would

like to preserve sequential semantics as much as possible in our program-

ming model. Programmers should be able to write programs with well-

understood sequential semantics and rely on compilers and run-time sys-

tems to ensure that those semantics are maintained during parallel execu-

tion.

• A dynamic approach to parallelization. Clearly, static and semi-static ap-

proaches to parallelizing irregular programs are insufficient. The input-

dependence and constantly changing data structures that we see in amor-

phous data-parallelism make dynamic parallelization techniques the only

viable approach to parallelizing these types of programs.

• A higher level of abstraction. Most existing dynamic approaches operate at

too low a level. By focusing on reads and writes to individual memory

locations, these techniques can often miss the forest for the trees and un-

necessarily restrict parallel execution. Instead, we should raise the level

of abstraction; our goal should be to find a set of abstractions suitable for

expressing amorphous data-parallelism, and correctly exploiting that par-

allelism.

This last point is crucial. Niklaus Wirth famously said that “algorithms +

data structures = programs” [136]. Unfortunately, existing techniques, both

static and dynamic, attempt to parallelize programs without considering the al-

gorithms they implement or the data structures they use.

12

In a sense, the purpose of compiler analyses is to take an existing program,

written in languages such as C++ or Java, and divine higher level semantics

(such as shape properties), and then to take advantage of this information to

parallelize a program. Unfortunately, these analyses are imprecise and thus can-

not take full advantage of the semantics that a programmer understands about

a program to parallelize an application; the requirement that a static analysis

be conservative prevents such analyses from effectively parallelizing many pro-

grams, especially those that fundamentally require dynamic approaches such

as speculative parallelism.

Dynamic approaches such as thread level speculation attempt to take an ex-

isting program and speculatively parallelize it. Unfortunately, these approaches

only track low level memory accesses and so do not have a full picture of the

algorithms and data structures that a programmer is using and hence can be too

conservative in their parallelization.

By raising the level of abstraction, programmers can express their programs

in terms of their component algorithms and data structures. We can then lever-

age information about the algorithm and semantic properties of the data struc-

tures to make more intelligent decisions about what parts of the algorithm to

parallelize and how to parallelize it correctly and efficiently.

This thesis presents the Galois system to parallelize irregular programs. The

Galois system consists of three major, interlocking components: user code, Ga-

lois class libraries, and the Galois run-time. The user code represents code that a

programmer would write to express a particular algorithm such as Delaunay

mesh refinement. We provide abstractions that allow programmers to naturally

express the data-parallelism inherent in their algorithms, capturing key algo-

rithmic properties (such as ordering constraints on loop iterations) while main-

13

Sequential Program

Static Approaches

Ex
ist

ing

Dy
na

mic
Ap

pr
oa

ch
es

Algorithms +
Data Structures Parallel Program

Galois System

Figure 1.3: The goal of the Galois system

taining sequential semantics. Galois class libraries raise the level of abstraction

of the shared data in a Galois program: rather than focusing on individual reads

and writes, the class libraries capture important data structure semantics (such

as the semantics of methods, or locality properties). The Galois run-time then

uses optimistic parallelization to run the data-parallel sections of an applica-

tion concurrently, leveraging the abstractions provided by the user code and

the class libraries to ensure that the parallelization is both correct and efficient.

The goal of the Galois system is thus to allow programmers to write pro-

grams with a clean delineation between algorithms and data structures, and to

then take this information and turn it into a parallel program. Figure 1.3 shows

how this approach compares to static approaches, which attempt to reverse en-

gineer programs before parallelizing them, and dynamic techniques such as

thread level speculation, which attempt to directly parallelize “low-level” se-

quential programs.

We believe that this approach to tackling amorphous data-parallelism is

promising, as it requires very little programmer effort to produce correct par-

allel code while still achieving significant scalability on small-scale multicore

14

systems.

1.5 Contributions and organization

This thesis makes several contributions in the areas of programming languages

and speculative parallelization:

• A general paradigm of parallelism: Chapter 1 presents the first discus-

sion of amorphous data-parallelism, which can provide a significant amount

of parallelism. Chapter 2 surveys a number of irregular applications and

demonstrates the prevalence of this paradigm across a wide variety of ap-

plications.

• Language extensions for amorphous data-parallelism: Chapter 3

presents novel language extensions which allow programmers to easily

express programs containing amorphous data-parallelism. These con-

structs capture key algorithm semantics, such as ordering constraints,

which allow a run-time system to automatically parallelize irregular, data-

parallel applications.

• Abstractions for data structures: Chapter 3 also discusses how we can

raise the level of abstraction of irregular data structures used in irregular

applications. By allowing programmers to describe key semantic proper-

ties of objects, such as the commutativity of method invocations, we can

develop systems which can exploit these semantics rather than viewing

irregular structures as simple collections of pointers and objects.

• A run-time system for exploiting abstractions: Chapter 3 then presents

the first run-time system which can leverage algorithmic and data struc-

ture abstractions efficiently, allowing us to extract significant amounts of

15

parallelism from programs exhibiting amorphous data-parallelism.

• Abstractions for capturing locality properties: Chapter 4 develops a set

of abstractions for capturing locality properties of irregular data struc-

tures, based around partitioning. We show how to exploit this semantic

information to improve locality and speculation accuracy, as well as to re-

duce contention and speculation overheads.

• A scheduling framework for amorphous data-parallelism: Chapter 5

presents a framework for scheduling the parallel execution of programs

using the Galois system. This framework generalizes much of the previous

work in the scheduling of data-parallel loops, and provides a general way

of expressing the scheduling decisions a programmer must make when

parallelizing irregular programs. We show how to use this framework

to take advantage of data-structure and algorithm semantics to generate

high-performing schedules.

We then conclude in Chapter 6 with a brief discussion of other models of

parallelism, a summary of our contributions, and a discussion of future work.

16

CHAPTER 2

APPLICATION STUDIES

2.1 Delaunay mesh refinement

Mesh generation is an important problem with applications in many areas such

as the numerical solution of partial differential equations and graphics. The

goal of mesh generation is to represent a surface or a volume as a tessellation

composed of simple shapes like triangles, tetrahedra, etc.

Although many types of meshes are used in practice, Delaunay meshes are

particularly important since they have a number of desirable mathematical

properties [25]. The Delaunay triangulation for a set of points in the plane is

the triangulation such that no point is inside the circumcircle of any triangle

(this property is called the empty circle property). An example of such a mesh is

shown in Figure 2.1.

In practice, the Delaunay property alone is not sufficient, and it is necessary

to impose quality constraints governing the shape and size of the triangles. For

a given Delaunay mesh, this is accomplished by iterative mesh refinement, which

successively fixes “bad” triangles (triangles that do not satisfy the quality con-

straints) by adding new points to the mesh and re-triangulating. Figure 2.2

illustrates this process; the shaded triangle in Figure 2.2(a) is assumed to be

bad. To fix this bad triangle, a new point is added at the center of this trian-

gle’s circumcircle. Adding this point may invalidate the empty circle property

for some neighboring triangles, so all affected triangles are determined (this re-

gion is called the cavity of the bad triangle), and the cavity is re-triangulated, as

shown in Figure 2.2(c) (in this figure, all triangles lie in the cavity of the shaded

bad triangle). Re-triangulating a cavity may generate new bad triangles but it

17

Figure 2.1: A Delaunay mesh

Figure 2.2: Fixing a bad element.

can be shown that this iterative refinement process will ultimately terminate

and produce a guaranteed-quality mesh. Different orders of processing bad el-

ements lead to different meshes, although all such meshes satisfy the quality

constraints [25].

Figure 2.3 shows the pseudocode for mesh refinement. The input to this pro-

gram is a Delaunay mesh in which some triangles may be bad, and the output

is a refined mesh in which all triangles satisfy the quality constraints. There are

two key data structures used in this algorithm. One is a worklist containing the

bad triangles in the mesh. The other is a graph representing the mesh structure;

each triangle in the mesh is represented as one node, and edges in the graph

represent triangle adjacencies in the mesh.

Opportunities for exploiting parallelism. The natural unit of work for par-

allel execution is the processing of a bad triangle. Because a cavity is typically

18

1: Mesh m = /* read in initial mesh */
2: WorkList wl;
3: wl.add(mesh.badTriangles());
4: while (wl.size() != 0) {
5: Element e = wl.get(); //get bad triangle
6: if (e no longer in mesh) continue;
7: Cavity c = new Cavity(e);
8: c.expand();
9: c.retriangulate();
10: mesh.update(c);
11: wl.add(c.badTriangles());
12: }

Figure 2.3: Pseudocode of the mesh refinement algorithm

(a) Unrefined Mesh (b) Refined Mesh

Figure 2.4: Processing triangles in parallel

a small neighborhood of a bad triangle, two bad triangles that are far apart on

the mesh may have cavities that do not overlap and therefore can be processed

concurrently.

An example of processing several triangles in parallel can be seen in Figure

2.4. The left mesh is the original mesh, while the right mesh represents the

refinement. In the left mesh, the black triangles represent the “bad” triangles,

while the dark grey are the other triangles in the cavity. In the right mesh, the

black points are the newly added points and light grey triangles are the newly

created triangles.

19

Clearly, this algorithm is an example of a worklist algorithm where units of

work from the worklist may be independent. This application is perhaps the

canonical example of amorphous data-parallelism.

2.2 Delaunay triangulation

The second benchmark we studied is Delaunay triangulation, the creation of a

Delaunay mesh, given a set of input points. In general, this mesh may have

bad triangles, which can be eliminated using the refinement code discussed in

Section 2.1.

Pseudocode for this algorithm is shown in Figure 2.5. The main loop iter-

ates over the set of points, inserting a new point into the current mesh at each

iteration to create a new mesh that satisfies the Delaunay property. When all

the points have been inserted, mesh construction is complete. To insert a point

p into the current mesh, the algorithm determines the triangle t that contains

point p (line 6), then splits t into three new triangles that share point p as one of

their vertices (line 7). These new triangles may not satisfy the Delaunay prop-

erty, so a procedure called edge flipping is used to restore the Delaunay property.

Edge flipping examines each edge of the newly created triangles (lines 9-15); if

any edge does not satisfy the Delaunay property1 (line 11), the edge is flipped,

removing the two non-Delaunay triangles and replacing them with two new

triangles (line 12). The edges of these newly created triangles are examined in

turn (line 13). When this loop terminates, the resulting mesh is once again a

Delaunay mesh.

To locate the triangle containing a given point, we use a data structure called

1An edge satisfies the Delaunay property if and only if the two triangles incident on the edge
satisfy the Delaunay property.

20

1: Mesh m = /* initialize with one surrounding triangle */
2: Set points = /* read points to insert */
3: Worklist wl;
4: wl.add(points);
5: for each Point p in wl {
6: Triangle t = m.surrounding(p);
7: Triangle newSplit[3] = m.splitTriangle(t, p);
8: Worklist wl2;
9: wl2.add(edges(newSplit));

10: for each Edge e in wl2 {
11: if (!isDelaunay(e)) {
12: Triangle newFlipped[2] = m.flipEdge(e);
13: wl2.add(edges(newFlipped))
14: }
15: }
16: }

Figure 2.5: Pseudocode for Delaunay triangulation

the history DAG [47]. Intuitively, this data structure can be viewed as a ternary

search tree. The leaves of the DAG represent the triangles in the current mesh.

When a triangle is split (line 7), the three new triangles are added to the data

structure as children of the original triangle. The only twist to this intuitive pic-

ture is that when an edge is flipped (line 12), the two new triangles are children

of both old triangles, so the data structure is a DAG in general, rather than a

tree.

We can use this structure to efficiently locate which triangle contains a given

point by walking down from the root of the DAG. If the DAG is more or less bal-

anced, point location can be performed in O(log(N)) time where N is the number

of triangles in the current mesh. However, if the data structure becomes long

and skinny, point location can take O(N) time, resulting in poor performance.

To avoid this worst-case behavior, Guibas et al recommend inserting points in

random order rather than in a spatially coherent order.

21

Add Point Flip Edge
M

es
h

Hi
st

or
y

DA
G

Figure 2.6: Delaunay triangulation: Adding a point to a mesh, then flip-
ping an edge

By way of example, Figure 2.6 shows two steps of this algorithm, with the

mesh at each step shown on top and a portion of history DAG shown at the

bottom. In the first step, a single point is placed in the large triangle, which is

then split into three, as is reflected in the history DAG. However, the triangles

shaded light grey do not satisfy the empty-circle property. The Delaunay prop-

erty is restored in the second step by flipping the edge shared between the two

triangles. This is reflected in the history DAG by adding the two new triangles

and having both old triangles point to both new triangles.

Opportunities for exploiting parallelism. This is yet another worklist algo-

rithm, where the units of work are the points to be inserted into the Delaunay

mesh. We can thus parallelize it by attempting to insert multiple points into the

mesh in parallel. Inserting a new point only affects the triangles in its immediate

neighborhood, so most points from the worklist can be inserted independently,

as long as they are sufficiently far apart in the geometry. Conflicts can occur

when two threads attempt to manipulate the same triangles in the mesh (lines

7 and 13). Note that unlike Delaunay mesh refinement, this algorithm does not

22

a

b
c

d

e

a

b
c

d

e

a b c d e

(a) Data points (b) Hierarchical clusters (c) Dendrogram

Figure 2.7: Agglomerative clustering

add new elements to the worklist.

2.3 Agglomerative clustering

Another interesting irregular application is agglomerative clustering, a well-

known data-mining algorithm [125]. This algorithm is used in graphics appli-

cations for handling large numbers of light sources [133].

The input to the clustering algorithm is (1) a data-set, and (2) a measure

of the “distance” between items in the data-set. Intuitively, this measure is

an estimate of similarity—the larger the distance between two data items, the

less similar they are believed to be. The goal of clustering is to construct a bi-

nary tree called a dendrogram whose hierarchical structure exposes the simi-

larity between items in the data-set. Figure 2.7(a) shows a data-set containing

points in the plane, for which the measure of distance between data points is

the usual Euclidean distance. The dendrogram for this data set is shown in

Figures 2.7(b,c).

23

2.3.1 Priority queue-based clustering

Agglomerative clustering can be performed by an iterative algorithm: at each

step, the two closest points in the data-set are clustered together and replaced in

the data-set by a single new point that represents the new cluster. The location of

this new point may be determined heuristically [125]. The algorithm terminates

when there is only one point left in the data-set.

Pseudocode for the algorithm is shown in Figure 2.8. The central data struc-

ture is a priority queue whose entries are ordered pairs of points <x,y>, such

that y is the nearest neighbor of x (we call this nearest(x)). In each itera-

tion of the while loop, the algorithm dequeues the top element of the priority

queue to find a pair of points <p,n> that are closer to each other than any other

pair of points, and clusters them. These two points are then replaced by a new

point that represents this cluster. The nearest neighbor of this new point is de-

termined, and the pair is entered into the priority queue. If there is only one

point left, its nearest neighbor is the point at infinity.

To find the nearest neighbor of a point, we can scan the entire data-set at

each step, but this is too inefficient. A better approach is to sort the points by

location, and search within this sorted set to find nearest neighbors. If the points

were all in a line, we could use a binary search tree. Since the points are in higher

dimensions, a multi-dimensional analog called a kd-tree is used [11]. The kd-tree

is built at the start of the algorithm, and it is updated by removing the points

that are clustered, and then adding the new point representing the cluster, as

shown in Figure 2.8.

Opportunities for exploiting parallelism. Since each iteration clusters the

two closest points in the current data-set, it may seem that the algorithm is in-

24

1: kdTree := new KDTree(points)
2: pq := new PriorityQueue()
3: foreach p in points {pq.add(<p,kdTree.nearest(p)>)}
4: while(pq.size() != 0) do {
5: Pair <p,n> := pq.get();//return closest pair
6: if (p.isAlreadyClustered()) continue;
7: if (n.isAlreadyClustered()) {
8: pq.add(<p, kdTree.nearest(p)>);
9: continue;
10: }
11: Cluster c := new Cluster(p,n);
12: dendrogram.add(c);
13: kdTree.remove(p);
14: kdTree.remove(n);
15: kdTree.add(c);
16: Point m := kdTree.nearest(c);
17: if (m != ptAtInfinity) pq.add(<c,m>);
18: }

Figure 2.8: Pseudocode for agglomerative clustering

herently sequential. In particular, an item <x,nearest(x)> inserted into the

priority queue by iteration i at line 17 may be the same item that is dequeued

by iteration (i+1) in line 5; this will happen if the points in the new pair are

closer together than any other pair of points in the current data-set. On the

other hand, if we consider the data-set in Figure 2.7(a), we see that points a and

b, and points c and d can be clustered concurrently since neither cluster affects

the other. Intuitively, if the dendrogram is a long and skinny tree, there may

be few independent iterations, whereas if the dendrogram is a bushy tree, there

is parallelism that can be exploited since the tree can be constructed bottom-up

in parallel. As in the case of Delaunay mesh refinement, the parallelism is very

data-dependent. In experiments on graphics scenes with 20,000 lights, we have

found that on average about 100 clusters can be constructed concurrently; thus,

25

1: worklist = new Set(input_points);
2: kdtree = new KDTree(input_points);
3: for each Element a in worklist do {
4: b = kdtree.findNearest(a);
5: if (b == null) break; //stop if a is last element
6: c = kdtree.findNearest(b);
7: if (a == c) {

//create new cluster e that contains a and b
8: Element e = cluster(a,b);
9: kdtree.remove(a);

10: kdtree.remove(b);
11: kdtree.add(e);
12: worklist.remove(b);
13: worklist.add(e);
14: } else { //can’t cluster a yet, try again later
15: worklist.add(a); //add back to worklist
16: }
17: }

Figure 2.9: Psuedocode for unordered agglomerative clustering

there is substantial parallelism that can be exploited.

We can view this application as yet another worklist algorithm. Essentially,

the priority queue is a worklist which enforces some ordering constraints. Un-

like in Delaunay mesh refinement and triangulation, the elements from the

worklist cannot be executed in any order: they must respect the ordering con-

straints of the priority queue. However, as the previous discussion makes clear,

it may still be possible to extract parallelism from an algorithm that operates

over an ordered worklist.

2.3.2 Unordered clustering

The algorithm described above is a greedy algorithm using an ordered set,

but under some mild conditions on the metric, there is an equivalent algorithm

26

using an unordered set iterator, shown in Figure 2.9. Intuitively, we can cluster

two elements together whenever we can prove that the ordered greedy algo-

rithm would also cluster them eventually. If the metric is non-decreasing with

respect to set membership and if two elements agree that they are each other’s

best match then it is safe to cluster them immediately.

Opportunities for exploiting parallelism. This variant of agglomerative clus-

tering operates over an unordered worklist: the resulting tree is not affected

by the order in which the worklist is processed, allowing elements to be pro-

cessed in parallel. Conflicts arise when one thread modifies the kdtree (lines 9

to 11), and this changes the result of another thread’s ongoing nearest neighbor

computations (lines 4 and 6).

2.4 Boykov-Kolmogorov maxflow

The Boykov-Kolmogorov algorithm is a maxflow algorithm used in image seg-

mentation problems [17] (hereafter abbreviated as “B-K maxflow”). Like the

standard augmenting paths algorithm [29], it performs a breadth-first walk over

the graph to find paths from the source to the sink in the residual graph. How-

ever, once an augmenting path has been found and the flow is updated, the cur-

rent search tree is updated to reflect the new flow, and then used as a starting

point for computing the next search tree. In addition, the algorithm computes

search trees starting from both the source and the sink. Experiments show that

on uniprocessors, the B-K maxflow algorithm outperforms other maxflow algo-

rithms for graphs arising from image segmentation problems [17].

The B-K maxflow algorithm is naturally a worklist-style algorithm: each

node at the frontier of a search tree is on the worklist. When a node is removed

27

1: worklist.add(SOURCE);
2: worklist.add(SINK);
3: for each Node n in worklist {

//n in SourceTree or SourceTree
4: if (n.inSourceTree()) {
5: for each Node a in n.neighbors() {
6: if (a.inSourceTree())
7: continue; //already found
8: else if (a.inSinkTree()) {

//decrement capacity along path
9: int cap = augment(n, a);

//update total flow
10: flow.inc(cap);

//put disconnected nodes onto worklist
11: processOrphans();
12: } else {
13: worklist.add(a);
14: a.setParent(n); //put a into SourceTree
15: }
16: }
17: } else { //n must be in the SinkTree
18: ... //similar to code for when n in Source Tree
19: }
20:}

Figure 2.10: Pseudocode for Boykov-Kolmogorov algorithm

from the worklist, its edges are traversed to extend the search, and newly dis-

covered nodes are added to the worklist. If an augmenting path is found, the

capacities of all edges along the path are decremented appropriately. Nodes that

are disconnected as a result of this augmentation are added back to the work-

list. The pseudocode for this algorithm is given in Figure 2.10. For lack of space,

only the code for extending the search tree rooted at the source is shown; the

code for extending the search tree rooted at the sink is similar.

Opportunities for exploiting parallelism As in the other applications, the or-

der in which elements are processed from the worklist is irrelevant to proper

28

execution, although different orders will produce different search trees. There-

fore, we can process nodes in the worklist concurrently, provided there are no

conflicts. There are two sources of potential conflicts: (i) concurrent traversals

that grab the same node for inclusion in the tree (so two threads try to set the

parent field of the same node concurrently (line 14)), and (ii) augmenting paths

that have one or more edges in common (line 9). Whether or not these poten-

tial conflicts manifest themselves as actual conflicts at run-time depends on the

structure of the graph and the evolution of the computation, so optimistic par-

allelization seems appropriate.

2.5 Preflow-push maxflow

Although experiments on uniprocessors have shown that the Boykov-

Kolmogorov algorithm outperforms other maxflow algorithms for graphs aris-

ing from image segmentation problems [17], it is not known whether this holds

for parallel implementations. Therefore, we also implemented the Goldberg-

Tarjan preflow-push algorithm [42], which is known to perform well on general

graphs both in an asymptotic sense and in practice. The word “preflow” refers

to the fact that nodes are allowed to have excess flow at intermediary stages of

the algorithm, unlike the B-K maxflow algorithm, which maintains a valid flow

at all times. Pseudocode for the algorithm is given in Figure 2.11.

The basic idea is to maintain a height value at each node that represents

a lower bound on the distance to the sink node. The algorithm begins with

h(t) = 0 and h(s) = |V |, the number of vertices in the graph, where s is the source

and t is the sink. First, every edge exiting the source is saturated with flow,

which deposits excess at all of the source’s neighbors. Any node with excess

flow is called an active node. Then, the algorithm performs two operations, push

29

1: Worklist wl = /* Nodes with excess flow */
2: for each Node u in wl {
3: for each Edge e of Node u {

/* push flow from u along edge e
update capacity of e and excess in u
flow == amount of flow pushed */

4: double flow = Push(u, e);
5: if(flow > 0)
6: worklist.add(e.head);
7: }
8: Relabel(u); // raise u’s height if necessary
9: if(u.excess > 0)

worklist.add(u);
10: }

Figure 2.11: Pseudocode for preflow-push

and relabel, on the active nodes. The push operation takes excess flow at a node

and attempts to move as much as possible to a neighboring node, provided the

edge between them still has capacity and the height difference is 1. The relabel

operation raises a node’s height so that it is at least high enough to push flow to

one of its neighbors. Forcing flow to move in height steps of 1 makes it impos-

sible for a node at height |V | to ever reach the sink. Therefore, this phase of the

computation terminates when the height of all active nodes is |V |, signifying that

all possible flow has reached the sink. Finally, the remaining excess is drained

back to the source. This is typically very fast and can be done in a variety of

ways (we do it by running preflow-push a second time).

Opportunities for exploiting parallelism Preflow-push is also a worklist al-

gorithm since all active nodes can be placed on a worklist and processed in any

order. Since the operations on a node are purely local in nature, nodes can be

operated on in parallel provided they are not adjacent to each other.

30

As noted in previous work [7], the actual amount of parallelism at any given

point of preflow-push is very data-dependent. It is affected by the structure of

the flow graph. It is easy to construct cases where there is only ever one active

node, which serializes the computation, or trivially parallel cases where there

are always exactly N active nodes for the N processors available, and they never

interfere with each other. Further, the parallelism is dependent on the stage of

computation preflow-push is in. While perfect speedup is unrealistic, it is still

possible to get significant speedup by working on nodes in parallel.

31

CHAPTER 3

THE GALOIS SYSTEM

3.1 Overview

In order to parallelize applications of the sort presented in Chapter 2, we de-

veloped the Galois system, a programming model and run-time system which

enables the optimistic parallelization of amorphous data-parallel programs.

Perhaps the most important lesson from the past twenty-five years of par-

allel programming is that the complexity of parallel programming should be

hidden from programmers as far as possible. For example, it is likely that more

SQL programs are executed in parallel than programs in any other language.

However, most SQL programmers do not write explicitly parallel code; instead

they obtain parallelism by invoking parallel library implementations of joins

and other relational operations. A “layered” approach of this sort is also used

in dense linear algebra, another domain that has successfully mastered paral-

lelism.

In this spirit, the Galois system is divided into three parts: (i) top-level user

code which creates and manipulates shared objects (Section 3.2), (ii) a set of Galois

library classes which provide implementations of the shared objects used by the

user code (Section 3.3), and (iii) the Galois run-time which is responsible for de-

tecting and recovering from potentially unsafe accesses to shared objects made

by optimistic computation (Section 3.4).

Consider Delaunay mesh refinement. The relevant shared objects are the

mesh and the worklist, and the Galois class libraries will provide implementa-

tions of these objects. The user code implements the mesh refinement algorithm

described in Section 2.1. The Galois run-time is responsible for executing this

32

User Code
Galois Objects

Figure 3.1: High-level view of Galois execution model

user code in parallel and ensuring that it behaves properly. Crucially, while the

user code is executed concurrently by some number of threads (orchestrated

by the run-time), it is not explicitly parallel, and makes no mention of threads or

locks. Instead, the relevant information for ensuring correct parallel execution

is contained in the Galois library classes and managed by the run-time, as we

discuss below. Figure 3.1 is a pictorial view of this execution model.

This design allows for a clean separation of concerns. Rather than placing the

entire parallelization burden on every programmer, programmers writing user

code can focus on implementing their algorithm, while expert library program-

mers can focus on the difficulties of writing parallel code. This division of re-

sponsibilities is a key consideration in the design of the Galois system and its

extensions.

For brevity, we refer to programmers who write user code as “Joe Program-

mers”1. These programmers may have a deep understanding of the algorithms

they are implementing, but may not be well versed in parallel programming

techniques and idioms. By way of contrast, we refer to programmers to design

1As in ”average Joe.”

33

and write the Galois libraries as “Steve Programmers”2. These programmers are

knowledgeable in the domain of parallel programming, but need not have any

domain-specific algorithmic knowledge.

Because the universe of programmers contains far more Joe Programmers

than Steve Programmers, the Galois approach makes writing code that will ulti-

mately run in parallel feasible for a larger class of programmers, as the difficult

parallel code can be written once, encapsulated in libraries, and then used re-

peatedly by programmers less conversant in parallel programming techniques.

3.2 Programming model

3.2.1 Optimistic set iterators

As mentioned above, the client code is not explicitly parallel; instead paral-

lelism is packaged into two constructs that we call optimistic iterators. In the

compiler literature, it is standard to distinguish between do-all loops and do-

across loops [73]. The iterations of a do-all loop can be executed in any order

because the compiler or the programmer asserts that there are no dependences

between iterations. In contrast, a do-across loop is one in which there may be

dependences between iterations, so proper sequencing of iterations is essential.

We introduce two analogous constructs for packaging optimistic parallelism.

• Set iterator: for each e in Set S do B(e)

The loop body B(e) is executed for each element e of set S. Since set el-

ements are not ordered, this construct asserts that in a serial execution of

the loop, the iterations can be executed in any order. There may be depen-

dences between the iterations, as in the case of Delaunay mesh generation,
2An arbitrary designation for “expert” programmers

34

1: Mesh m = /* read in initial mesh */
2: Set wl;
3: wl.add(mesh.badTriangles());
4: for each e in wl do {
5: if (e no longer in mesh) continue;
6: Cavity c = new Cavity(e);
7: c.expand();
8: c.retriangulate();
9: m.update(c);
10: wl.add(c.badTriangles());
11: }

Figure 3.2: Delaunay mesh refinement using set iterator

but any serial order of executing iterations is permitted. When an iteration

executes, it may add elements to S.

• Ordered-set iterator: for each e in Poset S do B(e)

This construct is an iterator over a partially-ordered set (Poset) S. It asserts

that in a serial execution of the loop, the iterations must be performed in

the order dictated by the ordering of elements in the Poset S. There may

be dependences between iterations, and as in the case of the set iterator,

elements may be added to S during execution.

The set iterator is a special case of the ordered-set iterator but it can be im-

plemented more efficiently, as we see in section 3.4.3

Figure 3.2 shows the client code for Delaunay mesh generation. Instead of a

work list, this code uses a set and a set iterator. The Galois version is not only

simpler but also makes evident the fact that the bad triangles can be processed

in any order; this fact is absent from the more conventional code of Figure 2.3

since it implements a particular processing order.

35

Note that the Galois program shown in Figure 3.2 can be viewed as a purely

sequential program. Its semantics can be understood without appealing to a

parallel execution model. The only additional effort a programmer must ex-

pend when writing Galois programs versus standard sequential programs is to

understand the ordering constraints imposed by a particular algorithm.

3.2.2 Memory model

The Galois system uses an object-based, shared memory model. The system re-

lies on cache coherence to communicate shared data between processors. All

shared data is encapsulated in objects, and the only means of reading or writing

shared data is by invoking methods on those objects. This approach is in con-

trast to that taken by TLS or word-based transactional memories, which allow

threads to perform bare reads and writes to shared memory.

While limiting shared memory access to method invocations on shared

objects may seem limiting, in practice this is a reasonable approach. Many

programs are object-oriented, naturally performing all heap updates through

method invocations on objects. Furthermore, the Galois system is able to lever-

age the semantics of shared objects to make more precise decisions about when

parallel execution is safe (see Section 3.3.2) than if undisciplined reads and

writes were allowed.

3.2.3 Execution model

Although the semantics of Galois iterators can be specified without appealing to

a parallel execution model, these iterators provide hints from the programmer

to the Galois run-time system that it may be profitable to execute the iterations

36

in parallel. Of course any parallel execution must be faithful to the sequential

semantics.

The Galois concurrent execution model is the following. A master thread

begins the execution of the program; it also executes the code outside iterators.

When this master thread encounters an iterator, it enlists the assistance of some

number of worker threads to execute iterations concurrently with itself. The

assignment of iterations to threads is under the control of a scheduling policy

implemented by the run-time system; for now, we assume that this assignment

is done dynamically to ensure load-balancing. All threads are synchronized

using barrier synchronization at the end of the iterator.

Given this execution model, the main technical problem is to ensure that the

parallel execution respects the sequential semantics of the iterators. This is a

non-trivial problem because each iteration may read and write to the objects in

shared memory, and we must ensure that these reads and writes are properly

coordinated. Section 3.3 describes the information that must be provided by the

Galois class writer to enable this. Section 3.4 describes how the Galois run-time

system uses this information to ensure that the sequential semantics of iterators

are respected.

3.2.4 Discussion

Set iterators

Although the Galois set iterators introduced in Section 3.2.1 were motivated in

this paper by the applications discussed in Chapter 2, they are very general, and

we have found them to be useful for writing other irregular applications such

as advancing front mesh generators [92], and WalkSAT solvers [117]. Many of

these applications use “work-list”-style algorithms, for which Galois iterators

37

are natural, and the Galois approach allows us to exploit the amorphous data-

parallelism in these irregular applications.

SETL was probably the first language to introduce an unordered set itera-

tor [71], but this construct differs from its Galois counterpart in important ways.

In SETL, the set being iterated over can be modified during the execution of the

iterator, but these modifications do not take effect until the execution of the en-

tire iterator is complete. In our experience, this is too limiting because work-list

algorithms usually involve data-structure traversals of some kind in which new

work is discovered during the traversal. The tuple iterator in SETL is similar

to the Galois ordered-set iterator, but the tuple cannot be modified during the

execution of the iterator, which limits its usefulness in irregular applications. Fi-

nally, SETL was a sequential programming language. DO-loops in FORTRAN

are a special case of the Galois ordered-set iterator in which iteration is per-

formed over integers in some interval.

A more complete design than ours would include iterators over multisets

and maps, which are easy to add to Galois. MATLAB or FORTRAN-90-style no-

tation like [low:step:high] for specifying ordered and unordered integers

within intervals would be useful. We believe it is also advisable to distinguish

syntactically between DO-ALL loops and unordered-set iterators over integer

ranges, since in the former case, the programmer can assert that run-time de-

pendence checks are unnecessary, enabling more efficient execution. For exam-

ple, in the standard i-j-k loop nest for matrix-multiplication, the i and j loops are

not only Galois-style unordered-set iterators over integer intervals but they are

even DO-ALL loops; the k loop is an ordered-set interator if the accumulations

to elements of the C matrix must be done in order.

38

Nested iterators

Languages such as NESL [13] support nested data-parallelism, with data-

parallel operations exposing additional data-parallelism. In our programming

model, this style of parallelism manifests itself as nested iterators: an iteration

contains within it an ordered or unordered set iterator.

Although in our current applications, we have not found it necessary to

use nested iterators, properly dealing with the multiple levels of parallelism

afforded by nested iterators is an open question. There is no fundamental prob-

lem in supporting nested iterators, but there are many different approaches one

might take to support multiple levels of parallelism.

Our current implementation takes a simple “flattening” approach to nested

iterators: the thread encountering a nested iterator always executes it sequen-

tially, to completion. The inner iterator’s execution is considered part of the

execution of the iteration which contains it.

In general, determining the appropriate action to take when encountering a

nested iterator is a policy decision; a problem of performance rather than one

of correctness. For example, should the nested iterator be executed in parallel

or sequentially? If we choose to execute the nested iterator in parallel, should

all threads draw work from the inner iterator, or should some threads continue

executing work from the outer iterator? The answers to these policy questions

have deep implications for the performance of an application. The problem of

deciding what the appropriate policies are, and devising an appropriate mech-

anism for specifying them to the run-time system, is left to future work.

39

3.3 Class libraries

Because the user code (purposely) contains little information regarding the par-

allel execution of a Galois program, so as to facilitate writing by Joe Program-

mer, the burden of ensuring that the sequential semantics of the iterators in the

program are respected fall on the Galois run-time. The run-time leverages infor-

mation provided by the Galois class libraries, which specify information regard-

ing how objects used in a Galois program can safely be manipulated in parallel.

Writing these classes is the responsibility of Steve Programmer.

The key idea to preserving the sequential semantics of set iterators is to ex-

ecute iterations transactionally [45]; this can produce a serializable schedule in

which all data structures remain consistent. As long as this serializable sched-

ule respects any ordering constraints imposed by the set being iterated over, the

parallel execution will match the sequential semantics of the iterator.

To execute iterations transactionally, there are several key problems to be

solved. We draw an analogy with the ACID properties: atomcicity, consistency,

isolation and durability. In databases, these properties can be roughly defined

as follows: atomicity — a transaction appears to execute entirely or not at all;

consistency — the data structures in the database are in a consistent state before

the transaction and after; isolation — transactions execute as if they were the

only transaction running in the system; and durability — committed transactions

persist in the face of system failure.

In the context of the Galois system, we are not concerned with system dura-

bility (which would require writing shared memory state to persistent storage

and is an orthogonal problem to those we aim to solve). For the other three

ACID properties, we can analogize database properties with attributes we want

iterations in Galois programs to have (in the order we present them in the re-

40

mainder of this section):

• Consistency (Section 3.3.1) — All data structures must remain in a consis-

tent state at all times; at any point an iteration might invoke a method on

an object, it must see that object in a consistent state. We ensure this by

requiring that all object methods be atomic3.

• Isolation (Section 3.3.2) — An iteration must appear to execute as if it

were executing by itself, without other iterations executing concurrently.

In other words, the parallel execution of iterations must match some serial

schedule of execution — this is the serializability property. We guarantee

this by using semantic commutativity to ensure that iterations cannot view

the uncommitted state of other iterations. If this happens, an iteration

will no longer behave as if it is executing in isolation. When an iteration

executes in a non-serializable way, it will not be allowed to commit.

• Atomicity (Section 3.3.3) — An iteration must run to completion and com-

mit, or appear to have never made any changes to shared memory. We

provide this through the use of undo methods to roll back changes made by

an iteration that will not commit.

Each of these techniques, which together ensure the transactional behavior

of iterations, are provided through the Galois class libraries, which provide

atomic methods and the annotations required to support semantic commuta-

tivity and undo methods. We explain each component below, with reference to

Figure 3.3. This figure shows set objects with methods add(x), remove(x),

get() and contains(x) that have the usual semantics4.
3Note that this is “atomic” in the standard computer science sense of being thread-safe, not

in the databases sense being discussed here
4The method remove(x) removes a specific element from the set while get() returns an

arbitrary element from the set, removing it from the set.

41

Set S Workset wsS.add(x)

S.remove(x)

S.contains?(x)

ws.get() ws.get()

ws.add(x) ws.add(y)

(a) (b)

Figure 3.3: Interleaving method invocations from different iterations

3.3.1 Consistency through atomic methods

To ensure consistency, we require that every method of a shared object used in

a Galois program be atomic. Formally, this means that every such shared object

must be linearizable [61]. For an object to be linearizable, each method must have

a single linearization point at some point between when the method is invoked

and when it returns. The method must appear to execute instantaneously at

that linearization point, behaving as if it were executed sequentially.

This property ensures that the object always remains in a consistent state.

No matter how methods are invoked concurrently on the object, the lineariz-

ability property means that we can view each method as having occurred at a

distinct time (the linearization point). Thus, the overall set of invocations on the

object have some equivalent serial schedule of execution and the invariants of

the object are never violated. For example, multiple threads can simultaneously

execute methods such as add and remove on Set S in Figure 3.3(a), and as long

as S is linearizable, these invocations will always see S in a consistent state, and

will leave S in a consistent state when they have completed.

Providing linearizable objects can be done using any technique desired. One

42

solution is to use a lock on object S; if this inhibits concurrency, we can use

fine-grain locks within object S. These locks are acquired before the method is

invoked, and released when the method completes. Alternately, one can use

transactional memory, with each method of a class enclosed in an atomic sec-

tion [19, 53]. In this case, transactions start when a method is invoked and com-

mit when the method completes, ensuring that each method invocation appears

atomic. In our current implementation, methods are made atomic through the

use of locks.

Using linearizable objects dramatically simplifies the challenge of ensuring

that two iterations concurrently manipulating shared state are independent.

Normally, to determine whether two iterations executing in parallel are inde-

pendent, one must consider all possible interleavings of the instructions that the

two iterations execute. However, because each method call can be considered

to have executed at a single point, we can reduce this problem to considering

interleavings of method invocations, rather than interleavings of all instructions.

3.3.2 Isolation through semantic commutativity

Given linearizable objects, the key issue becomes: which method interleav-

ings can we allow while maintaining sequential semantics? Not all method

interleavings will produce results that are valid under sequential semantics.

Consider Figure 3.3(a). If S does not contain x before the iterations start,

notice that in any sequential execution of the iterations, the method invo-

cation contains(x) will return false. However, for one possible inter-

leaving of operations—add(x),contains(x),remove(x)—the invocation

contains(x) will return true, which is incorrect.

The fundamental problem in the incorrect execution is that the second iter-

43

ation is able to see the intermediate state of the first iteration (and thus sees x

in the set, even though it will eventually be removed). Crucially, the erroneous

execution can only happen when the iterations are running concurrently. When one

iteration sees and depends on the intermediate state of another, no sequential

execution of the iterations can produce the same result, and hence the sequential

semantics of the set iterator are violated.

This problem is essentially one of ensuring the isolation of iterations: itera-

tions must appear to execute as if no other iterations were executing concur-

rently. If all iterations are isolated from one another, this is equivalent to the

execution of the iterations’ being serializable: regardless of the parallel execution

of iterations, it will appear as if they executed sequentially in some order. Note

that serializability is a sufficient condition to ensure the sequential semantics of

the unordered set iterator; matching the sequential semantics of the ordered set

iterator requires restricting the valid sequential schedules that iterations could

execute in.

Often, the consistency of data structures and the isolation of iterations are

guaranteed by the same mechanism. For example, if an iteration acquires locks

on objects to ensure consistency, it can release those locks only at the end of the

iteration. This will ensure that no other iteration touches objects that the cur-

rent iteration has touched, guaranteeing isolation. The well-known two-phase

locking algorithm used in databases is an optimized version of this simple idea.

Recall that transactional memory implementations ensure the consistency of

method invocations by placing each method in an atomic block and executing

each method as a transaction. All memory locations accessed within this block

are added to the transaction’s read/write set, and the transactional memory

hardware (or software run-time) will ensure that no other transaction (i.e. no

44

other method invocation) will interfere. To provide for iteration isolation, all

the method calls in an iteration can be composed into a single atomic block;

essentially the entire iteration is executed as a transaction. All the reads and

writes of the entire iteration are tracked and these sets are only released at the

end of the iteration. Thread-level speculation (TLS) systems operate in a similar

manner.

Both of these approaches solve the problem in Figure 3.3(a). In the locking

approach, the first iteration will acquire a lock on S when it calls add(x), which

it will not release until after it has executed remove(x). Thus, the second itera-

tion will only be able to execute contains(x) before or after the first iteration;

the interleaving shown in Figure 3.3(a) will be disallowed.

In the transactional approach, the first iteration’s executing add(x)will nec-

essarily modify a memory location that contains(x) will attempt to read.

Thus, the second iteration will conflict with the first iteration and again the in-

correct interleaving will be disallowed.

These approaches suffice to guarantee the isolation of concurrently execut-

ing iterations—they disallow all method interleavings which break isolation.

However, they can be too restrictive, forbidding interleavings which do not

break isolation. Consider the program in Figure 3.3(b), which is motivated by

Delaunay mesh refinement: each iteration gets a bad triangle at the beginning

of the iteration, and may add some bad triangles to the work-set at the end.

Because each iteration gets different bad triangles from the work-set at the be-

ginning, and adds different triangles at the end, the interleaving shown in Fig-

ure 3.3(b) is obviously a valid interleaving; the two iterations remain isolated

from one another. However, both the locking and the transactional approaches

to isolation forbid this interleaving.

45

The locking approach prevents multiple concurrently executing iterations

from accessing the same object, obviously disallowing the interleaving. The

situation is more subtle for the transaction approach. Regardless of how the

set object is implemented, there must be a location (call it head) that points to

a cell containing the next triangle to be handed out. The first iteration to get

work will read and write location head, and it will lock it for the duration of

the iteration, preventing any other iterations from getting work. Most current

implementations of transactional memory will suffer from the same problem

since the head location will be in the read and write sets of the first iteration

for the duration of that iteration. The crux of the problem is that the abstract set

operations have useful semantics that are not available to an implementation

that works directly on the representation of the set and tracks reads and writes

to individual memory locations. The problem therefore is to understand the

semantics of set operations that must be exploited to permit parallel execution

in our irregular applications, and to specify these semantics in some concise

way.

Semantic commutativity

The solution we have adopted exploits the commutativity of method invoca-

tions. Two methods commute with one another if they can be executed in either

order without changing the semantic state of the object (i.e. the state of the object

visible through its interface).

Consider two iterations, A and B. If all the methods invoked by A commute

with every method invoked by B, and vice versa, then A and B can execute in

parallel in isolation. Intuitively, the commutativity of the methods means that,

regardless of how the method invocations are interleaved between the two iter-

46

ations, they can be “pushed past” one another until the invocations from each it-

eration occur contiguously, without any intervening invocations from the other

iteration; this is a serial schedule of execution. By commutativity, the results of

this execution are equivalent to any interleaved execution of A and B; hence,

A and B are isolated from one another. This property can be trivially extended

to any number of iterations, giving us the following: If the method invocations

from one iteration commute with the method invocations of all other simultaneously

executing iterations, the first iteration is isolated from all other iterations.

Turning to our running example, we see that in Figure 3.3(a), the invocation

contains(x) does not commute with the operations from the other thread—

it will return a different result depending on whether it is executed before or

after add(x)—so the invocations from the two iterations cannot be interleaved.

In Figure 3.3(b), (1) get operations commute with each other, and (2) a get

operation commutes with an add operation provided that the operand of add is

not the element returned by get. This allows multiple threads to pull work from

the work-set while ensuring that sequential semantics of iterators are respected.

It is important to note that what is relevant for our purpose is commutativity in

the semantic sense. The internal state of the object may actually be different for

different orders of method invocations even if these invocations commute in

the semantic sense. For example, if the set is implemented using a linked list

and two elements are added to this set, the concrete state of the linked list will

depend in general on the order in which these elements were added to the list.

However, what is relevant for parallelization is that the state of the set abstract

data type, which is being implemented by the linked list, is the same for both

orders. In other words, we are not concerned with concrete commutativity (that

is, commutativity with respect to the implementation type of the class), but with

47

semantic commutativity (that is, commutativity with respect to the abstract data

type of the class). We also note that commutativity of method invocations may

depend on the arguments of those invocations. For example, an add and a

remove commute only if their arguments are different.

Semantic commutativity reduces the burden placed on a programmer to en-

sure that iterations executing in parallel do so safely. Traditionally, guaranteeing

the isolation of two concurrently executing pieces of code required making sure

that all possible interleavings of instructions between those two pieces were

safe. Even with atomic methods, one must consider all possible interleavings of

method invocations. This leads to an exponential state space to explore.

However, with semantic commutativity, one needs to consider only pairs of

methods of a given class. Each method must be checked against every other

method of the class to determine if, and under what conditions, they commute.

However, this is a dramatically reduced state space; a programmer need only

consider O(n2) different possibilities.

Related work

The use of commutativity in parallel program execution was explored by Bern-

stein as far back as 1966 [12]. Conceptually, one can view commutativity condi-

tions as a particular type of predicate locks, which are used in databases to pro-

vide logical locks on database tables (rather than locks on actual entries) [34].

In this setting, Weihl described a theoretical framework for using commutativ-

ity conditions for concurrency control [134]. Herlihy and Weihl extended this

work by leveraging ordering constraints to increase concurrency but at the cost

of more complex rollback schemes [60].

In the context of parallel programming, Steele described a system for ex-

48

ploiting commuting operations on memory locations in optimistic parallel ex-

ecution [122]. However, in that work, commutativity is still tied to concrete

memory locations and does not exploit properties of abstract data types like

Galois does. Diniz and Rinard performed static analysis to determine concrete

commutativity of methods for use in compile-time parallelization [109]. Seman-

tic commutativity, as used in Galois, is more general but it must be specified by

the class designer. Wu and Padua have proposed to use high level semantics of

container classes [137]. They propose making a compiler aware of properties of

abstract data types such as stacks and sets to permit more accurate dependence

analysis.

3.3.3 Atomicity through undo methods

Because iterations are executed in parallel, it is possible for commutativity con-

flicts to prevent an iteration from completing. Once a conflict is detected, some

recovery mechanism must be invoked to allow execution of the program to con-

tinue despite the conflict. Because our execution model uses the paradigm of

optimistic parallelism, our recovery mechanism rolls back the execution of the

conflicting iteration. To avoid livelock, the lower priority iteration is rolled back

in the case of the ordered-set iterator.

To permit this, every method of a shared object that may modify the state

of that object must have an associated undo method that undoes the side-effects

of that method invocation by performing the inverse action. For example, for

a set, the inverse of add(x) is remove(x), and the inverse of remove(x) is

add(x). As in the case of commutativity, what is relevant for our purpose is an

inverse in the semantic sense; invoking a method and its inverse in succession

may not restore the concrete data structure to what it was.

49

Note that when an iteration rolls back, all of the methods which it invokes

during roll-back must succeed. Thus, we must never encounter conflicts when

invoking undo methods. When the Galois system checks commutativity, it also

checks commutativity with the associated undo method. Because this check has

already succeeded by the time a rollback may occur, we can guarantee that the

undo methods will execute without conflict, and hence the rollback will be safe.

3.3.4 Object wrappers

A key design feature of the Galois system is its ability to take any thread-safe

(i.e. linearizable) object and use it in a transactional manner during parallel

execution. To do this, we introduce Galois wrappers, a simple example of which

can be seen in Figure 3.4.

We utilize two common design patterns in the formulation of Galois wrap-

pers, delegation and strategies [39]. Because the thread-safe object (in this case,

Foo) does not support transactional composition of its calls, simply invoking

methods on it in an iteration is unsafe. We must thus protect it by commuta-

tivity checks to ensure isolation. This is done by using the thread-safe object as

a delegate, and passing all calls to it through the Galois wrapper, as we see in

Figure 3.4 with the method bar. Note that the delegate pattern makes it easy

to replace simple data structures with clever, hand-tuned concurrent data struc-

tures [114] if necessary, without changing the rest of the program: one merely

needs to change the delegate object of the Galois wrapper.

Isolation and atomicity are ensured by a ConflictDetection strategy ob-

ject. This object is passed information about the method and its arguments,

which it then uses to perform the commutativity checks and set up any associ-

ated undo methods. These checks are encapsulated in a ConflictDetection

50

class GaloisFoo {

static final int METHOD_BAR = 1;

public GaloisFoo(Foo delegate, ConflictDetection cd) {
_cd = cd;
_delegate = delegate;

}

public int bar(int a, int b) {

_cd.prolog(METHOD_BAR, {a, b});
int retval = bar(a);
_cd.epilog({retval});

GaloisRuntime.addUndo(/* ... */);

return retval;
}

ConflictDetection _cd;
Foo _delegate;

}

Figure 3.4: Generic Galois wrapper

object for two reasons: (i) to allow multiple objects which share semantics (e.g.

a HashSet and a TreeSet in Java) to share the same commutativity proper-

ties; and (ii) to allow Galois wrappers to be instantiated with different conflict

detection schemes (see Section 4.3 for an example of an alternate scheme).

Because both commutativity checks and undos rely on the semantics of ob-

jects, it is necessary for the class designer to provide this information. This is

done through an interface specfication, which provides three pieces of informa-

tion:

• returns: This gives a name to the return value of a method.

51

• commutes: This section specifies which other interface methods the current

method commutes with, and under which conditions. For each method

specified in this section, we provide a side condition. The two methods

commute whenever the side condition evaluates to true. For example,

remove(x) commutes with add(y) as long as the elements are different.

• undo: This section specifies the inverse of the current method. It is used to

construct the semantic undo used in the Galois wrapper.

Figure 3.5 provides an example of this specification information for set ob-

jects. A few points of interest: the two read only methods (contains and

findRandom) commute with all other read only methods (obviously). This is

shown by having the side condition simply be true—the methods commute

under all possible invocations. Note also that we are using simple object equal-

ity to define commutativity (rather than a deeper notion of equality such as

Java’s .equals()). While this may appear to be unsafe, it is simply based on the

semantics of the set in question. Sets are unique associative containers (in STL par-

lance [121]), and hence only allow one of any particular object to be in the set. If

this uniqueness is enforced by reference equality,5 then using reference equality

in the commutativity conditions is correct. If, however, this uniqueness is en-

forced by deeper, semantic equality, then the commutativity conditions would

take this into account.

These specifications are merely a declarative statement of the semantics of a

given data structure—turning these specifications into correct, efficient code is

another problem entirely. In this thesis, we do not deal with a formal system for

transforming specifications into conflict detection objects, but Section 3.4.4 de-

scribes how conflict detection objects are typically implemented to check com-

5Formally, for Java Sets [37], this is true when, for two elements e1 and e2 in the set, (e1 ==
e2)⇔ (e1.equals(e2))

52

interface Set {
void add(Object x);

[commutes]
- add(y) {y != x}
- remove(y) {y != x}
- contains(y) {y != x}
- findRandom() : y {y != x} //findRandom call returning y

[undo] remove(x)
void remove(Object x);

[commutes]
- add(y) {y != x}
- remove(y) {y != x}
- contains(y) {y != x}
- findRandom() : y {y != x}

[undo] add(x)
bool contains(Element x);

[returns] bool b;
[commutes]

- add(y) {y != x}
- remove(y) {y != x}
- contains(y) {true} //all calls commute
- findRandom(): y {true} //all calls commute

Object findRandom();
[returns] Object x;
[commutes]

- add(y) {y != x}
- remove(y) {y != x}
- contains(y) {true} //all calls commute
- findRandom(): y {true} //all calls commute

}

Figure 3.5: Example commutativity specification for a Set

mutativity conditions.

In the applications we have looked at, most shared objects are instances of

collections, which are variations of sets, so specifying commutativity information

and writing undo methods has been straightforward.

53

Incremental development of Galois classes

One appealing feature of the object-oriented nature of Galois classes is that they

lend themselves to incremental development as needed to improve parallelism.

We provide a “baseline” conflict detection strategy, which provides no commu-

tativity information. Thus, all methods are assumed to conflict with one an-

other. This means that an object can be accessed by at most one iteration at a

time, and that iteration shuts out other iterations until it commits. In this case,

undo methods can be implemented automatically using shadow copies, as in

software transactional memories, as there are no method interleavings which

require semantic undos. Note that this approach is equivalent to using two-

phase locking to ensure serializability.

However, if it turns out that locking out other iterations has a deleterious ef-

fect on parallel performance, a programmer can begin inserting commutativity

checks incrementally, as he or she determines that two methods do, in fact, com-

mute. This can gradually increase the parallelism afforded by an object until it

reaches a satisfiable amount.

A similar approach can be taken for ensuring the consistency of a shared

object (i.e. providing atomic methods). Because atomic methods are provided

by the wrapped object, a programmer can begin with a coarse-grain locking im-

plementation of the object (which can be be implemented in a straightforward

manner using the monitor idiom). If this does not provide enough concurrency,

it is easy to replace the wrapped object with a different implementation, provid-

ing the same interface, which performs fine-grain locking, or uses transactional

memory.

54

3.3.5 Discussion

The design of the Galois class libraries exposes a multitude of avenues for fur-

ther investigation and research. In this section, we briefly discuss the following

issues:

• Semantic commutativity vs. transactional memory: A comparison be-

tween semantic commutativity and transactional memory, focusing on

how the two approaches differ when detecting conflicts between concur-

rently executing iterations.

• Semantic commutativity vs. open nesting: A discussion of how seman-

tic commutativity compares to recent proposals to augment transactional

memory with open nesting [93].

• Issues with semantic commutativity and return values: An explanation

of how to correctly handle methods whose commutativity is conditional

on their return values.

• Semantic undo vs. shadow copies: A comparison of the Galois approach

to undoing speculative execution with existing approaches.

• Eliding wrappers and sharing ConflictDetection objects: A descrip-

tion of the conditions under which multiple shared objects can share a

single Galois wrapper and/or the same ConflictDetection object.

Semantic commutativity vs. transactional memory

By leveraging data structure semantics, semantic commutativity is strictly more

precise than the read/write sets of transactional memory for detecting con-

flicts between concurrently executing iterations. One can view reads and writes

to memory as “methods” which act on memory locations: read(addr) and

55

write(addr). A single iteration can then be broken up into a (long) sequence

of read and write operations. Note that the semantics of these operations are

such that reads to a particular address commute, but no other combination of

operations on a given address commute6.

Thus, by semantic commutativity, two iterations will be declared indepen-

dent if the set of addresses either writes to is disjoint from the set of addresses

the other reads from and writes to. Note that this is equivalent to a transactional

memory’s tracking of read/write sets. Hence, any iterations that a transactional

memory would declare independent would also be found independent by se-

mantic commutativity.

This property holds even if semantic commutativity tracks higher-level

methods (such as additions and deletions from a set). This is because if trans-

actional memory sees two iterations as independent, the read/write sets gener-

ated by any methods the two iterations invoke must not overlap. If two methods

have non-overlapping read/write sets, they necessarily commute with one an-

other in a concrete sense (since they could execute in either order and produce

exactly the same set of reads and writes) and hence commute in a semantic sense

as well.

Concrete commutativity vs. transactional memory Interestingly, the stan-

dard approaches to transactional memory are strictly less precise than concrete

commutativity. Consider the sorted linked list in Figure 3.6(a). Then consider

two iterations, the first adding W to the list, the second adding H. The state of

the linked list each iteration would see after executing the operation is shown in

Figures 3.6(b) and 3.6(c), with the locations in their read sets shaded light grey

6“Silent” writes, where two write operations write the same value to a particular location,
commute, but we disregard this for simplicity

56

A D K Q Z

W

A D ZQK

H

A D K Q Z

A D QK

H

Z

W

(a)

(b)

(c)

(d)

Figure 3.6: Transactional memory vs. concrete commutativity

and the locations in their write sets shaded black.

Clearly, regardless of which order the two iteration perform their additions

to the list, the resulting list will be as shown in Figure 3.6(d), so the invoca-

tions commute both semantically and concretely. However, the read/write sets

of both iterations conflict, and hence a transactional memory would not allow

these iterations to proceed in parallel.

This particular problem is dealt with in the transactional memory literature

by providing early release functionality [58]. This allows transactional memo-

ries to remove addresses from transactions’ read-sets, in the interest of reducing

conflicts. In the case of linked list traversals, it would be used to remove the

first three nodes from the read-set in Figure 3.6(b), and the first node from the

read-set in Figure 3.6(c). By doing so, the two invocations no longer conflict,

and the iterations performing them can continue without aborting.

Early release has generally been presented as an unsafe optimization, which

57

can break the isolation of transactions. It is apparent from this discussion that

early release in transactional memories is safe as long as it preserves concrete

commutativity.

Semantic commutativity vs. open nesting

Several recent transactional memories have provided open nesting [89], where

a nested transaction can commit even as its parent transaction maintains its

read/write sets [86, 93]. This is accomplished is by maintaining separate

read/write sets for open nested transactions. Rather than merging the nested

transaction’s sets with the parent transaction upon completion, as in closed nest-

ing, the read/write sets are discarded, effectively committing the open nested

transaction.

Open nesting allows certain amounts of information to “escape” the isola-

tion boundary of the parent transaction, increasing concurrency. To ensure that

transactional semantics are not violated, Ni et al. have proposed the notion of

“abstract locks,” to detect conflicts between open nested transactions and other

transactions [93]. However, they provide no systematic methodology for us-

ing these abstract locks. In [20], Carlstrom et al. used abstract locks to trans-

actionalize the Java collections classes, but likewise did not provide a general

methodology for using abstract locks.

In general, open nesting is a mechanism for providing semantic conflict de-

tection, not a model for detecting semantic conflicts. It specifies the changes

that must be made to a traditional transactional memory to support semantic

conflict checking, but does not provide the programming model for safely us-

ing open nesting. One can view semantic commutativity as providing such a

methodology: much as early release is safe as long as it preserves concrete com-

58

mutativity, open nesting is safe as long as it preserves semantic commutativity.

Thus, the appropriate locking protocols for open nested transactions are exactly

those which enforce semantic commutativity.

Our approach to semantic commutativity is agnostic to the mechanism used

to implement it. The implementation of semantic commutativity in the Galois

system uses linerizable objects and semantic commutativity checks in software

(later work by Herlihy and Koskinen discusses how this approach can be inte-

grated with transactional memory [57]). However, we could also use a purely

transactional approach, using open nesting and abstract locks to capture seman-

tic commutativity.

Issues with semantic commutativity and return values

Much of the power of semantic commutativity arises due to its ability to pro-

vide conditional commutativity (i.e. methods commute only under certain con-

ditions). These conditions can be based on either the method arguments, or on

a method’s return value. While there are no issues with having commutativity

conditional on arguments, there are several problems which arise when commu-

tativity is conditional on return values. We call methods whose commutativity

is dependent on return values return-dependent methods.

First, an iteration executing a return-dependent method can cause other it-

erations to lose isolation. It is impossible to determine the safety of a return-

dependent method invocation until after it executes. Unfortunately, this means

that other iterations can see the modified object state, before the commutativity

check occurs, and can thus lose isolation.

It is easiest to demonstrate this by example. Consider a shared set, which

supports add, contains and removeRandom, with the last removing and re-

59

Iteration A Iteration B

{ {
s.add(x) ...
... s.removeRandom() //returns x
s.contains(x) ...

} }

Figure 3.7: Problems with return-dependent methods

turning a random element from the set. Now consider two iterations operating

on the set, performing the operations shown in Figure 3.7. Iteration B’s call to

removeRandom is unsafe, as it does not commute with Iteration A’s call to add.

However, before the commutativity check on Iteration B fails, Iteration A pro-

ceeds to call contains. This commutes with everything executed so far (as

there is no record yet that Iteration B called removeRandom), so the invocation

proceeds, and returns false. Thus, Iteration B has clearly broken the isolation of

Iteration A.

This is not the only problem with return-dependent methods. As we will

see in Section 3.3.3, undo methods that are executed when an iteration is rolled

back must be able to execute safely. However, because we cannot tell whether a

return-dependent method is unsafe until after it is executed, we cannot guaran-

tee that the associated undo method can be executed safely.

We avoid this problem by requiring that all return-dependent methods be

read only. This makes it impossible for an iteration to affect the isolation of an-

other iteration, as the return-dependent method cannot modify shared state.

Furthermore, no undo methods are required, addressing the issue of unsafe

rollbacks. Note that this means that methods such as removeRandom must

be implemented in two phases—a method such as findRandom followed by

remove.

60

Iteration A Iteration B

{ {
... s.findRandom() //returns x
s.remove(x) ...

} }

Figure 3.8: Example demonstrating race due to return-dependent meth-
ods

However, this restriction is not enough to make return-dependent methods

safe. Iterations executing return-dependent methods can lose their own isola-

tion, even when the methods are read only. This is due to a subtle race condi-

tion. Consider a set supporting the operations findRandom and remove, and

the two iterations shown in figure 3.8. Iteration B executes findRandom, and

prepares to perform the commutativity check. Before the check is performed, It-

eration A executes remove (which appears to be safe, as B has not performed its

commutativity check yet), and commits. Unfortunately, this means the record

of A’s executing remove no longer exists, and the ongoing commutativity check

performed by B will now pass, claiming that findRandom is safe. Thus, itera-

tion A caused iteration B to lose isolation. A similar problem can occur when an

iteration aborts.

This problem occurs because of an “atomicity gap” between when a method

completes and when its commutativity is checked; the two operations do not oc-

cur as a single atomic action. This gap allows other iterations to execute unsafe

operations which can break isolation. One solution to the problem is to attempt

to eliminate the atomicity gap—for example, by holding any locks acquired by a

return-dependent method until after the commutativity check completes. How-

ever, this breaks the clean separation between method atomicity and isolation

checking, reducing the modularity of the system. We would no longer be able

61

to wrap any linearizable type in an object wrapper and treat it as a Galois ob-

ject. Rather, the implementation of an object becomes closely coupled with the

conflict checking required for isolation.

There are several alternate solutions which do not incur this programmabil-

ity penalty. First, several return-dependent methods can be “checked” after they

execute, to ensure that isolation was not broken. For example, after executing

findRandom, we can call contains on the returned element to ensure that it

is still a valid result for findRandom. For return-dependent methods that do

not have a simple check, we can instead re-execute the method and ensure that

we produce the same result. In either case, if the check fails, we can simply treat

this as a commutativity violation and trigger a roll-back.

A second solution is to track all iterations that have committed during the ex-

ecution of a return-dependent method, and save their execution records. These

can then be checked as part of the commutativity check of the return-dependent

record, to ensure that we have not lost isolation.

Our current system uses a combination of these two approaches, perform-

ing post-execution checks when they can be calculated cheaply, and tracking

commits in other cases.

Semantic undo vs. shadow copies

Other approaches to speculative parallelization do not require semantic undo

methods, as we do. Instead, they use a variety of approaches to allow rollbacks:

• Speculative caches Many optimistic parallelization and synchronization

techniques buffer speculative state in a processor’s cache, only commit-

ting changes to main memory after speculation completes [52, 59, 76]. In

some software transactional memories, such as [53], an equivalent soft-

62

Action List State

Iteration A: add(x);

Iteration B: add(y);

Iteration A: //rollback
p q r x y

p q r y

p q r

p q r x

Figure 3.9: Using semantic undo for rollback

ware approach is taken. Because changes are only made public to main

memory at commit time, rollback can be accomplished simply by clearing

the speculative cache. In the transactional memory literature, this policy

is known as “lazy update.”

• Logged writes Other implementations [86] make changes to shared mem-

ory as speculative execution progresses, saving a log of all writes in local

memory. Rollbacks are accomplished by processing the log in a last-in,

first-out manner, undoing all changes to shared memory. In the transac-

tional memory literature, this policy is known as “eager update.”

• Shadow copies Object-based software transactional memories [58, 84]

make a “shadow” copy of an object when it is first accessed speculatively.

All speculative modifications to an object are made to the object, with the

shadow copy representing the state of the object before speculative execu-

tion. Thus, rollback can be performed by replacing all objects with their

shadow copies.

The most direct comparison to our rollback technique can be made with

shadow copies. We preserve a complete record of actions to be undone (much as

63

in the logged writes approach), instead of simply using shadow copies. This is

due to the interleavings of iterations allowed by semantic commutativity. Con-

sider the example shown in Figure 3.9. Iteration A adds x to the linked list, then

Iteration B adds y. At some point in the future, Iteration A rolls back. After

rollback, the linked list should contain y. However, at no point during forward

execution does the list exist in a state containing y but not x. Thus, there is no

point where a valid shadow copy could be made—the only safe rollback mech-

anism is to perform a semantic undo, removing x from the list.

Eliding wrappers and sharing ConflictDetection objects

When providing Galois wrappers for a set of library classes, it is immediately

apparent that not all objects require wrapping. For example, objects which are

immutable can never be changed in an unsafe manner. These objects can be ac-

cessed directly, without performing conflict detection, as accesses to them, by

definition, always commute. For example, the triangles contained in the De-

launay mesh are actually immutable objects (new triangles may be created, but

existing triangles are never modified) and hence, we do not need to provide

wrappers for them.

We can also provide a single wrapper for all objects which, collectively, make

up the representation of a single data structure.7 For example, a Set backed by a

linked list is comprised of a series of linked nodes. Because all of these nodes are

treated collectively as a single set, with a single interface, we need only provide

one wrapper for the objects.

Care must be taken when eliding a wrapper, though. Because the

ConflictDetection object in the wrapper is the location where relevant in-
7While we do not provide a rigorous definition of “representation,” the following intuition

suffices: an object is part of a data structure’s representation if changes to the object affect the
invariants of the data structure.

64

formation is kept regarding the optimistic state of shared objects, it is necessary

that these logs remain consistent with respect to the shared objects they refer-

ence. In general, we require that any changes to a shared object be recorded by

a single ConflictDetection object (i.e. there cannot be active invocations on

an object which are seen by more than one ConflictDetection object). This

ensures that there is a single point of reference for an object’s state, and that it

remains consistent.

This is a problem of controlling representation exposure [28], where the inter-

nal representation of an object is exposed beyond its encapsulation boundary.

Intuitively, Galois wrappers and the associated ConflictDetection objects

protect all accesses initiated at the encapsulation boundary, but have no record

of accesses made at other points. So if, for example, a linked list node from

the previous example is aliased and can be accessed without going through the

Set’s wrapper, then we can no longer guarantee isolation.

A concrete example of this problem occurs in the the ConcurrentHashMap

class in the Java collections classes [37]. This object is thread-safe, and hence

can be safely wrapped in a Galois wrapper; a ConflictDetection object

that handles maps can be used to perform commutativity checks. This object

implements a method called keySet, which returns a set of all the keys in

the map. Naı̈vely, this returned object would have its own wrapper, with its

own ConflictDetection object. However, the keySet and the underlying

ConcurrentHashMap share representation (removing a key from the keySet

removes the key from the map, and vice versa), so having separate Galois wrap-

pers for the two objects is unsafe. In this case, one iteration can add a key-value

pair <K, V> to the Map, while a second iteration concurrently attempts to re-

move K from the keySet, clearly violating isolation.

65

We would be unable to detect this isolation violation, as the two invocations

are tracked by separate ConflictDetection objects, and thus no commu-

tativity check would fail. We can fix this problem by having the two object

wrappers use the same ConflictDetection object. The general principle we

adhere to in order to avoid issues with shared representation is: objects which

share representation should share conflict detection.8

At the moment, this principle is simply a guideline that programmers must

follow; it is not enforced or verified in any way. It may be possible to enforce

the guideline by controlling aliasing through annotations [3, 15, 16, 28, 64, 94],

or to verify that it is followed through program analyses that ensure similar

restrictions [46, 83, 91]. We leave this to future work.

3.3.6 A small example

Iteration A Iteration B Iteration C

{ { {
...
a.accumulate(5) a.accumulate(7) a.read()
...

} } }

Figure 3.10: Example accumulator code

Consider a program written using a single shared object, an integer accu-

mulator. The object supports two operations: accumulate and read, with

the obvious semantics. It is clear that accumulates commute with other

accumulates, and reads commute with other reads, but that accumulate
8It is important to note that this principle does not prevent multiple containers from holding

the same object (for example, the Nodes in Delaunay mesh refinement appear in both the Mesh
and the Worklist). This is because the objects held by containers are not part of the containers’
representations; the containers’ invariants depend on immutable state of the objects they holds
(such as the address of the object).

66

does not commute with read. The methods are made atomic with a single lock

which is acquired at the beginning of the method and released at the end.

There are three iterations executing concurrently, as seen in Figure 3.10. The

progress of the execution is as follows:

• Iteration A calls accumulate, acquiring the lock, updating the accumu-

lator and then releasing the lock and continuing.

• Iteration B calls accumulate. Because accumulates commute, B can

successfully make the call, acquiring the lock, updating the accumulator

and releasing it. Note that A has already released the lock on the accumu-

lator, thus allowing B to make forward progress without blocking on the

accumulator’s lock.

• When iteration C attempts to execute read, it sees that it cannot, as read

does not commute with the already executed accumulates. Thus, C must

roll back and try again. Note that this is not enforced by the lock on the

accumulator, but instead by the commutativity conditions on the accumu-

lator.

• When iterations A and B commit, C can then successfully call read and

continue execution.

In [132], von Praun et al discuss the use of ordered transactions in paralleliz-

ing FORTRAN-style DO-loops, and they give special treatment to reductions in

such loops to avoid spurious conflicts. Reductions do not require any special

treatment in the Galois approach since the programmer could just use an object

like the accumulator to implement reduction.

67

3.4 Run-time system

The Galois run-time system comprises three global structures: a scheduler, which

is responsible for creating iterations, an arbitrator, which is responsible for abort-

ing iterations, and commit pool, which is responsible for committing iterations.

In the baseline Galois system, the run-time also interacts with per-object con-

flict logs which are the ConflictDetection objects responsible for detecting

commutativity violations.

At a high level, the run-time systems works as follows. The commit pool

maintains an iteration record, shown in Figure 3.11, for each ongoing iteration in

the system. The status of an iteration can be RUNNING, RTC (ready-to-commit)

or ABORTED. Threads go to the scheduler to obtain an iteration. The scheduler

creates a new iteration record, obtains the next element from the iterator, assigns

a priority to the iteration record based on the priority of the element (for a set

iterator, all elements have the same priority), creates an entry for the iteration

in the commit pool, and sets the status field of the iteration record to RUNNING.

When an iteration invokes a method of a shared object, (i) the conflict log of that

object and the local log of the iteration record are updated, as described in

more detail below, and (ii) a callback to the associated undo method is pushed

onto the undo log of the iteration record. If a commutativity conflict is detected,

the arbitrator arbitrates between the conflicting iterations, and aborts iterations

to permit the highest priority iteration to continue execution. Callbacks in the

undo logs of aborted iterations are executed to undo their effects on shared ob-

jects. Once a thread has completed an iteration, the status field of that iteration

is changed to RTC, and the thread is allowed to begin a new iteration. When

the completed iteration has the highest priority in the system, it is allowed to

commit.

68

IterationRecord {
Status status;
Priority p;
UndoLog ul;
list<LocalConflictLog> local_log;
Lock l;

}

Figure 3.11: Iteration record maintained by run-time system

3.4.1 Scheduler

The first component of the manager is the scheduler object, whose job it is to as-

sign work to threads as they need it. In the default Galois system, the scheduler

simply assigns work randomly from the worklist to threads. However, it may be

beneficial to use more intelligent scheduling policies to improve performance.

In this case, the scheduler object can be replaced with a different scheduler more

appropriate to the application. The various intricacies of choosing an appropri-

ate scheduling policy are discussed in detail in Chapter 5.

3.4.2 Arbitrator

The second component of the manager is the arbitrator, an object whose job is

to arbitrate conflicts between iterations. When iterating over an unordered set,

the choice of which iteration to roll back in the event of a conflict is irrelevant

from a correctness perspective. There have been several policies proposed in

the transactional memory literature for choosing which transaction to roll back

when faced with a conflict. These policies may utilize one of several metrics,

including the age of the conflicting transactions, which transaction has a larger

memory footprint, or random selection [115]. Conceptually, there is no obstacle

69

to implementing similar contention management policies in the Galois run-time

(it simply requires a different arbitrator). However, in our experience we have

not found it necessary to use anything other than the Galois default policy: the

arbitrator rolls back the iteration which detected the conflict.

Unlike in the ordered case, when iterating over an ordered set the default

arbitration policy raises the possibility of deadlock: if iteration A and B conflict

and the higher priority iteration, A, is rolled back, B still cannot commit (as

that will break sequential semantics). Unfortunately, when A re-executes it will

still conflict with B and the default arbitrator will roll back A again. Thus, no

forward progress will be made, and the system will deadlock.

Thus, when iteration i1 calls a method on a shared object and a conflict is

detected with iteration i2, the arbitrator arbitrates based on the priorities of the

two iterations. If i1 has lower priority, it simply performs the standard rollback

operations. The thread which was executing i1 then begins a new iteration.

This situation is complicated when i2 is the iteration that must be rolled back.

Because the Galois run time systems functions purely at the user level, there

is no simple way to abort an iteration running on another thread. To address

this problem, each iteration record has an iteration lock as shown in Figure 3.11.

When invoking methods on shared objects, each iteration must own the itera-

tion lock in its record. Thus, the thread running i1 does the following:

1. It attempts to obtain i2’s iteration lock. By doing so, it ensures that i2 is not

modifying any shared state.

2. It aborts i2 by executing i2’s undo log and clearing the various conflict logs

of i2’s invocations. Note that the control flow of the thread executing i2

does not change; that thread continues as if no rollback is occurring.

3. It sets the status of i2 to ABORTED.

70

4. It then resumes its execution of i1, which can now proceed as the conflict

has been resolved.

On the other side of this arbitration process, the thread executing i2 will re-

alize that i2 has been aborted when it attempts to invoke another method on a

shared object (or attempts to commit). At this point, the thread will see that i2’s

status is ABORTED and will cease execution of i2 and begin a new iteration.

When an iteration has to be aborted, the callbacks in its undo log are exe-

cuted in LIFO order. Because the undo log must persist until an iteration com-

mits, we must ensure that all the arguments used by the callbacks remain valid

until the iteration commits. If the arguments are pass-by-value, there is no prob-

lem; they are copied when the callback is created. A more complex situation is

when arguments are pass-by-reference or pointers. The first problem is that the

underlying data which the reference or pointer points to may be changed dur-

ing the course of execution. Thus, the callback may be called with inappropriate

arguments. However, as long as all changes to the underlying data also occur

through Galois interfaces, the LIFO nature of the undo log ensures that they will

be rolled back as necessary before the callback uses them. The second problem

occurs when an iteration attempts to free a pointer, as there is no simple way to

undo a call to free. The Galois run-time avoids this problem by delaying all

calls to free until an iteration commits. This does not affect the semantics of

the iteration, and avoids the problem of rolling back memory deallocation.

3.4.3 Commit pool

The isolation property of transactions means that they can be serialized. The ob-

served serial schedule that they represent is determined by the order in which

the transactions commit. When iterating over an unordered set, because the

71

order of iterations does not matter, transactions can commit in any order. How-

ever, when iterating over an ordered set, there is a specific serial order that must

be respected (e.g. when iterating over a priority queue, the observed serial ex-

ecution must be in priority order). Thus, transactions can no longer commit in

any order. It is the responsibility of the commit pool to ensure that transactions

commit in the appropriate order.

Intuitively, the commit pool functions much as a reorder buffer in a modern

out-of-order execution (OOE) processor [56]. In an OOE processor, instructions

are executed out of order, but can only be retired, and hence have their results

committed, in order; the reorder buffer allows this mix of out-of-order execution

and in-order committing to happen. Similarly, when pulling iterations from

an ordered set iterator, the scheduler is given the freedom to execute iterations

in any order, and even to complete in any order (and hence a lower priority

iteration can execute completely even while a higher priority iteration is still

running). However, the commit pool ensures that iterations only commit their

state (and hence release isolation) in order.

The commit pool contains a queue, called the commit queue which is a list of

all iterations current in the RUNNING, ABORTED or RTC states, sorted by priority.

Thus, the highest priority RUNNING iteration is at the head of the queue.

When an iteration attempts to commit, the commit pool checks two things:

(i) that the iteration is at the head of the commit queue, and (ii) that the priority

of the iteration is higher than all the elements left in the set/poSet being iterated

over9. If both conditions are met, the iteration can successfully commit. If the

conditions are not met, the iteration must wait until it has the highest priority

in the system; its status is set to RTC, and the thread is allowed to begin another

9This is to guard against a situation where an earlier committed iteration adds a new element
with high priority to the collection which has not yet been consumed by the iterator

72

iteration.

When an iteration successfully commits, the thread that was running that

iteration also checks the commit queue to see if more iterations in the RTC state

can be committed. This can be done efficiently by scanning forward through the

commit queue. If so, it commits those iterations before beginning the execution

of a new iteration. When an iteration has to be aborted, the status of its record

is changed to ABORTED, but the commit pool takes no further action. Such it-

eration objects are lazily removed from the commit queue when they reach the

head.

3.4.4 Conflict logs

The conflict log is the implementation of a ConflictDetection object (see Sec-

tion 3.3.4) which performs commutativity checks. In general, we do not pre-

scribe a particular implementation of commutativity checks—some objects may

have semantics which lend themselves to more efficient implementations than

others—but here we describe a typical implementation.

A simple implementation for the conflict log of an object is a list containing

the method signatures (including the values of the input and output param-

eters) of all invocations on that object made by currently executing iterations

(called “outstanding invocations”). When iteration i attempts to call a method

m1 on an object, the method signature is compared against all the outstanding

invocations in the conflict log. If one of the entries in the log does not commute

with m1, then a commutativity conflict is detected, and an arbitration process

is begun to determine which iterations should be aborted, as described below.

If m1 commutes with all the entries in the log, the signature of m1 is appended

to the log. When i either aborts or commits, all the entries in the conflict log

73

inserted by i are removed from the conflict log.

This model for conflict logs, while simple, is not efficient since it requires

a full scan of the conflict log whenever an iteration calls a method on the as-

sociated object. In our actual implementation, conflict logs consist of separate

conflict sets for each method in the class. Now when i calls m1, only the conflict

sets for methods which m1 may conflict with are checked; the rest are ignored.

As an optimization, each iteration caches its own portion of the conflict logs

in a private log called its local log. This local log stores a record of all the

methods the iteration has successfully invoked on the object. When an iteration

makes a call, it first checks its local log. If this local log indicates that the in-

vocation will succeed (either because that same method has been called before

or other methods, whose commutativity implies that the current method also

commutes, have been called before10), the iteration does not need to check the

object’s conflict log.

3.5 Case studies

We have implemented the Galois system in C++ on two Linux platforms: (i) a

4 processor, 1.5 GHz Itanium 2, with 16KB of L1, 256KB of L2 and 3MB of L3

cache per processor, and (ii) a dual processor dual-core 3.0 GHz Xeon system,

with 32KB of L1 per core and 4MB of L2 cache per processor. The threading

library on both platforms was pthreads.

10For example, if an iteration has already successfully invoked add(x), then contains(x)
will clearly commute with method invocations made by other ongoing iterations.

74

3.5.1 Delaunay mesh refinement

We first wrote a sequential Delaunay mesh refinement program without locks,

threads etc. to serve as a reference implementation. We then implemented a

Galois version (which we call meshgen), and a fine-grain locking version (FGL)

that uses locks on individual triangles. The Galois version uses the set iterator,

and the run-time system described in Section 3.4. In all three implementations,

the mesh was represented by a graph that was implemented as a set of triangles,

where each triangle maintained a set of its neighbors. This is essentially the

same as the standard adjacency list representation of graphs. For meshgen, code

for commutativity checks was added by hand to this graph class; ultimately, we

would like to generate this code automatically from high level commutativity

specifications like those in Figure 3.5. We used an STL queue to implement the

workset [121]. We refer to these default implementations of meshgen and FGL

as meshgen(d) and FGL(d).

To understand the effect of scheduling policy on performance, we imple-

mented two more versions, FGL(r) and meshgen(r), in which the work-set was

implemented by a data structure that returned a random element of the current

set.

The input data set was generated automatically using Jonathan Shewchuk’s

Triangle program [119]. It had 10,156 triangles and boundary segments, of

which 4,837 triangles were bad.

Execution times and speed-ups. Execution times and self-relative speed-ups

for the five implementations on the Itanium machine are shown in Figures 3.12

and 3.13 respectively. The reference version is the fastest on a single processor.

On 4 processors, FGL(d) and FGL(r) differ only slightly in performance. mesh-

75

1 2 3 4
of processors

0

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(s
)

reference
FGL (d)
FGL (r)
meshgen (d)
meshgen (r)

Figure 3.12: Mesh Refinement: execution times

1 2 3 4
of processors

1

1.5

2

2.5

3

Sp
ee

du
p

reference
FGL (d)
FGL (r)
meshgen (d)
meshgen (r)

Figure 3.13: Mesh refinement: self-relative speed-ups

gen(r) performed almost as well as FGL, although surprisingly, meshgen(d) was

twice as slow as FGL.

Table 3.1: Mesh refinement: committed and aborted iterations for mesh-
gen

Committed Aborted

of proc. Max Min Avg Max Min Avg

1 21918 21918 21918 n/a n/a n/a

4 (meshgen(d)) 22128 21458 21736 28929 27711 28290

4 (meshgen(r)) 22101 21738 21909 265 151 188

76

Statistics on committed and aborted iterations. To understand these issues

better, we determined the total number of committed and aborted iterations for

different versions of meshgen, as shown in Table 3.1. On 1 processor, mesh-

gen executed and committed 21,918 iterations. Because of the inherent non-

determinism of the set iterator, the number of iterations executed by meshgen

in parallel varies from run to run (the same effect will be seen on one processor if

the scheduling policy is varied). Therefore, we ran the codes a large number of

times, and determined a distribution for the numbers of committed and aborted

iterations. Table 3.1 shows that on 4 processors, meshgen(d) committed roughly

the same number of iterations as it did on 1 processor, but also aborted almost

as many iterations due to cavity conflicts. The abort ratio for meshgen(r) is much

lower because the scheduling policy reduces the likelihood of conflicts between

processors. This accounts for the performance difference between meshgen(d)

and meshgen(r). Because the FGL code is carefully tuned by hand, the cost of an

aborted iteration is substantially less than the corresponding cost in meshgen,

so FGL(r) performs only a little better than FGL(d).

It seems counterintuitive that a randomized scheduling policy could be ben-

eficial, but a deeper investigation into the source of cavity conflicts showed that

the problem could be attributed to our use of an STL queue to implement the

workset. When a bad triangle is refined by the algorithm, a cluster of smaller

bad triangles may be created within the cavity. In the queue data structure,

these new bad triangles are adjacent to each other, so it is likely that they will

be scheduled together for refinement on different processors, leading to cavity

conflicts.

One conclusion from these experiments is that domain knowledge is invalu-

able for implementing a good scheduling policy. We present a deeper investiga-

77

Table 3.2: Mesh refinement: instructions per iteration on a single processor

Instruction Type reference meshgen(r)

Branch 38047 70741

FP 9946 10865

LD/ST 90064 165746

Int 304449 532884

Total 442506 780236

0

7.5

15.0

22.5

30.0

1 proc 4 proc (d) 4 proc (r)

C
yc

le
 (

b
ill

io
n
s)

13.8951

25.7625

18.8501

0

7.5

15.0

22.5

30.0

1 proc 4 proc (d) 4 proc (r)

In
st

ru
ct

io
n
s

(b
ill

io
n
s)

16.8889

25.6734

17.4675

with randomized queue

Figure 3.14: Mesh refinement: breakdown of instructions and cycles in
meshgen

tion of scheduling policies for Dealaunay mesh refinement in Chapter 5.

Instructions and cycles breakdown. Table 3.2 shows the breakdown of dif-

ferent types of instructions executed by the reference and meshgen versions of

Delaunay mesh refinement when they are run on one processor. The numbers

shown are per iteration; in sequential execution, there are no aborts, so these

numbers give a profile of a “typical” iteration in the two codes. Each iteration

of meshgen performs roughly 10,000 floating-point operations and executes al-

most a million instructions. These are relatively long-running computations.

78

Commutativity
77%

Scheduler
3%

Abort
10%

Commit
10%

Commit Abort Scheduler Commutativity

mesghen

Figure 3.15: Mesh refinement: breakdown of Galois overhead

Meshgen executes almost 80% more instructions than the reference version.

To understand where these extra cycles were being spent, we instrumented the

code using the Performance Application Programming Interface (PAPI) [18].

Figure 3.14 shows a breakdown of the total number of instructions and cycles

between the client code (the code in Figure 3.2), the shared objects (graph and

workset), and the Galois run-time system. The 4 processor numbers are sums

across all four processors. The reference version performs almost 9.8 billion in-

structions, and this is roughly the same as the number of instructions executed

in the client code and shared objects in the 1 processor version of meshgen and

the 4 processor version of meshgen(r). Because meshgen(d) has a lot of aborts, it

spends substantially more time in the client code doing work that gets aborted

and in the run-time layer to recover from aborts.

We further broke down the Galois overhead into four categories: commit

and abort overheads, which are the time spent committing iterations and abort-

ing them, respectively; scheduler overhead, which includes time spent arbitrat-

ing conflicts; and commutativity overhead, which is the time spent performing

79

Table 3.3: Mesh refinement: L3 misses (in millions) for meshgen(r)

of procs Client Object Run-time Total

1 1.177 0.6208 0.6884 2.487

4 2.769 3.600 4.282 10.651

conflict checks. The results, as seen in Figure 3.15, show that roughly three

fourths of the Galois overhead goes in performing commutativity checks. It is

clear that reducing this overhead is key to reducing the overall overhead of the

Galois run-time.

The 1 processor version of meshgen executes roughly the same number of in-

structions as the 4 processor version. We do not get perfect self-relative speedup

because some of these instructions take longer to execute in the 4 processor ver-

sion than in the 1 processor version. There are two reasons for this: contention

for locks in shared objects and the run-time system, and cache misses due to

invalidations. Contention is difficult to measure directly, so we looked at cache

misses instead. On the 4 processor Itanium, there is no shared cache, so we mea-

sured L3 cache misses. Table 3.3 shows L3 misses; the 4 processor numbers are

sums across all processors for meshgen(r). Most of the increase in cache misses

arises from code in the shared object classes and in the Galois run-time. An L3

miss costs roughly 300 cycles on the Itanium, so it can be seen that over half of

the extra cycles executed by the 4 processor version, when compared to the 1

processor version, are lost in L3 misses. The rest of the extra cycles are lost in

contention.

80

1 2 3 4
of processors

0

2

4

6

8

Ex
ec

ut
io

n
tim

e
(s

)
Reference
treebuild

Figure 3.16: Agglomerative clustering: execution times

1 2 3 4
of processors

1

1.5

2

2.5

Sp
ee

du
p

Reference
treebuild

Figure 3.17: Agglomerative clustering: self-relative speed-ups

0 5 10 15 20
RTC occupancy in commit pool

0

5000

10000

15000

20000

25000

30000

Fr
eq

ue
nc

y

Figure 3.18: Agglomerative clustering: commit pool occupancy by RTC it-
erations

81

Table 3.4: Agglomerative clustering: committed and aborted iterations in
treebuild

Committed Aborted

of proc. Max Min Avg Max Min Avg

1 57846 57846 57846 n/a n/a n/a

4 57870 57849 57861 3128 1887 2528

Table 3.5: Agglomerative clustering: instructions per iteration on a single
processor

Instruction Type reference treebuild

Branch 7162 18187

FP 3601 3640

LD/ST 22519 48025

Int 70829 146716

Total 104111 216568

0

5

10

15

20

1 proc 4 proc

C
yc

le
 (

b
ill

io
n
s)

0

5

10

15

20

1 proc 4 proc

In
st

ru
ct

io
n
s

(b
ill

io
n
s)

12.5272
13.2660

14.1666

18.8916

Figure 3.19: Agglomerative clustering: breakdown of instructions and cy-
cles

82

Commutativity
52% Scheduler

39%

Abort
1%

Commit
8%

Commit Abort Scheduler Commutativity

treebuild

Figure 3.20: Agglomerative clustering: breakdown of Galois overhead

Table 3.6: Agglomerative clustering: L3 misses (in millions)

of procs User Object Run-time Total

1 0.5583 3.102 0.883 4.544

4 2.563 12.8052 5.177 20.545

3.5.2 Priority queue-based agglomerative clustering

For the agglomerative clustering problem, the two main data structures are the

kd-tree and the priority queue. The kd-tree interface is essentially the same as

Set, but with the addition of the nearest neighbor (nearest) method. The pri-

ority queue is an instance of an ordered set. Since the priority queue is used to

sequence iterations, the removal and insertion operations (get and add respec-

tively) are orchestrated by the commit pool.

To evaluate the agglomerative clustering algorithm, we modified an existing

graphics application called lightcuts that provides a scalable approach to illu-

mination [133]. This code builds a light hierarchy based on a distance metric

that factors in Euclidean distance, light intensity and light direction. We mod-

ified the objects used in the light clustering code to use Galois interfaces and

83

the ordered set iterator for tree construction. The overall structure of the result-

ing code was discussed in Figure 2.8. We will refer to this Galois version as

treebuild. We compared the running time of treebuild against a reference version

which performed no threading or locking.

Figures 3.16–3.20 and Tables 3.4–3.6 show the results on the Itanium ma-

chine. These results are similar to the Delaunay mesh generation results dis-

cussed in Section 3.5.1, so we describe only the points of note. The self-relative

speed-ups in Figure 3.17 shows that despite the serial dependence order im-

posed by the priority queue, the Galois system is able to expose a significant

amount of parallelism. The mechanism that allows us to do this is the com-

mit pool, which allows threads to begin execution of iterations even if earlier

iterations have yet to commit.

To understand the role of the commit pool quantitatively, we recorded the

number of iterations in RTC state every time the commit pool created, aborted or

committed an iteration. This gives an idea of how deeply into the ordered set we

are speculating to keep all the processors busy. Figure 3.18 shows a histogram

of this information (the x-axis is truncated to reveal detail around the origin).

We see that most of the time, we do not need to speculate too deeply. However,

on occasion, we must speculate over 100 elements deep into the ordered set to

continue making forward progress. Despite this deep speculation, the number

of aborted iterations is relatively small because of the high level of parallelism

in this application, as discussed in Section 2.3.1. We present a further study of

commit pool behavior in Section 3.5.2.

Note that commit pool occupancy is not the same as parallelism in the prob-

lem because we create iteration records in the commit pool only when a thread

needs work; the priority queue is distinct from the commit pool. We also see

84

that due to the overhead of managing the commit pool, the scheduler accounts

for a significant percentage of the overall Galois overhead, as seen in Figure 3.20.

Table 3.6 shows that most of the loss in self-relative speedup when executing

on 4 processors is due to increased L3 cache misses from cache-line invalida-

tions.

Commit pool occupancy

We performed a further study of the commit pool, to investigate its effects on

parallelism of ordered-set programs. We instrumented the Galois run-time to

report commit pool occupancy at every “event,” where events are defined as

iterations attempting to commit. This instrumentation tracked the number of

iterations in the RUNNING, RTC and ABORTED states. To gather data, we ran

agglomerative clustering on four cores; the results of this study are shown in

Figures 3.21(a)-(c).

First, consider the number of running iterations in the commit pool (Figure

3.21(a)). As we would expect, there are fairly consistently four iterations in the

RUNNING state, indicating that the system is able to maintain parallel execu-

tion throughout the program run (even if it is not always beneficial, as we shall

see shortly). Figure 3.21(b)) shows the number of RTC iterations in the commit

pool over time. This reflects the histogram results shown in Figure 3.18; most

of the time there are not too many RTC iterations in the commit pool, but oc-

casionally we have to speculate quite deeply into the iteration space in order to

find work to do.

Interestingly, even when the degree of speculation gets very high (as it does

towards the beginning of execution), the number of aborts that we see does not

increase significantly, as we can see in Figure 3.21(c). This means that the high

85

(a) RUNNING iterations in commit pool

(b) RTC iterations in commit pool

(c) ABORTED iterations in commit pool

Figure 3.21: Commit pool occupancy over time

86

degree of speculation is warranted; we are able to continue making forward

progress even while higher priority iterations stall. However, towards the end

of execution, this ceases to be the case: the number of aborted iterations spikes.

This is to be expected, as the number of potential clusters to look at shrinks,

increasing the likelihood of conflict.

Clearly the commit pool is a useful structure when executing ordered-set

iterators. Without it, we would not be able to speculate beyond higher prior-

ity iterations to find useful work to do. We once again draw an analogy to a

reorder buffer. In an in-order processor, when a single instruction (e.g. a multi-

ply) is high latency, execution must stall until the instruction completes. How-

ever, with the use of a reorder buffer, other, independent iterations from later

in the instruction stream can execute to hide the latency of earlier instructions,

maintaining performance. Similarly, the commit pool allows later iterations to

execute to account for slow, high priority iterations, maintaining concurrency.

3.5.3 Performance on 4-core Xeon

To confirm the role of cache invalidation misses, we investigated the perfor-

mance of meshgen and treebuild on a dual-core, dual processor Xeon system.

In this asymmetric architecture, cores on the same package share the lowest

level of cache (in this case, L2). Therefore, a program run using two cores on the

same package will incur no L2 cache line invalidations, while the same program

running on two cores on separate packages will suffer from additional cache in-

validation misses (capacity misses may be reduced because the effective cache

size doubles).

Table 3.7 shows the performance of the two programs when run on a single

core and on two cores. We see that when the two cores are on the same package,

87

Table 3.7: Results on dual-core, dual-processor Intel Xeon

meshgen(p) treebuild

Cores Time (s) Speedup Time (s) Speedup

1 12.5 1.0 8.19 1.0

2 (non-shared L2) 8.1 1.5 7.77 1.05

2 (shared L2) 6.7 1.9 4.66 1.78

we achieve near-perfect speedup, but the speedup is much less when the two

cores are on separate packages. This confirms that a substantial portion of effi-

ciency loss arises from cache line invalidations due to data sharing, so further

improvements in performance require attending to locality.

3.6 Summary

The Galois system is the first practical approach we know of for exploiting

amorphous data-parallelism in work-list based algorithms that deal with com-

plex, pointer-based data structures like graphs and trees. Our approach is based

on (1) a small number of syntactic constructs for packaging optimistic paral-

lelization as iteration over mutable ordered and unordered sets, (2) assertions

about methods in class libraries, and (3) a run-time scheme for detecting and

recovering from potentially unsafe accesses to shared memory made by an op-

timistic computation. The execution model is an object-based shared-memory

model. By exploiting the high level semantics of abstract data types, the Galois

system is able to allow concurrent accesses and updates to shared objects. We

have some experience in massaging existing object-oriented codes in C++ to use

the Galois approach, and the effort has not been daunting at least for codes that

88

use collections of various sorts.

Our experimental results show that (1) our approach is promising, (2)

scheduling iterations to reduce aborted computations is important, (3) domain

knowledge may be important for good scheduling, and (4) locality enhance-

ment is critical for obtaining better performance than our current approach is

able to provide.

Our application studies suggest that the objective of compile-time analysis

techniques such as points-to and shape analysis should be to improve the effi-

ciency of optimistic parallelization, rather than to perform static parallelization

of irregular programs. These techniques might also help in verification of com-

mutativity conditions against a class specification. Static parallelization works

for regular programs because the parallelism in dense-matrix algorithms is in-

dependent of the values in dense matrices. Irregular programs are fundamen-

tally different, and no static analysis can uncover the parallelism in many if not

most irregular applications.

While exposing and exploiting parallelism is important, one of the central

lessons of parallel programming is that exploiting locality is critical for scala-

bility. Most work in locality enhancement has focused on regular problems, so

new ideas may be required to make progress on this front. We believe that the

approach described in this chapter for exposing parallelism in irregular appli-

cations is the right foundation for solving the problem of exploiting parallelism

in irregular applications in a scalable way. We pursue this goal next.

89

CHAPTER 4

PARTITIONING FOR PERFORMANCE

4.1 Overview

The Galois system as presented in the previous chapter allows for the optimistic

parallelization of programs exhibiting amorphous data-parallelism. However,

while it can successfully parallelize these programs, it was not developed for

performance or scalability. In this chapter, we investigate approaches to im-

proving the scalability of the Galois system.

4.1.1 Scalability issues

There are several issues to consider when pursuing scalability in any parallel

system. The first is locality: a program should maintain good cache locality,

even as its data is shared among multiple processors. If a program can be par-

allelized but cache locality is destroyed, it is very difficult to achieve acceptable

performance.

A second issue constraining scalability is contention. In a shared memory

parallel program, there can be several data structures which are shared between

multiple processors. As such, access to these shared structures must be synchro-

nized to ensure correct behavior, and this synchronization often enforces mutual

exclusion. As a result, contention for shared resources can lead to excessive seri-

alization of execution, dramatically reducing scalability (cf. Amdahl’s Law [4]).

While the previous two issues affect all parallel programs, when dealing

with optimistic parallelization, we must contend with two further issues which

can impact scalability. First, we must consider the effects of mis-speculation. Es-

sentially, in order to obtain the benefits of optimistic parallelism, the optimism

90

must be warranted. If most speculative execution must be rolled back, then

there is little effective parallelism in the program. Achieving scalability thus

requires minimizing the amount of mis-speculation in optimistic execution.

The final obstacle to scalability arises because optimistic parallelization sys-

tems must perform run-time checks to detect when speculative execution is cor-

rect. These checks can be a source of significant overhead—in the baseline Ga-

lois system, they account for 75% of the overall run-time overhead, as we saw

in Section 3.5.1—and often create serial bottlenecks. Thus, minimizing the over-

head of run-time dependence checks is necessary to achieve reasonable perfor-

mance.

4.1.2 Locality vs. parallelism

In many data-parallel applications, there exists a fundamental tension be-

tween maintaining good cache locality and achieving high levels of parallelism.

Achieving locality requires scheduling execution such that iterations which ac-

cess the same regions of the data structures are run in close temporal proxim-

ity. This schedule of execution will promote temporal locality. However, if

that schedule of execution is blindly applied to parallel execution, it is highly

likely that iterations executing simultaneously on separate processors will con-

flict with one another.

Delaunay mesh refinement provides an illustrative example of this. In mesh

refinement, work is newly created when a retriangulated cavity contains new

bad triangles. Processing these new bad triangles will obviously access the same

regions of the mesh as the iteration that generated them. Thus, the best sequen-

tial schedule for computation is to treat the worklist as a stack. As a result, any

newly created work will be executed immediately, leading to excellent temporal

91

Table 4.1: Performance of random worklist vs. stack-based worklist for
Delaunay mesh refinement

Random Stack-based

of cores Time (s) Abort rate (%) Time (s) Abort rate (%)

1 18.438 — 14.437 —

2 10.268 0.031 9.847 76.440

4 7.682 0.073 9.563 85.674

locality.

Unfortunately, if we naı̈vely use the same stack-based worklist in a paral-

lel setting, we find that performance will suffer due to high amounts of mis-

speculation. This is because when new bad triangles are created through a

cavity’s retriangulation, they are necessarily near each other in the mesh. Fur-

thermore, these bad triangles are all added to the stack at the same time and

hence will be adjacent in the worklist. Thus, when multiple processors retrieve

new work from the worklist they will likely receive triangles that are nearby on

the mesh. As a result, the likelihood that two processors will process triangles

whose cavities overlap will be high, leading to significant mis-speculation.

To avoid this problem, the default scheduling policy of the Galois run-time

is to assign work to processors at random from the worklist. This has the benefit

of reducing the likelihood of mis-speculation, as processors will be working on

triangles from all over the mesh, but at the cost of cache locality, as we can no

longer exploit the temporal locality afforded by the stack.

Table 4.1 shows the execution time and abort rates for mesh refinement us-

ing both the stack-based worklist and the random worklist. Figure 4.1 shows

the same results pictorially. We see that using the random worklist runs 27%

slower than the stack-based worklist on a single core, due to the lack of locality.

92

1 2 3 4
of Cores

8

10

12

14

16

18

Ti
m

e
(s

)

Random
Stack-based

Figure 4.1: Execution time of random worklist vs. stack-based worklist for
Delaunay mesh refinement

However, on four cores, the stack-based worklist has an abort rate of over 85%,

while the random worklist has an abort rate of nearly 0%. The better speculation

afforded by the random worklist thus allows it to outperform the stack-based

worklist.

Interestingly, cache coherence can also lead to degradation of performance.

If a particular region of the mesh is accessed by multiple cores, each core will

attempt to cache triangles from that region. Unfortunately, the mesh changes

throughout execution, so that region will be continuously written to by each

core. This can result in a significant number of cache invalidations as newly

written regions of the mesh ping-pong between the cores that are accessing

them. We have some experimental evidence that this behavior does, indeed,

affect the performance of mesh refinement, as seen in Section 3.5.3. Eliminating

these excessive coherence events can be seen as improving inter-core locality: the

tendency of each core to access disjoint regions of memory.

93

4.1.3 Achieving scalability

Clearly, the problem of achieving scalability in an optimistic parallelization sys-

tem is difficult. Beyond the standard scalability issues of locality and contention,

we must also contend with the problems of mis-speculation and run-time over-

heads. Furthermore, as the preceding discussion elucidates, these scalability

issues interact in ways which make it difficult to address them all simultane-

ously.

In this chapter, we introduce four interlocking mechanisms for addressing

these problems: data partitioning, data-centric work assignment, lock-coarsening, and

over-decomposition. Partitioning assigns elements of data structures to cores. For

example, in Delaunay mesh refinement, the mesh is partitioned by assigning

triangles to cores. When a core goes to the worklist to get work, the data-centric

work assignment policy ensures that the core is always given a triangle in its

partition. If mesh partitions are contiguous regions of the mesh, this work as-

signment strategy promotes locality.

In the context of optimistic parallelization, this data-centric parallel exe-

cution strategy has another significant advantage: the probability of conflicts

between concurrent, speculatively executing iterations can be dramatically re-

duced. In Delaunay mesh refinement, different cores work on different regions

of the mesh, and conflicts can happen only when cavities cross partitions, which

is rare if partitions are contiguous regions of the mesh.

To reduce overheads further, we also replace fine-grain synchronization on

data structure elements with coarser-grain synchronization on data structure

partitions. A core can work on its own elements without synchronization with

other cores, but when it needs a “foreign” element, it must acquire the lock on

the appropriate partition. Therefore, in Delaunay refinement, synchronization

94

is needed only if a cavity crosses partition boundaries.

Finally, to ensure that a core has work to do even if some of its data is locked

by other cores, data structures are over-decomposed, that is, we create more

data partitions than there are cores so that each core has multiple partitions

mapped to it. Thus, even if one or more partitions assigned to a core are locked

by other cores, that core may still have work to do.

The rest of this chapter is organized as follows. In Section 4.2, we describe

how the key mechanisms of data partitioning, over-decomposition, and data-

centric assignment of work are implemented within the Galois system. In Sec-

tion 4.3, we discuss how we reduce the overhead of conflict detection. Section

4.4 discusses how programmers can take advantage of the partitioning capabil-

ities of the Galois system. In Section 4.5, we present experimental results that

show the performance improvements from using these mechanisms for four

applications: Delaunay mesh refinement, the Boykov-Kolmogorov algorithm

(used in image segmentation) [17], a graph-cuts code that uses the preflow-

push algorithm [42], and agglomerative clustering [125]. For each application,

we describe the algorithm and key data structures as well as opportunities for

exploiting parallelism and data partitioning. We summarize in Section 4.6.

4.2 Partitioning

One of the main lessons from the past twenty years of parallel programming is

that exploiting parallelism in a scalable way requires attending to locality. This

requires distributing data to cores and assigning work in a way that sustains

cache performance. We target not only positive cache effects such as temporal

locality, but also negative cache effects, such as invalidations caused by data

sharing.

95

In programs that operate over regular data structures such as dense matrices

and arrays, this is relatively straightforward. Languages such as HPF [75, 110]

and ZPL [22] leverage small amounts of user-direction to distribute data struc-

tures among multiple processors and schedule computation in a way that main-

tains cache locality while providing parallelism. This problem is significantly

more difficult for irregular data structures such as trees, lists and graphs.

To see why this is the case, we draw a distinction between semantic locality,

which is the locality inherent to data structure semantics (for example, neigh-

boring cells in a matrix, or connected nodes in a graph are semantically local)

and actual locality, which is related to how the data structure is laid out in mem-

ory. Regular data structures have a close connection between semantic locality

and actual locality. The semantics of matrix and array indices perfectly corre-

spond with the actual locality inherent in the data structures’ representation. It

is thus apparent to see how to achieve locality in a parallel setting: ensure that

iterations which touch the same indices of arrays and matrices are assigned to

the same processor.

Unfortunately, with irregular data structures there is often very little corre-

spondence between their semantic locality and their actual locality. There is

clearly little spatial locality; neighboring nodes in a graph may be allocated to

completely different regions of memory. But it can also be hard to find temporal

locality: due to the variety of ways in which the nodes can be accessed (directly;

through a chain of neighbors, etc.) it is hard to tell which iterations access the

same regions of a data structure. It is thus difficult to simply examine a program

and determine how to distribute data and computation to ensure that locality is

maintained. This problem is compounded by the fact that there are numerous

irregular data structures, each with differing definitions of semantic locality.

96

By way of example, consider a graph data structure, and iterations which

each examine a given node and then travel to its neighbors. There is obviously

locality exhibited by this program, as a node and its semantically local neigh-

bors are accessed together. If it were possible to determine which iterations

accessed a particular region of the graph, they could be assigned to the same

core, improving temporal and inter-core locality. Unfortunately, making this

transformation requires understanding the semantics of the graph data struc-

ture, and in particular its locality properties.

Our goal, then, is to determine how programmers can expose the semantic

locality inherent in irregular data structures, and then leverage that information

to improve cache performance. We do this by introducing data and computation

partitioning to the Galois system, where a programmer can specify partitioning

information for the irregular data structures used by a program. This parti-

tioning information captures data-structure specific semantic locality in a more

general form, as discussed in Section 4.2.2. By providing this information to a

compiler or run-time system, we can effectively distribute irregular data struc-

tures among multiple processors and assign work to those processors in a way

that ensures locality.

In this section, we describe how this data and computation partitioning is

done to promote inter-core locality. As an extra benefit, this partitioning can

also reduce the probability of speculative conflicts.

Figure 4.2 illustrates how partitioning works in our implementation. In this

figure, the data structure is a regular grid, which is the key data structure used

in image segmentation applications such as the Boykov-Kolmogorov code de-

scribed in Section 2.4. In our approach, partitioning this grid is done in two

stages: the nodes of the grid are mapped to abstract processors in an abstract

97

domain, and then the abstract domain is mapped to the actual cores. As we

discuss in Section 4.2.1, this two-level partitioning approach has several advan-

tages over the more obvious approach of mapping data structure elements di-

rectly to cores. We note that a similar two-level mapping approach is used in

HPF [75]. Section 4.2.2 describes the mapping of data structures to abstract do-

mains. Finally, Section 4.2.3 describes how the run-time system performs data-

centric assignment of work to cores.

4.2.1 Abstract domains

The use of abstract domains simplifies the implementation of over-decomposition.

The basic idea of over-decomposition is to partition data and computation into

more partitions than the number of cores in the machine, so that multiple parti-

tions are mapped to each core. For example, in Figure 4.2, there are four parti-

tions, each of which is mapped to one abstract processor, and each core has two

abstract processors mapped to it.

Over-decomposition is the basis for several important mechanisms such as

work-stealing and multi-threading. Work-stealing is an implementation of dy-

namic load-balancing in which idle cores are allowed to steal work from over-

loaded cores. To promote locality of reference, it is useful to package work to-

gether with its associated data, and move both when the work is stolen. Over-

decomposition enables this to be implemented as a remapping of abstract pro-

cessors to cores, which simplifies the implementation. Another use of over-

decomposition is multithreading: if the cores support multi-threading, each ab-

stract processor can be executed as a thread on the core it is mapped to, and core

utilization may improve. Finally, over-decomposition enables an important op-

timization in our system called lock coarsening, described in Section 4.3.

98

Graph
Abstract
Domain

Physical
Cores

Figure 4.2: Data partitioning in the Galois system

Formally, an abstract domain is simply a set of abstract processors, which

may optionally be related by some topology (e.g., a grid or a tree). The benefits

of this topology are discussed in detail in Section 4.2.2.

4.2.2 Data partitioning

In discussing data structure partitioning, it is useful to distinguish between two

kinds of data partitioning that we call logical partitioning and physical partition-

ing.

Logical partitioning

In logical partitioning, data structure elements are mapped to abstract proces-

sors, but the data structure itself is a single entity that is not partitioned in any

way. Logical partitioning can be implemented very simply by using an extra

field in each data structure element to record the identity of the abstract proces-

sor that owns that element, as is shown graphically in Figure 4.2.

Logical partitioning makes explicit the latent semantic locality properties of

99

data structures. For example, the semantic locality of a mesh in Delaunay mesh

refinement (where neighboring triangles are semantically local) is captured by

placing contiguous regions of the mesh into a single partition. We have thus

transformed a data-structure specific locality property (determined by which

triangles an iteration touches) into a more general locality property (determined

by which partitions an iteration touches).

This information can be leveraged by the Galois run-time in many ways.

For example, the run time can be used to perform data-centric scheduling of

iterations in Delaunay mesh refinement. When a core goes to the run-time to

get a bad triangle to work on, the scheduler can examine the worklist of bad

triangles and return a bad triangle mapped to that core. Because mesh parti-

tions are contiguous regions of the mesh, cores end up working mostly in their

own partitions, improving locality and reducing synchronization. Note that this

idea does not require any modification to the client code; only the graph class

and the run-time system need to be modified to implement this approach. This

transformation is discussed in further detail in Section 4.2.3

Physical partitioning

Physical partitioning takes the logical partitioning one step further and re-

implements each partition as a separate data structure that can be accessed in-

dependently of other partitions. The main reason for doing this is to reduce con-

tention for shared data structures. For example, in Delaunay mesh refinement,

the worklist of bad triangles is modified by all cores which can lead to a lot of

contention. If this data structure is partitioned, each core can manipulate its own

portion of the global worklist without interference from other cores. Note that

while the underlying implementation of the worklist changes, the interface to the

100

worklist remains the same. From the perspective of the client code, the worklist

is still a single object, and the client code accessing it does not have to change.

The “root” of this object is read-only and ends up getting cached at all the cores,

reducing contention. Note that physical partitioning in the Galois system is

not the same as the data structure partitioning that is performed in distributed

memory programming. In the latter case, the data structure is fully partitioned

and a processor cannot directly access data assigned to other processors. Be-

cause we are in a cache-coherent shared memory setting, every processor can

access every partition of a data structure without any explicit communication.

The Galois class library provides implementations of common data struc-

tures with both logical and physical partitioning. Application programmers

can override methods in these classes to modify partitioning algorithms. This

is important because it is unlikely that any one partitioning function for an

abstract data type is adequate for all applications. Consider, for example, the

Graph class. Three of the four applications discussed in Section 4.5 use graphs,

but in the image segmentation applications, the graph is a regular grid, while

in Delaunay mesh refinement, the graph is irregular and has no particular

structure. Many algorithms have been developed for irregular graph partition-

ing [72, 74, 120]. One of the simplest approaches for graph bisection is to per-

form a breadth-first traversal of the graph, starting from some arbitrary node

and stopping when half the nodes have been traversed. This process can be ap-

plied recursively to partition the mesh further. Kernighan and Lin proposed a

local refinement heuristic to reduce the number of cross-partition edges, a use-

ful measure of partition quality in some applications (the set of cross-partition

edges is called the graph separator) [74]. At the other extreme in complexity

are spectral methods that perform eigenvalue computations to determine good

101

graph partitions [120]. However, these partitioning methods are not necessary

for regular grids and may even produce poor results compared to a simple

block-based partitioning.

At present, the Galois class library provides a simple irregular graph par-

titioner based on breadth-first graph traversal starting from a boundary node

of the graph. It also supports block-block partitioning of two and three-

dimensional rectangular grids. These partitioners can be overridden by the ap-

plication programmer if necessary.

Finally, it may also be useful to cache boundary information for a data struc-

ture’s partitions. For example, graph nodes that are adjacent to nodes assigned

to another core may be labeled as boundary nodes. This exposes some signifi-

cant optimization opportunities, described in Section 4.3. This is easily imple-

mented by adding an extra field in each data structure element to record this

value, which is set when the data structure is partitioned.

Dynamic data structures

Some applications (e.g., Delaunay mesh generation) add new elements to data

structures during execution, and these elements must be mapped to abstract

processors as well. The mutator methods of the data structure (primarily add

methods) must be modified slightly to handle this. Deciding how this mapping

is done is a policy issue, rather than one of correctness. The Galois system’s de-

fault policy is to map newly added elements to the abstract processor executing

the iteration that invoked the mutator method. In Delaunay mesh refinement,

this policy means that new triangles created in the cavity of a bad triangle get

assigned to the same abstract processor as that bad triangle, which is the right

policy. Of course, the application programmer can override the add method of

102

the Graph class to change this policy.

Leveraging the topology of abstract domains

If an abstract domain specifies a certain topology, this information can be ex-

ploited to achieve even better locality. The abstract domain’s topology can be

used to capture the relationship between different partitions of a data struc-

ture. Figure 4.2 demonstrates this: partitions of the graph that are adjacent to

one another are assigned to abstract processors that are adjacent in the abstract

domain’s grid topology. Much as the grouping of data structure elements into

partitions captured the semantic locality of elements, the choice of particular

abstract processors to assign partitions to captures the locality relationship be-

tween partitions.

An abstract domain’s topology can then be used by the run-time when de-

termining how to map abstract processors to physical cores. For example, if the

abstract domain has a grid topology, and more abstract processors than cores,

adjacent abstract processors are mapped to the same physical core (as in Figure

4.2). In essence, the abstract domain is also partitioned, and this second level of

partitioning exploited, to improve locality.

Taking advantage of the multi-level partitioning afforded by an abstract do-

main’s topology can also be useful in the presence of hierarchical architectures

with multiple levels of shared and private caches. Adjacent abstract processors

can be assigned to physical cores which share caches at some level of the hierar-

chy, increasing the likelihood that operations which access both partitions will

still exhibit some cache locality.

Baskaran et al. looked at multi-level tiling of regular programs for multi-level

parallel architectures (such as the Cell processor) [10]. Leveraging the abstract

103

domain construct allows us to perform similar multi-level “tiling” for irregular

data structures in a general way.

4.2.3 Computation partitioning

Combining data structure partitioning with the topology of an abstract domain

allows a programmer to capture the locality information inherent in an irregu-

lar data structure. This information is then exposed to the run-time, which can

utilize it in a number of ways. The first is by carefully mapping abstract proces-

sors to physical cores, as described earlier. The second is to take the semantic

locality captured by the partitioning and to turn it into temporal locality.

To do this, we ensure that the assignment of work to cores is data-centric.

When the Galois system starts up, it spawns a thread for each core. In Java, the

virtual machine maps these threads to kernel threads, which the OS is then re-

sponsible for mapping to physical cores. Threads spawned by the Galois system

rarely sleep, and remain alive until the parallel execution is complete. Hence

each thread is effectively “bound” to a specific core. Thus, if data structure el-

ements mapped to a core are only ever touched by the thread mapped to that

core, we will achieve significant inter-core locality: very little data will move

back and forth between the various cores’ caches.

During parallel execution of an iterator, the scheduler in the run-time system

assigns work to cores dynamically, but in a partition-sensitive way. If the set be-

ing iterated over is not partitioned, the scheduler returns a random element

from the current worklist, as in the old Galois system. Otherwise, it returns an

element that is mapped to that core. This ensures that worklist elements in a

given abstract processor will only be worked on by a single thread. Further-

more, because other data structures in the system may be mapped to the same

104

abstract processor, making the scheduler partition-aware can lead to inter-core

locality benefits for other structures as well. For example, in Delaunay mesh

generation, this data-centric scheduling policy ensures that different cores work

on triangles from different partitions of the mesh, reducing data contention and

the likelihood of speculation conflicts.

It is not clear that data-centric scheduling is always the best scheduling pol-

icy when using partitioned data structures. We explore a number of alternate

scheduling policies in Chapter 5.

Related work

Bai et al. examined a similar computation partitioning approach when deal-

ing with multiple transactions performing operations on a hash table [9]. Their

application- and data structure-specific approach examined the keys that in-

coming transactions operate on and dynamically assigned transactions to pro-

cessors based on a run-time partitioning of the key space. Our approach, while

relying on a user-specified partitioning rather than a run-time partitioning, is

significantly more general, as it performs computation partitioning for any ap-

plication which uses partitioned data structures.

In the context of task-parallelism, Chen et al. [24] schedule threads on CMPs

to promote cache-sharing: threads that access similar portions of data should

use the same cache. They apply a scheduling heuristic to promote this behavior.

Our scheduling is informed by the data partitioning, rather than based on a

heuristic, and not only promotes locality in a single core but reduces contention

across cores.

Philbin et al. transformed sequential, loop-based programs into fine-grained

parallel programs and used a similar computation partitioning approach to re-

105

order iterations and improve cache locality [98]. Their approach required the

determination of which memory locations a loop iteration accessed; they re-

stricted themselves to programs accessing dense matrices for this reason. It

may be possible to apply our partitioning approach to extend their technique

to irregular programs.

4.3 Reducing conflict detection overhead

A significant source of overhead in the Galois system is the time spent in per-

forming commutativity checks. There are two issues: (i) the code for commu-

tativity checks is complex and (relatively) expensive; and (ii) even if the data

structure is partitioned, the conflict logs are not partitioned and thus can become

a bottleneck when multiple concurrent iterations access the structure. Data and

computation partitioning enable a new optimization that we call lock coarsening,

which addresses this problem.

The key insight is that, while commutativity checks capture the necessary

and sufficient restrictions on which methods can be invoked by simultaneously

executing iterations, we can “relax” the commutativity checks to express suffi-

cient, but overly restrictive, conditions. Iterations executing under the relaxed

conditions remain isolated, but we will lose precision in our conflict detection,

and trigger “false positive” conflicts.

Consider, for example, the method add(x) in a set. Under normal Galois

commutativity, add(x) would commute with add(y), provided that y and x

are distinct. Under “relaxed” commutativity, add(x) commutes with add(y)

when x is in a different partition than y.

This is still a sufficient condition (because if two invocations commute under

the relaxed conditions, they clearly still commute under the more precise con-

106

dition). However, because the partitions are much coarser granularity than in-

dividual elements of the set, the coarsened conditions will allow fewer method

calls to execute concurrently, restricting parallelism. On the other hand, we can

support these partition-based conditions with very low overhead, as we see be-

low.

4.3.1 Partition locks

When a data structure is partitioned, we can often take advantage of the parti-

tioning to replace Galois commutativity checks with two-phase locking based

on locking entire partitions. A lock is associated with each abstract processor in

the abstract domain. Methods acquire locks on relevant partitions before access-

ing any elements mapped to these partitions. If any of those locks are already

held by other iterations, a conflict is detected and the run-time system rolls back

one of the iterations, as before. All locks are held until the iteration completes

or aborts.

We implement two optimizations to improve the performance of this basic

locking scheme. First, locks on abstract processors are cached by the iteration

that holds them. If an iteration accesses multiple elements of a data structure

and all of them are mapped to the same abstract processor, the lock on that

abstract processor is acquired only once. Furthermore, elements of other data

structures that are also mapped to that abstract processor can be accessed with-

out synchronization. We call this optimization lock caching.

Second, if boundary information is provided by a data structure, we can

elide several of the lock acquires entirely. If an element x accessed by a method

is not marked as a boundary, the only way it could have been reached is if the

iteration had already accessed the abstract processor that element is mapped

107

to. Hence, the iteration does not need not attempt to acquire the lock on that

abstract processor. In other words, we need only attempt to acquire locks when

accessing boundary objects.

Lock coarsening thus replaces expensive commutativity checks with simple

lock acquires and releases, which can dramatically reduce overhead. Further-

more, by using locks to detect conflicts, the burden of conflict checking is no

longer centralized in a single conflict log, eliminating a significant concurrency

bottleneck. The upshot of lock coarsening, when combined with the two op-

timizations (lock caching and synchronization on boundaries) is that while an

iteration is working on elements mapped to a single abstract processor, no syn-

chronization is required beyond the initial lock acquire. Synchronization in-

stead only occurs when an iteration must cross partition boundaries. In many

problems, boundary size grows sublinearly with data structure size (e.g., in a

planar graph, boundary size grows as the square root of graph size), and hence

synchronization overheads decrease as problem size increases.

Restrictions on lock coarsening

Lock coarsening cannot always be performed. For partition locking to be a safe

implementation of relaxed commutativity, the relaxed conditions must consider

only the equality or inequality of sets of partitions. However, not all commuta-

tivity conditions can be correctly relaxed to obtain this form.

Consider the kd-tree of agglomerative clustering [11]. It supports a

findNearest(x) method, which takes as an argument a cluster x and re-

turns the nearest cluster, y in the kd-tree, as well as a method add(z) which

inserts a new cluster into the tree. The commutativity relation between the two

methods is as follows: findNearest(x) commutes with add(z) as long as

108

the cluster z inserted by add is not closer to x than the cluster y (returned by

findNearest) is. This condition cannot be expressed in terms of the partitions

that x, y and z lie in, and hence there is no relaxed commutativity condition that

both safely captures the actual commutativity properties of the kd-tree and can

be implemented using partition locking.

4.3.2 Overdecomposition

While lock coarsening can lead to a significant improvement in run-time over-

heads, it comes at the cost of concurrency. Conceptually, when a thread ac-

cesses a partition of a data structure, it “owns” all the elements in that partition,

preventing any other thread from accessing them. If a thread crosses partition

boundaries and hence must access two partitions, it will own an even greater

portion of the data structure.

Consider a problem being run with two threads and two logical processors.

If an iteration from the first thread accesses both logical processors, it will con-

trol the entire data structure. No other iteration can be started by the second

thread, as it will immediately find that it cannot acquire the necessary logical

processor. In general, if many iterations cross partition boundaries, the sys-

tem can experience reduced core utilization, and its effective parallelism is con-

strained.

This problem can be addressed by over-decomposition. Mapping multiple

abstract processors to a core makes it more likely that a thread can continue

to do useful work even if one or more of its abstract processors are locked by

threads executing other iterations.

We do not yet have a good understanding of how much over-decomposition

is appropriate. Beyond some level of over-decomposition, conflicts become suf-

109

1 2 4 8 16 32 64
Overdecomposition Factor

3.2

3.4

3.6

3.8

4

Ti
m

e
(m

s)

0

20

40

60

80

Abort Rate (%
)

Time
Abort Rate

Figure 4.3: Relationship between overdecomposition factor and perfor-
mance

ficiently rare that further over-decomposition will not improve performance. In

fact, excessive over-decomposition may reduce performance. A simple reductio

ad absurdum shows this to be the case: if we overdecompose until there is a only

single element mapped to each abstract processor, we will essentially be per-

forming fine-grained locking. While this will minimize conflicts, it will result in

many more synchronization operations because each new object accessed will

require that a new lock be acquired, leading to higher overhead.

To gain some insight on the effect of overdecomposition on performance, we

investigated the behavior of Delaunay mesh refinement using various overde-

compostion factors. An overdecomposition factor of one means four partitions

on four cores; two means eight partitions; four means 16, et cetera. Figure 4.3

shows the performance of Delaunay mesh refinement, running on 4 cores (the

experimental setup was as described in Section 4.5), with varying overdecom-

position factors.

We immediately see the correlation between abort rate and performance.

As the abort rate monotonically decreases as the overdecomposition factor in-

creases, there is a rough correlation between performance and overdecomposi-

110

1 2 4 8 16 32 64
Overdecomposition Factor

0.01

0.1

1

10

100

Ab
or

t R
at

e
(%

)

Abort Rate

Figure 4.4: Relationship between overdecomposition factor and log(abort
rate)

tion factor. However, while abort rate decreases dramatically as the overdecom-

position factor increases (Figure 4.4 plots the abort rate on a log scale to make

this more evident), the execution time does not change significantly beyond a

certain overdecomposition factor. Essentially, once the abort rate decreases to

a certain level, its effect on performance becomes negligible. Hence, further

overdecomposition is not useful.

In the case of Delaunay mesh refinement, the size of the mesh is large enough

that even high overdecomposition factors do not lead to increased synchroniza-

tion. With an overdecomposition factor of 64 on 4 cores, there are 256 partitions.

In these experiments, the input mesh contains roughly one hundred thousand

triangles, so each partition has roughly four hundred triangles. As the average

cavity contains only 6 triangles, the total number of triangles that are accessed

by an iteration is fairly low, and hence the likelihood that an iteration touches

multiple partitions is low even with such small partitions. Furthermore, as the

program executes, the mesh, and hence each partition, grows in size. Thus, the

chance of a iteration’s touching multiple partitions decreases with time.

This is not the case for B-K maxflow (augmenting paths), however. Here,

111

the size of the graph is fixed throughout execution. However, the amount of

the graph an individual iteration touches is fairly small (the average iteration

will touch a single node and its immediate neighbors), so it requires very high

overdecomposition factors for synchronization to become an issue. In the sce-

nario where each node resides in its own partition (for a 1024 x 1024 graph, this

requires an overdecomposition factor of 262144 on four cores), however, perfor-

mance does suffer. In this case, the program runs roughly three times slower

than it does with an overdecomposition factor of 16.

In general, the appropriate level of overdecomposition is dependent on al-

gorithmic behavior and input characteristics. We leave a complete study of

overdecomposition and its various effects to future work.

4.4 Implementation

There are a number of requirements that an implementation of the partitioning

techniques described above should satisfy:

• Some applications may use a mixture of partitioned and non-partitioned

data structures, so any scheme for adding partitioned data structures to

the Galois system must work smoothly with non-partitioned data struc-

tures.

• The writer of user code (i.e., Joe Programmer) must be able to choose

whether to partition a data structure or not, and if so, how it should be

partitioned. The system should provide default partitioners for important

data structure classes but the programmer must be able to override these.

• The user code should change as little as possible when a non-partitioned

data structure is replaced with a partitioned data structure (compare this

112

GraphInterface

Graph

Commutativity

PartitionedGraph

Commutativity

Physically
PartitionedGraph

Commutativity

Physically
PartitionedGraph

Lock Coarsening

Figure 4.5: Class hierarchy for graphs

with distributed-memory programming). This allows Joe Programmer to

more easily integrate partitioned data structures into an existing program.

Implementing abstract domains; logical and physical partitioning; compu-

tation partitioning; and lock coarsening while meeting these requirements is

straightforward in the Galois system thanks to its object-oriented nature. We

now address how each of these techniques are implemented in detail.

Abstract domains

Abstract domains are implemented as objects in the Galois system, which ex-

pose a distribute method, which takes as an argument the number of cores

that the abstract processors should be mapped to. Invoking this method per-

forms the distribution of abstract processors to cores. This distribution can take

advantage of the topology of the abstract domain, as described in Section 4.2.2.

113

Data partitioning

The implementation of partitioning in the Galois system is straightforward, and

is the responsibility of expert programmers (i.e., Steve Programmer). Data struc-

tures that can be logically partitioned implement the Partitionable inter-

face, which exposes a method called partition. This method accepts as an

argument an abstract domain and applies a partitioning function to the data

structure, assigning elements of the structure to abstract processors in the spec-

ified domain. To change the partitioning function, a programmer simply over-

rides the partition method.

The objects of the data structure that are assigned to abstract processors

(such as nodes and edges in a graph) implement the PartitionObject in-

terface, which provides simple methods to set and query the abstract processor

that the object is assigned to. If boundary information is tracked, objects also

implement the BoundaryObject interface, which allows the maintenance of

this information.

Physically partitioned data structures implement the same interfaces as log-

ically partitioned structures, but also subclass the data structure to provide a

partitioned implementation.

It’s important to note that performing logical and physical partitioning

can be accomplished without changing the interfaces to the data structure.

Thus, any user program which is written against a common interface can use

any of the partitioned data structures which provide the same interface. Fig-

ure 4.5 gives an example of this. Several classes, providing unpartitioned,

logically partitioned and physically partitioned graphs implement the same

GraphInterface. Thus, if user code is written against the GraphInterface,

switching from an unpartitioned to a partitioned graph simply requires chang-

114

ing the object instantiation. No other changes are required to user code.

Computation partitioning

Computation partitioning is accomplished purely by a change to the Galois run-

time system. Recall that the scheduling policy used by the system is under the

control of the Scheduler object in the Galois run-time. Thus, different scheduling

policies can be implemented simply by changing the scheduling object. When

iterating over a partitioned worklist, the Galois run-time automatically chooses

the scheduler object implementing data-centric scheduling. Thus, the run-time

automatically performs computation partitioning with no user intervention.

Lock coarsening

Recall that commutativity checks in the Galois system are implemented by

wrapping shared objects in Galois wrappers which contain ConflictDetection

objects (see Section 3.3.4). The ConflictDetection object contains the con-

flict log for the wrapped object and performs commutativity checks when a

method is invoked. If the check is successful, the appropriate method of the

wrapped object is called. Because lock coarsening is a replacement for commu-

tativity checks, it is implemented by providing a second ConflictDetection

object for a data structure. Rather than performing commutativity checks, the

new wrapper uses the lock coarsening approach for conflict detection. Be-

cause both commutativity checks and lock coarsening are implemented using

ConflictDetection objects, and calls to these objects are hidden within the

Galois wrapper, the user code remains agnostic to which form of conflict detec-

tion is used. As in the case of data partitioning, lock coarsening places an ad-

ditional burden on Steve Programmer (to provide new ConflictDetection

115

objects) but does not increase the difficulty of writing user code.

Figure 4.5 shows an example of this. There are two different partitioned

graphs in the hierarchy, one using standard commutativity checks, and the other

using partition locks. As before, the interface to the graph remains the same

regardless of which ConflictDetection object is used, so Joe Programmer

merely needs to change object instantiation to allow the run-time to use different

means of conflict detection.

Over-decomposition is trivially implemented by using abstract domains

with more abstract processors than physical cores in the system.

4.5 Case studies

We evaluated our approach on four applications from the graphics domain. Al-

though some regular graphics applications are streaming applications that can

be executed efficiently on GPUs, the applications we consider in this section are

very irregular, and we believe they are better suited for execution on multicore

processors than on GPUs.

The machine we used in our studies is a dual-processor, dual-core 3.0 GHz

Xeon system with 16KB of L1 cache per core and 4MB of L2 cache per proces-

sor. In our initial experiments, we found performance anomalies arising from

automatic power management within the processor. At the suggestion of re-

searchers at Intel, we down-clocked the processor to 2.0 GHz, which eliminated

the performance anomalies.

We implemented the Galois system, with the enhancements discussed in this

chapter, in Java 1.61. Given the relatively small number of cores, we found there

was no need for multi-threading or work stealing in our applications, so we did

1This is a port of the original Galois system, written in C++, used in Chapter 3.

116

not evaluate these mechanisms. They are likely to be more important on larger

numbers of cores. To take into account variations in parallel execution as well as

the overhead of JIT compilation, each experiment was run 5 times under a single

JVM instance, and the fastest execution time was recorded. Garbage collection

can also have a significant impact on performance; to reduce its effects, a full

GC was performed before each execution. We used a 2GB heap.

4.5.1 Delaunay mesh refinement

Partitioning strategy Meshes are usually represented as graphs in which

nodes represent mesh triangles and edges represent adjacency of triangles in

the mesh. Partitioning the nodes of this graph creates a partition of mesh trian-

gles. The Galois Graph class uses an adjacency list representation of graphs. A

partitioner based on a breadth-first walk of the graph is provided in this class,

as described in Section 4.2.2.

Experiments We implemented and evaluated 5 different versions of the De-

launay benchmark:

• meshgenseq — this is a sequential implementation of Delaunay mesh refine-

ment. It contains no threading or synchronization.

• meshgengal — a Galois version of the benchmark that employs the original

Galois model. It uses the unordered set Galois iterator, and commutativity

checks to detect conflicts.

• meshgenpar — a version that partitions the worklist and the graph. It

uses commutativity checks for conflict detection, but uses partition-aware

scheduling as discussed in Section 4.2.3.

117

• meshgenlco — a version that implements lock coarsening as well as parti-

tioning.

• meshgenovd — a version that implements partitioning, lock coarsening and

over-decomposition. This version overdecomposes by a factor of 4 (i.e.,

four partitions per core)

In all these versions, the worklist is implemented as a stack to promote lo-

cality (when the worklist is partitioned, each partition is a stack). For meshgengal

and meshgenpar, the code for commutativity checks was written by hand. The

input data was generated using Jonathan Shewchuck’s Triangle program [119].

It had 100,364 triangles and boundary segments, of which 47,768 were bad.

Table 4.2 shows the wallclock time (in seconds) for the 5 benchmarks. Figure

4.6 shows the speedup of the four parallel benchmarks, relative to the running

time of the best sequential version meshgenseq. We see that meshgengal, the version

that uses the original Galois system achieves a speedup of only 1.2 on 4 cores.

These results are different than those presented in Section 3.5.1, as the worklist

is implemented as a stack, rather than the randomized set presented previously.

meshgenovd, the version that combines partitioning, lock-coarsening and over-

decomposition, achieves the best speedup of 3.26 on 4 cores.

To understand the performance of the different versions, it is useful to con-

sider first the running times of these versions on a single core (shown in the first

column of Table 4.2). Table 4.3 presents the same data and shows the overheads

as a percentage of the execution time of meshgenseq. The overheads for meshgengal

and meshgenpar are high because they perform full commutativity checks to de-

tect conflicts when running in parallel. These are precise but expensive checks.

On the other hand, both meshgenlco and meshgenovd use locks on partitions to

perform conflict detection. These are less precise but also significantly less ex-

118

pensive, as the overheads show.

Table 4.2: Execution time (in seconds) for Delaunay mesh refinement.

Benchmark 1 core 2 cores 4 cores

meshgenseq 11.316 — —

meshgengal 13.956 9.935 9.433

meshgenpar 13.865 7.510 5.315

meshgenlco 11.924 6.629 3.925

meshgenovd 11.437 6.186 3.474

1 2 3 4
of Cores

1

1.5

2

2.5

3

Sp
ee

du
p

OVD
LCO
PAR
GAL

Figure 4.6: Speedup vs. # of cores for Delaunay mesh refinement

Another important factor in overall performance is the abort ratio (i.e., the

ratio of aborted iterations to completed iterations, expressed as a percentage).

A high abort ratio indicates significant contention in the program, which may

reduce performance. However, not all aborts are equally expensive since itera-

tions that abort soon after starting do not contribute as much to the overhead as

iterations that abort close to the end do. Therefore, a high abort ratio does not

necessarily correlate to poor performance.

Table 4.3 shows the abort ratio for each of the parallel implementations when

run on 4 cores. meshgengal has a very high abort ratio. This is because the work-

119

Table 4.3: Uniprocessor overheads and abort ratios

Benchmark Overhead Abort Ratio (4 cores)

meshgengal 23.33% 85.22%

meshgenpar 22.53% 0%

meshgenlco 5.37% 56.47%

meshgenovd 1.07% 7.08%

list is implemented as a stack, which leads to high abort ratios for this applica-

tion, as mentioned in Section 4.1.2. When a cavity is re-triangulated, a number

of bad triangles may be created in the interior of the cavity. If the worklist is a

stack, all these bad triangles are adjacent to each other in the worklist, and it is

likely that they will be refined contemporaneously, leading to conflicts. We ex-

perimented with a different scheduling policy for meshgengal, selecting triangles

at random from the worklist. This dropped the abort ratio to zero, but the loss

of locality attenuated the benefits from concurrency. In spite of having unipro-

cessor overhead similar to that of meshgengal, meshgenpar performs much better

because it has a very low abort ratio.

However, the abort ratio does not tell the full story, as meshgenlco outper-

forms meshgenpar, achieving a speedup of 2.88 on 4 cores. This version of the

benchmark performs better for two reasons: (i) lower overheads due to much

simpler conflict checks and (ii) the elimination of Galois conflict logs as a bot-

tleneck, improving concurrency. Thus we see that meshgenlco is not only faster

than meshgenpar but also scales better. Interestingly, the fairly high abort rate

does not hurt this implementation much. This is because the lock-coarsened

conflict detection triggers aborts at the very beginning of an iteration, and most

of the aborts are due to busy waiting. Furthermore, because the aborted itera-

120

tion is immediately retried, the abort ratio is misleadingly high. These results

suggest that some kind of exponential back-off scheme may be appropriate to

reduce the abort ratio, although it is not clear that there will be commensurate

improvements in performance.

Finally, the over-decomposed version meshgenovd combines the benefits of

coarse-grain locking with a low abort ratio. Its abort ratio is higher than that of

meshgenpar because it is performing coarser-grain locking, but its synchroniza-

tion overhead is lower for the same reason. Since a core has other partitions to

work on if one of its partitions is locked by another core, it does not keep try-

ing to reacquire the lock on its partition, and the abort ratio is lower than it is

for meshgenlco. It achieves a speedup of 3.26 on 4 cores, and thus has the best

absolute performance as well as the best scalability.

4.5.2 Boykov-Kolmogorov maxflow

Partitioning strategy The Boykov and Kolmogorov algorithm works for ar-

bitrary graphs, but it is intended to be used for maxflow problems that arise

in image segmentation. Graphs arising in this application have a regular grid

structure, which can be partitioned into rectangular blocks trivially. Moreover,

the structure of the graph does not change during execution (only the capacities

of edges are modified). Therefore, the partitioning can be done once at the be-

ginning, and no effort is needed to maintain appropriate boundary information

in the graph. Note that the flow variable cannot be partitioned.

Experiments We ported a C implementation of Boykov and Kolmogorov’s

augmenting paths algorithm to Java and used it to create 5 different versions

of the benchmark: pathsseq, pathsgal, pathspar, pathslco and pathsovd. In all ver-

121

sions, the worklist is implemented as a queue, matching the C implementation.

The input data is a 1024x1024 grid representing a checkerboard pattern. Table

4.4 shows the wallclock time of the 5 benchmarks. Figure 4.7 shows speed-ups

relative to the sequential version. Table 4.5 shows the uniprocessor overheads

and abort ratios of the four parallel versions on 4 cores.

Table 4.4: Execution time (in milliseconds) for B-K maxflow.

Benchmark 1 core 2 cores 4 cores

pathsseq 384 — —

pathsgal 1200 1822 1779

pathspar 1203 738 463

pathslco 458 423 279

pathsovd 459 253 155

1 2 3 4
of Cores

0

0.5

1

1.5

2

2.5

Sp
ee

du
p

OVD
LCO
PAR
GAL

Figure 4.7: Speedup vs. # of cores for B-K maxflow

We note that pathsgal actually slows down when run on multiple cores. This

is due to the nature of the algorithm: much of the work in an iteration is simply

adding and removing elements from the worklist. However, when dealing with

non-partitioned data structures, these operations must be synchronized. Even

122

Table 4.5: Uniprocessor overheads and abort ratios

Benchmark Overhead Abort ratio

pathsgal 212.5% 16.68%

pathspar 213.3% 0%

pathslco 19.27% 55.88%

pathsovd 18.53% 0.04%

though the data structure used is the highly efficient ConcurrentLinkedQueue

from Java 1.6, this is sufficient to slow down pathsgal. Furthermore, the queue

implementation of the worklist leads to poor locality. Multiple cores are often

manipulating the same region of the graph, leading to contention for data. This

also manifests itself in a fairly high abort rate despite the fine-grained contention

management afforded by Galois, leading to further performance degradation.

Once we begin partitioning the data structures, these bottlenecks disappear.

There is no longer contention for the worklist, and cores are largely confined to

disjoint regions of the graph, as can be seen from the negligible abort ratio. We

thus begin to see performance improvements as the number of cores increases.

However, in pathspar, the Galois overhead overwhelms this speedup and the

benchmark on 4 cores is still slower than the sequential code. We see the ef-

fects of eliminating this overhead when moving to pathslco, which, on four cores,

beats the sequential code, running 38% faster. However, the high abort rates, as

seen in Table 4.5, keep this implementation from scaling (as in Section 4.5.1, the

abort rate reflects busy-waiting). With the addition of over-decomposition in

pathsovd (this time by a factor of 16), the abort ratio once again becomes negligi-

ble. Thus, pathsovd has low overhead and scales, executing 2.48 times faster on

four cores than the sequential code.

123

4.5.3 Preflow-push maxflow

Partitioning strategy For image processing applications, input graphs typi-

cally have a grid-like structure. Therefore, as in the B-K maxflow algorithm, we

can trivially partition the grid into rectangular blocks.

Experiments We wrote a Java implementation of preflow-push and used that

as a base to generate five versions of the benchmark, along the same lines as

the other benchmarks: pr fseq, pr fgal, pr fpar, pr flco and pr fovd. We evaluated these

five implementations on a 128x128 graphcuts instance. Table 4.6 gives wallclock

execution times for the five benchmark versions (in seconds), while Figure 4.8

shows speedups over the sequential code. Table 4.7 gives the overheads for

the four parallel versions running on a single core, and the abort ratios on four

cores.

Table 4.6: Execution time (in seconds) for preflow-push.

Benchmark 1 core 2 cores 4 cores

pr fseq 4.93 — —

pr fgal 5.68 3.06 6.09

pr fpar 5.68 2.96 2.26

pr flco 5.44 2.83 2.24

pr fovd 5.29 2.77 1.97

We see that the overheads are reasonable for all four versions of the bench-

mark, but that the lock-coarsened versions are slightly better than the standard

Galois versions. This suggests that commutativity checks are a small portion of

the overhead in this application. In fact, most of the overhead in this benchmark

comes from accesses to the worklist.

124

1 2 3 4
of Cores

0.5

1

1.5

2

2.5

Sp
ee

du
p

OVD
LCO
PAR
GAL

Figure 4.8: Speedup vs. # of cores for preflow-push

Table 4.7: Uniprocessor overheads and abort ratios

Benchmark Overhead Abort ratio (4 cores)

pr fgal 15.2% 83.99%

pr fpar 15.2% 0.02%

pr flco 10.3% 43.46%

pr fovd 7.30% 10.31%

Unlike the other benchmarks we evaluated, preflow-push does not require

optimistic parallelization, but only optimistic synchronization. Work performed

early in an iteration remains valid even if work done later in the iteration con-

flicts with another, concurrent iteration. Thus, we use Galois to detect these

conflicts and maintain the consistency of the solution, but we do not have to

roll back iterations that abort. The measured abort ratio therefore has a different

effect on performance than in other benchmarks. However, it is still broadly

indicative of concurrency.

Table 4.7 shows the abort ratios for the four parallel versions of preflow-

push. As expected, pr fgal has a high abort ratio, as the scheduling is not partition

aware. Similarly, we note very high abort ratios for pr flco, as the iterations of

125

preflow-push often cross partition boundaries and thus lead to many aborts

without over-decomposition.

These abort ratios and overheads are reflected in the actual performance,

shown in Figure 4.8. We see that pr fgal slows down when run on four cores.

This is due largely to contention for the worklist. This bottleneck is removed

in pr fpar, which achieves a speedup of 2.26 over sequential on four cores. Lock

coarsening, as expected, does not provide a benefit, due to the very high abort

ratios, and pr flco performs no better than pr fpar. Over-decomposition is able to

reduce contention significantly, while still providing overhead benefits. Thus,

pr fovd performs the best of all the parallel versions, achieving a speedup of 2.50

over sequential execution on four cores.

4.5.4 Unordered agglomerative clustering

Partitioning strategy We would like to partition the points in the input set

spatially. This can be easily accomplished as the kd-tree already captures a spa-

tial partitioning of points. Furthermore, the natural partitioning of the kd-tree

allows it to be easily physically partitioned.

Experiments We modified the Java implementation of agglomerative cluster-

ing used in [133] to use Galois iterators and commutativity checks2. We gen-

erated three versions of the benchmark along the same lines as the other ap-

plications: clusterseq, clustergal and clusterpar. Due to the complex nature of the

commutativity checks in this application, we could not perform the lock coars-

ening optimization. We evaluated these three implementations on an input set

containing 20,000 points. Table 4.8 gives wallclock execution times for the three

2Unlike in Chapter 3, here we use the unordered version of agglomerative clustering, de-
scribed in Section 2.3.2.

126

benchmark versions (in seconds), while Figure 4.9 shows speedups over the

sequential code. Table 4.9 gives the overheads for the two parallel versions run-

ning on a single core and the abort ratios on four cores.

Table 4.8: Execution time (in seconds) for agglomerative clustering.

Benchmark 1 core 2 cores 4 cores

clusterseq 5.62 — —

clustergal 6.19 3.83 3.51

clusterpar 6.21 3.54 2.94

1 2 3 4
of Cores

1

1.4

1.8

Sp
ee

du
p

PAR
GAL

Figure 4.9: Speedup vs. # of cores for agglomerative clustering

Table 4.9: Uniprocessor overheads and abort ratios

Benchmark Overhead Abort ratio (4 cores)

clustergal 10.1% 1.47%

clusterpar 10.5% 0.13%

Here we again see the efficacy of partitioning: clusterpar outperforms

clustergal, achieving a speedup of nearly 2 on four processors over clusterseq. The

improvement of clusterpar over clustergal is partially attributable to a lower abort

127

ratio, but as the abort ratios for both versions are low, we believe most of the im-

provement is due to better locality, especially in the kd-tree, which is traversed

multiple times in each iteration.

The overhead of both parallel versions is low, suggesting that lock coarsen-

ing is not necessary to lower overheads. However, we see the deleterious effects

of the centralized conflict log used for the commutativity checks; clusterpar does

not significantly outperform the sequential version. The low abort ratio indi-

cates that the problem is not due to mis-speculation. Rather, the fact that most

of the speedup is achieved by the time clusterpar is run on two processors points

to contention for the conflict log as the bottleneck. This pattern is exhibited by

the par versions of the other benchmarks, as well, pointing to a significant opti-

mization opportunity: improving the concurrency of commutativity checks. We

leave this to future work.

4.6 Summary

In this chapter, we described several key optimizations to the Galois system

which improve scalability with low programmer overhead:

First, we showed how data partitioning can be exploited by Galois pro-

grams. The key is to perform a logical partitioning of data structures and to

assign work to cores in a data-centric way so as to promote locality. This allows

irregular programs to exploit many of the same techniques exploited by regular

programs to achieve parallelism while maintaining locality.

In addition, fine-grain synchronization on data structure elements is re-

placed with coarse-grain synchronization on data partitions, thus reducing the

cost of conflict detection. Finally, over-decomposition is used to improve core

utilization. We found, across several important benchmarks, that this approach

128

is practical and is successful in exploiting both parallelism and inter-core local-

ity of reference, while keeping parallel overheads low.

Partitioning has always been a common approach to parallelizing irregular

applications. Antonopoulos et al. showed how to parallelize Delaunay mesh

refinement through partitioning [8], and Scott et al. presented a parallel ver-

sion of Delaunay triangulation using transactional memory for synchronization

[116]. There are several common threads running through applications paral-

lelized through partitioning: first, they require application-specific partitioning

schemes; second, they require careful synchronization and application specific

code at the boundaries between partitions. These restrictions have limited the

writing of partitioned parallel programs to domain experts who understand the

appropriate partitioning to perform and the necessary actions to take at bound-

aries. Furthermore, it is difficult to share knowledge and techniques between

two applications parallelized in this way. The upshot of this parallelization pro-

cess is that it allows for significant parallelism; no synchronization is necessary

except at partition boundaries.

The partitioning techniques in the Galois system allow irregular applications

to be parallelized in much the same way, without significant programmer over-

head. By using data-structure specific partitioning, we allow partitioners to be

written once, and then used across multiple programs. Because the schedul-

ing of computation automatically leverages the partitioning of data structures,

a programmer does not need to intervene to appropriately assign work to pro-

cessors. And, by using lock coarsening, synchronization can largely be elim-

inated (as long as iterations remain within a single partition), and programs

correctly and naturally handle partition boundaries, without any application

specific code.

129

The Galois system, extended with partitioning, is thus the first approach we

know of to allow programmers to exploit data partitioning to promote local-

ity, reduce mis-speculation and lower overheads and provide scalable, parallel

implementations of irregular programs in a general way.

130

CHAPTER 5

FLEXIBLE SCHEDULING

5.1 Overview

In this chapter, we address the problem of scheduling the iterations of Galois

set iterators for parallel execution. In principle, these iterations can be assigned

arbitrarily to different cores and each core has the freedom to execute the it-

erations mapped to it in any order. In practice, we have found that even for

sequential execution, the performance of the program is affected dramatically

by the scheduling policy. Consider a sequential execution of Delaunay mesh

refinement. If newly created bad triangles (line 10 in Figure 2.3) are processed

immediately, we get the benefits of exploiting temporal and spatial locality. For

this reason, hand-written implementations of Delaunay mesh refinement use a

stack to implement the worklist. A scheduling policy that picks a bad triangle

at random from the current worklist will not exploit locality and may therefore

perform poorly. Just how much performance is lost depends on the size and

shape of the mesh, cache parameters, etc. but the experiments reported in Sec-

tion 5.6.1 show that the slow-down over the LIFO schedule can be more than

33% for even moderately sized meshes. Paradoxically, other applications such

as Delaunay triangulation [47] suffer enormous slow-downs if the schedule tries

to exploit locality. In Section 5.6.2, we show that using a locality-aware sched-

ule for this problem can triple the execution time compared to using a random

schedule!

Even for the same application, a good sequential scheduling strategy may

be bad for parallel execution. For parallel Delaunay mesh refinement, using a

stack (with atomic push and pop operations) to implement the worklist can

131

double execution time compared to using the randomized scheduling policy, as

we show in Section 5.6.1. This has nothing to do with the overhead of accessing

the global worklist since both scheduling strategies involve the same number

of accesses; instead, it turns out that there is significant mis-speculation if the

worklist is implemented as a stack.

This discussion shows that the problem of scheduling iterations of Galois

set iterators is considerably more complex than the more familiar problem of

scheduling iterations of DO-ALL loops in regular programs. In particular, we

have found that the relatively simple scheduling policies in OpenMP for sup-

porting scheduling of DO-ALL loops [96] are not adequate for scheduling iter-

ations of Galois set iterators. To ease the implementation of application-specific

schedules, we have designed a general scheduling framework and have used it

to implement a number of specific scheduling policies in the Galois system.

The rest of this chapter is organized as follows. In Section 5.2, we describe

our scheduling framework and discuss how it is integrated with the Galois sys-

tem. In Section 5.3, we present a number of instantiations of this scheduling

framework, and discuss their properties and when they may be useful. We then

discuss how programmers can implement these scheduling policies within the

Galois system in Section 5.4. We also discuss a scheduling-related optimiza-

tion we perform called iteration coalescing in Section 5.5. In Section 5.6, we de-

scribe experimental results for several real-world irregular applications: Delau-

nay mesh refinement [25], Delaunay triangulation [47], the Boykov-Kolmogorov

maxflow algorithm (used in image segmentation) [17], the preflow-push algo-

rithm [42] for maxflow, and agglomerative clustering [133]. We use our schedul-

ing framework to evaluate a number of different schedules for each application,

illustrating the effects of scheduling on performance and the efficacy of our

132

framework. We summarize in Section 5.7 with a discussion of lessons learnt.

5.2 Scheduling framework

In principle, the iterations of an unordered set iterator can be executed in any

order, and the run-time system has complete freedom in how it assigns itera-

tions to processors for execution. This is true even for an ordered set iterator,

although in that case the run-time system must ensure that iterations commit in

the right order. However, the performance of the program may depend critically

on the scheduling policy used to execute the loop for the following reasons.

1. Algorithmic effects: In some irregular applications, the scheduling policy

can affect the efficiency of an algorithm or data structure used by the appli-

cation. For example, a commonly used algorithm for Delaunay triangula-

tion, described in Section 2.2, uses a data structure called the history DAG

whose operations have good expected-case complexity but bad worst-case

complexity1. Rewriting the application to use a different algorithm or data

structure is one option, but this may not always be possible.

2. Locality: To promote temporal and spatial locality, it is desirable that itera-

tions that touch the same portion of a global data structure be assigned to

the same core and executed contemporaneously. For example, locality is

improved in Delaunay mesh refinement if bad triangles close to each other

in the mesh are assigned to the same core and are processed at roughly the

same time. Unfortunately, there are also algorithms, such as Delaunay tri-

angulation, in which exploiting locality may trigger worst-case behavior of

the underlying data structures2.

1cf. the behavior of a binary search tree.
2cf. inserting sorted elements into a binary search tree

133

3. Conflicts: Iterations that are likely to conflict should not be scheduled for

concurrent execution on different cores. For example, in Delaunay mesh

refinement, bad triangles that are close to each other in the mesh should

not be processed simultaneously on different cores since their cavities are

likely to overlap.

4. Load-balancing: The assignment of work to cores should attempt to bal-

ance the computation load across cores. This can be difficult in irregular

programs because work is often dynamically created, and because load-

balancing may conflict with locality exploitation. For example, in De-

launay mesh refinement, load-balancing can be accomplished by assign-

ing each core a randomly chosen bad triangle whenever the core needs

work [80]. However, this policy limits locality.

5. Contention and access overhead for global data structures: Finally, a good

scheduling policy may be able to reduce contention and access overhead

for global data structures such as worklists.

5.2.1 Comparison with scheduling of DO-ALL loops

These issues make the problem of scheduling set iterators in irregular pro-

grams much more complex than the well-studied problem of scheduling DO-

ALL loops in regular programs. DO-ALL loops are usually used to manipulate

dense arrays and are often written so that executing iterations in standard order

exploits spatial locality. There are few if any algorithmic effects to worry about,

and there are no conflicts between different iterations, so the main concerns are

load-balancing, and reducing contention and access overhead for global data

structures. Therefore, simple policies suffice.

For example, OpenMP supports three scheduling policies for DO-ALL loops:

134

static, dynamic, and guided. Static schedules assign iterations to cores in a cyclic

(round-robin) fashion before loop execution begins; to exploit locality, the pro-

grammer can specify that the assignment be done in a block-cyclic fashion in

chunks of c contiguous iterations at a time. Static schedules can lead to load

imbalance if the execution times of iterations vary widely. In dynamic schedul-

ing [101], the system assigns iterations to cores whenever the core needs work;

this is good for load-balancing, but if each iteration does only a small amount

of work, the overhead of assigning iterations dynamically can be substantial.

To ameliorate this problem and to permit locality exploitation, the program-

mer can ask the system to hand out chunks of c contiguous iterations at a time.

Guided self-scheduling [100] is a more sophisticated form of dynamic schedul-

ing in which the chunk size is decreased gradually towards the end of loop

execution.

These policies are not adequate for irregular codes. Most irregular codes

such as Delaunay mesh refinement create work dynamically, so static schedul-

ing is not useful. There is no a priori ordering on the iterations of an unordered

set iterator, so chunking is not well-defined. One interpretation of chunking is

the following: when a core asks for work, the scheduler gives it some number of

elements from the worklist, rather than just a single element. However, worklist

elements are not ordered in any way, so there is no reason to believe that this

kind of chunking promotes locality.

5.2.2 Our approach

A fully defined schedule for a set iterator requires the specification of three poli-

cies (see Figure 5.1).

135

P0

P1

P0

P1

Clustering Labeling Ordering

Iteration Space Clusters Labeled Clusters Execution Schedule

Figure 5.1: Scheduling framework

1. Clustering: A cluster is a group of iterations all of which are executed by a

single core. The clustering policy maps each iteration to a cluster.

2. Labeling: The labeling policy assigns each cluster of iterations to a core.

A single core may execute iterations from several clusters, as shown in

Figure 5.1.

3. Ordering: The ordering policy maps the iterations in the clusters assigned

to a given core to a linear order that defines the execution order of these

iterations.

To understand these policies, it is useful to consider how the static and dy-

namic scheduling schemes supported by OpenMP map to this framework. For

a static schedule with chunk size c, the clustering policy partitions the iterations

of the DO-ALL loop into clusters of c contiguous iterations. The labeling policy

assigns these clusters to cores in a round-robin fashion, so each core may end up

with several clusters. The ordering policy can be described as cluster-major or-

der since a core executes clusters in lexicographic order, and it executes all iter-

ations in a cluster before it executes iterations from the next cluster. Notice that

for static schedules of DO-ALL loops, the iteration space, clusters and the three

scheduling policies are known before the loop begins execution. For dynamic

schedules on the other hand, some of these policies are defined incrementally

136

as the loop executes. Consider a dynamic schedule with chunk size c. As in the

case of static schedules, the clustering policy partitions iterations into clusters

of c contiguous iterations, and this policy is defined completely before the loop

begins execution. However, the labeling policy is defined incrementally during

loop execution since the assignment of clusters to cores is done on demand. The

ordering policy is cluster-major order, as in the static case. In general therefore,

Figure 5.1 should be viewed as a post-execution report of scheduling decisions,

some of which may be made before loop execution, while the rest are made

during loop execution.

Scheduling in irregular programs can be viewed as the most general case of

Figure 5.1 in which even the iteration space and clusters are defined dynami-

cally. In applications like Delaunay mesh refinement, elements can be added to

the worklist as the loop executes, and this corresponds abstractly to the addition

of new points to the iteration space of the loop during execution. It is convenient

to distinguish between the initial iterations of the iteration space, which exist be-

fore loop execution begins, and dynamically created iterations, which are added to

the iteration space as the loop executes. The initial iterations may be clustered

before loop execution begins, but the run-time system may decide to create new

clusters for dynamically created iterations, so both the iteration space and clus-

ters may be defined dynamically.

5.3 Sample policies

We now describe a number of policies for clustering, labeling and ordering that

we have found to be useful in our application studies.

137

5.3.1 Clustering

We have implemented the following policies for assigning initial iterations to

clusters.

• Chunking: This policy is defined only for ordered-set iterators, and it is a

generalization of OpenMP-style chunking of DO-ALL loops. The pro-

grammer specifies a chunk size c, and the policy clusters c contiguous

iterations at a time.

• Data-centric: In some applications, there is an underlying global data struc-

ture that is accessed by all iterations. Partitioning this data structure be-

tween the cores often leads to a natural clustering of iterations; for ex-

ample, if the mesh in Delaunay mesh refinement is partitioned between

the cores, the responsibility for refining a bad triangle can be given to

whichever core owns the partition that contains that bad triangle3 [79].

The data-centric policy is similar in spirit to what is done in High Per-

formance FORTRAN (HPF) [75, 110]. The number of data partitions is

specified by the programmer or is determined heuristically by the system.

• Random: In some applications, it may be desirable to assign initial itera-

tions to clusters randomly. The number of initial clusters is specified by

the programmer or is chosen heuristically. Alternately, a programmer can

choose to leave unspecified the number of clusters, but instead specify a

desired cluster size.

• Unit: Each iteration is in a cluster by itself. This can be considered to

be a degenerate case of random clustering in which each cluster contains

exactly one iteration. This is the default policy.

3Note that if the cavity of the bad triangle spans multiple partitions, the core refining that
triangle will need to access several partitions.

138

For applications that dynamically create new iterations, the policy for a new

iteration can be chosen separately from the decision made for the initial iter-

ations. Dynamically created iterations can be clustered using the Data-centric,

Random, and Unit policies described above. In addition, we have implemented

one policy specifically for dynamically created iterations.

• Inherited: If the execution of iteration i1 creates iteration i2, i2 is assigned to

the same cluster as i1. This particular policy is interesting because it lends

itself to an efficient implementation using iteration-local worklists. Newly

created work gets added to the iteration local worklist, which can be ac-

cessed without synchronization. It may also provide additional locality

benefits, as discussed below.

An aborted iteration, by default, is treated as a dynamically created itera-

tion. For example, if a schedule uses the inherited clustering policy, an aborted

iteration will be assigned to the same cluster it was in previously, but if it uses

the random policy, an aborted iteration will be assigned to a random cluster.

Comparison with owner-computes

It is interesting at this point to compare the presented clustering policies to

the well-known owner-computes rule for assigning work to processors [110]. In

owner computes, work is assigned based on which processor owns the data the

work accesses. Intuitively, the partitioned clustering policy captures this rule.

When a data structure is partitioned among many abstract processors, which

are then mapped to physical cores, each core effectively owns several partitions

of the data structure. By assigning work to cores based on the partition that

work belongs to, the partitioned clustering policy is equivalent to owner com-

putes.

139

The inherited clustering policy, on the other hand, differs from the partitioned

policy (and hence from owner-computes) in a key way: newly generated work

is handled by the core which generates the work. In many cases, this is equiva-

lent to the partitioned policy. For example, in Delaunay mesh refinement, newly

generated work is, because of the partition assignment policy discussed in Sec-

tion 4.2.2, always part of a partition mapped to the current core.

However, it is possible for newly generated work to belong to a partition

mapped to a different core. For example, BK maxflow (Section 2.4) generates

new work as part of the breadth-first-search phase of execution. New nodes

added to the frontier may be on a different partition than the node currently

being processed. According to the partitioned policy, that new node should be

processed by the core it is mapped to. The inherited policy will instead cause

the current core to process the node, even though it is “owned” by a different

core. This breaks the owner compute rule, but can provide better locality, as

the newly discovered node will be in the current core’s cache. We present a

comparison of the inherited and partitioned schedulers in Section 5.6.3.

5.3.2 Labeling

Labeling policies can be static or dynamic. In static labeling, every cluster is

assigned to a core before execution begins. In dynamic labeling, clusters are

assigned to cores on demand.

We have implemented the following static labeling policies.

• Round-robin: For ordered-set iterators, clusters can be assigned to cores in

a round-robin fashion. This is similar to what is done in OpenMP.

• Data-centric: If clustering is performed using a data-centric policy, the clus-

ter can be assigned to the same core that own the corresponding data par-

140

tition. This promotes locality and also reduces the likelihood of conflicts

because cores work on disjoint data for the most part.

• Random: Clusters are assigned randomly to cores.

We have also implemented the following dynamic policies.

• Data-centric: This is implemented using over-decomposition (i.e. the un-

derlying data structure is divided into more partitions than there are

cores). Clustering is done using the data-centric policy. When a core needs

work, it is given a data partition and its associated cluster of iterations. The

distribution of code and data can be implemented by a centralized sched-

uler or it can be implemented in a decentralized way using work-stealing.

• Random: Clusters are assigned randomly to cores.

• LIFO/FIFO: These policies can be used when clusters are created dynam-

ically. For example, LIFO labeling means when a core needs work it is

given the most recently created cluster.

5.3.3 Ordering

The ordering policy specifies a sequential execution order for all the iterations

assigned to a processor. We have found that it is intuitive to split the ordering

policy into two sub-policies, inter-cluster ordering and intra-cluster ordering.

Inter-cluster ordering specifies the order in which the clusters are executed,

and when execution may switch from one cluster to another. We have imple-

mented the following policies:

• Random: Clusters are randomly chosen, and execution switches between

clusters randomly.

141

• Lexicographic: This is applicable to ordered-set iterations. Clusters are exe-

cuted according to their ordering in the iteration space.

• Cluster-major: A single cluster is fully executed before switching to a sec-

ond cluster.

• Switch-on-abort: Iterations are executed from one cluster till some iteratino

aborts. At that point, execution switches to a different cluster.

Once a cluster is picked, intra-cluster ordering specifies in what order the

iterations within that cluster should be executed. Sample policies include:

• Random: Iterations are executed at random.

• Lexicographic: Iterations are executed in the order specified by the ordered-

set.

• LIFO/FIFO: If iterations are dynamically added to a cluster, they are exe-

cuted in a LIFO/FIFO manner.

5.4 Applying the framework

To this point, we have presented a general conceptual framework for scheduling

irregular, data-parallel applications. For the framework and system to be truly

useful, it must be easy for Joe Programmer to implement his own scheduling

policies. Recall that scheduling of iterations from the worklist is handled by the

Galois run-time. By hiding the worklist in the optimistic iterator construct, the

run-time can provide different scheduling policies with minimal intervention

from the user.

Recall that the object which controls scheduling in the Galois run-time is the

Scheduler. It provides methods which specify how a thread obtains a new piece

142

of work (essentially performing the actions of the labeling policy and ordering

policy), and how a core adds new work to the iterator (performing the actions of

the clustering policy). By subclassing the scheduler and selectively overriding

these methods, it is straightforward for Steve Programmer to implement any

schedule he or she desires. Our implementations of the policies described above

use this technique.

Given a set of scheduler objects which implement different scheduling poli-

cies, the question then becomes how a programmer can specify which policy to

use for his or her program. One way of setting this policy is through compiler

directives similar to OpenMP pragmas: the data-parallel loop is annotated to

indicate the policy the programmer desires. Unfortunately, this is too restrictive

for our purposes. By limiting the policies to those provided by compiler direc-

tives, programmers lose the ability to specify custom scheduling policies (which

are often necessary, as we see in Section 4.5.4).

Instead, we take a programmatic approach. When instantiating the Galois

run-time, Joe Programmer can pass in a particular scheduler object to set a

scheduling policy. This requires minimal changes to the user code, comparable

to compiler directives, but retains the full flexibility of the scheduling frame-

work. The Galois system provides several common policies which provide ac-

ceptable performance for a number of applications (see Section 5.6.6).

5.5 Iteration granularity

One significant source of overhead in the Galois system is that of iteration gran-

ularity (i.e., the amount of work done by a single iteration). If a single iteration

is short, the overheads of obtaining work, as well as the overheads of track-

ing that iteration’s execution, can often far outweigh the benefits of executing

143

work in parallel (this is especially evident in the results for Boykov-Kolmogorov

maxflow, in Section 5.6.3, and for Preflow-push maxflow, in Section 5.6.4).

Several of the scheduling policies presented in the previous section attempt

to address the overhead of obtaining work for fine-grained iterations. A cluster-

ing policy that groups multiple iterations together allows them to be assigned

to a processor as a group, which can result in significantly lower overhead (cf.

chunked scheduling in OpenMP). However, clustering policies cannot address

the other source of overhead that overwhelms fine-grained iterations: synchro-

nization overhead. We address this with an optimization called iteration coalesc-

ing

5.5.1 Iteration coalescing

Recall that in the Galois programming model, iterations of the optimistic iter-

ators represent the basic unit of transactional execution during parallel execu-

tion. In other words, each iteration appeared to execute atomically, and in isola-

tion, but there could be arbitrary interleavings of iterations (these interleavings

can be restricted by the scheduling policy, but there is no issue of correctness

involved). Iteration coalescing breaks this connection between iterations and

transactional execution. Instead, we can treat multiple iterations as a single

super-iteration, a transactional piece of work which as a whole appears to be

atomic and isolated. This means that rather than allowing individual iterations

to appear to interleave arbitrarily in the serialized schedule, iterations forming

a super-iteration will appear as a chunk—they must appear to execute one after

another.

This model of execution can be implemented in the run-time by separating

the tasks of creating a new iteration record (which maintains the information

144

required to ensure isolation) from getting a piece of work from the scheduler

(which represents a single iteration of the optimistic iterator).4 Execution then

proceeds as follows.5

When a core needs work, the run-time creates a new iteration record, and

then the scheduler provides a new iteration to work on. The core executes the

iteration, acquiring locks and recording undo methods as necessary. When the

iteration completes, rather than committing the iteration by releasing all the

locks, the core simply returns to the scheduler to obtain a new iteration, while

still holding all its locks; this new iteration is associated with the same iteration

record as the first. Thus, the two iterations are combined into a single super-

iteration. The next iteration then executes, potentially acquiring new locks.

Eventually, according to some policy, the core commits all of the speculative

iterations in the super-iteration by releasing its locks and clearing its undo logs.

If at any point a conflict is detected, all of the speculative iterations currently

being executed by the core are rolled back.

Tradeoffs

Decoupling transactional execution from iterations has several advantages.

First, there is lower overhead as fewer iteration records need to be created; this

can be especially advantageous for fine-grained iterations. Second, and more

interestingly, because the second iteration is associated with the same iteration

record as the first, all the locks acquired by the first iteration are still “owned”

by the second iteration, which can then “reuse” them without reacquiring the

4Because there is no longer a one-to-one correspondence between iteration records and it-
erations from the worklist, “iteration record” is a bit of a misnomer. However, we retain the
nomenclature for the sake of consistency.

5For the sake of simplicity, the following discussion assumes a two-phase locking approach
to maintaining isolation, but the run-time behaves similarly when using commutativity condi-
tions.

145

locks. Thus, the average number of locks acquired per iteration decreases, lowering

overhead. Consider Delaunay mesh refinement, using partition locking for con-

flict detection. When a core begins speculative execution, it will acquire a lock

on the partition the first iteration accesses. If a second iteration is associated

with the same iteration record, and it accesses the same partition, the core will

not need to acquire any additional locks; thus the total amount of synchroniza-

tion decreases. This is again especially useful for short iterations where syn-

chronization overheads are relatively larger.

The primary downside to this approach is that it lengthens the amount of

time iterations remain speculative. As a result, locks are held for longer (as

they cannot be released until the iterations are no longer speculative), which in-

creases the likelihood of aborts. Unfortunately, aborts are more expensive with

iteration coalescing, as there is more speculative work to roll back, and hence

more wasted work. In short, iteration coalescing is a balancing act between

lowering synchronization overhead and maintaining low mis-speculation rates.

Reducing wasted work with checkpointing

One potential technique to reduce the amount of wasted work on rollback (and

hence to tolerate the higher mis-speculation rate) is to implement a form of

checkpointing. Recall that even though iteration coalescing means that we treat

groups of iterations as a single, atomic whole, the sequential semantics of the

program still allow the iterations to execute individually. Consider a sequence

of n iterations which are coalesced together. If iteration i detects a conflict and

thus should be rolled back, the standard coalescing semantics require that all the

iterations in the super-iteration be rolled back. However, iterations 1 through

i − 1 have successfully and safely executed in isolation already. Rolling back

146

only iteration i leaves the overall program in a consistent, safe state. In essence,

iteration boundaries serve as checkpoints for a super-iteration, demarcating safe

points to roll back to. Thus, iteration i can be rolled back and iterations 1 through

i − 1 can be committed. When iteration i is re-executed, it does so within a new

super-iteration.

Note that if a different core detects a conflict with a super-iteration, we can-

not be sure which iteration within the super-iteration is responsible for the con-

flict. Thus, we must conservatively roll back the entire super-iteration, rather

than simply rolling back to a safe checkpoint.

This checkpointing rollback system is similar to partial rollback of nested

transaction [87, 90, 113]. In that setting, when a nested transaction encounters

a conflict, it is possible to only roll back the nested transaction, rather than the

parent transaction as well. One can think of a super-iteration as a parent transac-

tion, with the iterations that comprise it each being a nested transaction; rollback

to a checkpoint is analogous to a partial rollback of a nested transaction. One

key difference is that when performing a partial rollback of a nested transaction,

the parent transaction continues to maintain isolation (essentially, it continues

to hold any locks that it acquired) and the nested transaction will eventually

have to re-execute. Thus, in the face of persistent conflicts, the parent transac-

tion must roll back as well. However, in our system, when an iteration is rolled

back, we can safely commit the previously executed work (releasing any held

locks), avoiding persistent conflicts. We have found that the additional over-

head required to implement the checkpointing system outweighs the benefits

in reduced rollback costs—however, further study is required, which we leave

to future work.

147

5.5.2 Discussion

In general, the appropriate amount of coalescing is highly application depen-

dent. It is also affected by scheduling policy, as some scheduling policies result

in a lower probability of aborts, and hence can benefit more from iteration coa-

lescing. Iteration coalescing is also more useful with “coarse grain” conflict de-

tection, such as partition locking, as coalesced iterations are more likely to use

the same locks. In contrast, fine-grained commutativity checks may not lead to

much reuse, reducing the benefits of iteration coalescing. Finally, although iter-

ation coalescing can be beneficial for many applications, the benefits are most

pronounced when the average iteration is short-running, as the synchroniza-

tion and bookkeeping overheads are higher relative to the amount of work to

be done.

A useful default policy when using partition locking is to coalesce all newly

generated work together with the iteration which generated the work, under

the assumption that these iterations are likely to lie in the same partition, and

unlikely to conflict with other concurrently executing iterations. We use this

coalescing policy when using the inherited clustering policy in all of the case

studies we present in Section 5.6, with the exception of agglomerative cluster-

ing, which did not coalesce iterations. We leave a study of the effects of various

coalescing policies on performance to future work.

5.6 Case studies

We have evaluated our scheduling approach on five irregular applications. The

scheduling framework described in Section 5.2 can be used to implement a vast

number of policies and it is both infeasible and pointless to evaluate all these

148

policies on all benchmarks. Instead, we studied the algorithms and data struc-

tures in these applications, and determined a number of interesting scheduling

policies for each one. We then implemented these policies in the Galois system

and measured the performance obtained for that application using each of these

policies.

The machine we used in our experiments is a dual-processor, dual-core 3.0

GHz Xeon system with 16KB of L1 cache per core and 4MB of L2 cache per pro-

cessor. This particular system exhibits performance anomalies due to automatic

power management; to eliminate these, we downclocked the cores to 2 GHz.

Our implementation of the Galois system, as well as the scheduling framework

described in this paper, is in Java 1.6. To take into account variations in paral-

lel execution, as well as the overhead of JIT compilation, each experiment was

run 5 times under a single JVM instance, and the fastest execution time was

recorded. In an attempt to minimize the effects of GC on running time, a full

GC was performed before each execution. We used Sun’s HotSpot JVM, which

was run with a 2GB heap.

5.6.1 Delaunay mesh refinement

Scheduling issues. As discussed in Section 5.2, the scheduling policy can af-

fect performance because of algorithmic effects, locality, conflicts, load balanc-

ing, and overhead. In mesh refinement, algorithmic effects are minor. The final

mesh depends on the order in which bad triangles are refined, and although

different orders perform different amounts of work, the variation in the amount

of work is small. Furthermore, the cost of getting work from the worklist is

relatively small compared to cost of an iteration, so the effect of scheduling

overhead is small. Therefore, the main concerns are locality, conflicts, and load

149

balancing.

A significant feature of this application is that when the cavity of a bad tri-

angle is re-triangulated, a number of new bad triangles may be created in that

cavity. These new triangles will be (i) in the same region of the mesh as the orig-

inal bad triangle, and (ii) near one another in the updated mesh. To exploit tem-

poral and spatial locality, these new triangles should be processed right away.

However, if these triangles are refined concurrently, their cavities are likely to

overlap and the abort ratio will be high.

Evaluation. The baseline sequential implementation, called seq in this discus-

sion, uses a LIFO scheduling policy, implemented using a stack as the work-

list to exploit spatial and temporal locality. In all the parallel implementations

discussed in this section, the mesh is partitioned between the cores, and con-

flict detection is performed using partition locking rather than commutativity

checks, as described in Section 4.3. This ensures that all parallel versions use

the same mechanism for conflict checks, so the only difference between them is

the scheduling policy6.

We evaluated four different parallel schedules:

• default — This is the default schedule used by the base Galois system: the

worklist is centralized, and a core is given one bad triangle, chosen at ran-

dom, on demand. In terms of the scheduling framework introduced in

Section 5.2, we can describe this schedule as follows: it uses the unit clus-

tering policy for both initial and dynamically generated iterations, and the

labeling policy is dynamic and random. Obviously, there are no ordering

concerns in this policy.
6Note that the scheduling policy does not need to be cognizant of the data partitioning (for

example, bad triangles can still be assigned randomly to cores), although we would expect to
obtain some locality benefits if the scheduling policy was data-centric.

150

• stack — This policy is similar to default, except that the worklist is stack-

like, so the labeling policy is dynamic and LIFO rather than random. This

policy mimics the scheduling policy of seq.

• part — This schedule uses data-centric clustering for both initial iterations

and dynamic iterations, with 4 times as many partitions as processors.

The labeling policy is also data-centric. The cluster interleaving used is

switch-on-abort. Within a cluster, iterations are ordered in a LIFO manner,

processing newer work first. The mesh is partitioned using breadth-first

search, a simplified version of the Kernighan-Lin method [74].

• hist — This schedule uses a random clustering policy for initial iterations,

with each cluster containing 16 elements. Dynamically created iterations

use inherited clustering; newly created work is assigned to the cluster that

is currently being processed. The labeling policy is the same as in default.

Because the labeling policy is dynamic, there is no cluster interleaving.

Iteration ordering within a cluster is LIFO.

We compared the parallel implementation using these schedules with the

sequential implementation. Figure 5.1(a) gives the wallclock time, in seconds,

for seq as well as the four parallel versions on different numbers of cores. Figure

5.1(b) shows the speedup of the five parallel versions relative to sequential exe-

cution time. We see that stack has the worst performance, achieving a speedup

of 1.2 on 4 cores, while hist performs the best, achieving a speedup of 3.3.

There are a number of interesting points to note in these results. First, we

note that seq, which is the sequential implementation that uses LIFO schedul-

ing, and stack, which is the parallel implementation of LIFO-like scheduling,

perform almost identically on one core; since stack is a parallel code, it has a

small additional overhead even when run on a single core. Both versions ex-

151

Table 5.1: Execution time (in seconds) and abort ratios for Delaunay mesh
refinement

Schedule 1 core 2 cores 4 cores

Exec. Time Exec. Time Exec. Time Abort Ratio

seq 11.495 — — —

default 15.724 8.754 5.609 19.64%

stack 11.721 9.584 9.603 96.97%

part 11.634 6.255 3.639 5.79%

hist 11.435 6.338 3.508 7.19%

1 2 3 4
of Cores

1

1.5

2

2.5

3

Sp
ee

du
p

hist
part
stack
default

Figure 5.2: Speedup vs. # of cores for Delaunay mesh refinement

ploit locality and therefore outperform the default version, which uses random-

ized scheduling. The fact that hist also performs well on one core shows that

most of the locality benefits can be obtained by focusing on one bad triangle

from the original mesh at a time, and repeatedly eliminating all new bad trian-

gles created in its cavity before moving on to a different bad triangle from the

original mesh.

Interestingly, single-core performance does not always translate to parallel

152

performance. While default is slower than stack on a single core, it is faster

on 4 cores. This is likely due to speculation conflicts, as discussed before. To

investigate this, we measured the abort ratio, the percentage of executed itera-

tions which are rolled back. A high abort ratio is indicative of significant mis-

speculation in the program, which may reduce performance. There is no direct

correlation between abort ratio and performance: some iterations abort soon af-

ter starting (essentially a busy-wait), while others abort towards the end, result-

ing in more lost work. The rightmost column of Figure 5.1(a) shows the abort

ratio for the parallel schedules on 4 cores. From these numbers, we see that

stack has a very high abort ratio, as expected. By processing triangles chosen at

random, default avoids this problem, and the gain in concurrency outweighs the

cost in lost locality.

Both part and hist perform well in terms of locality and speculation behavior.

They both execute iterations in a LIFO manner within a cluster, and their clus-

tering policies ensure that newly created iterations are immediately executed,

leading to good locality. They also both exhibit a low abort ratio. In the case of

part, this is because of reduced mis-speculation. On the other hand, hist uses the

same random scheduling as default to avoid excessive aborts. Unsurprisingly,

the two schedules perform similarly, despite very different behaviors. We con-

jecture that hist is a better schedule than part due to better load-balancing. part

uses a static labeling, so it cannot correct for load imbalance between processors.

hist leverages dynamic labeling to achieve load balance.

5.6.2 Delaunay triangulation

Scheduling issues. For this application, algorithmic effects are the most im-

portant, since it is critical to avoid worst-cast behavior of the history DAG. The

153

best sequential implementation (seq) uses a random worklist [47]. In the par-

allel implementation, we can exploit temporal and spatial locality if points are

inserted in sorted order. Unfortunately, this can lead to worst-case behavior of

the history DAG.

Evaluation. The input data for our experiments is a set of 75,000 random,

uniformly-distributed points; the final mesh has roughly 150,000 triangles.

We evaluated three different parallel schedules:

• default — The default Galois schedule. Note that this approximates the

schedule used by the sequential implementation.

• part — The points are partitioned geometrically. The schedule uses data-

centric clustering for the initial iterations, with 8 times as many clus-

ters as cores. The labeling policy is also data-centric. The ordering is

cluster-major; within each cluster, the ordering is random. Intuitively, this

scheduling policy tries to exploit locality when clustering iterations, but it

does not try to exploit locality when executing a given cluster.

• sorted — This schedule is similar to the part schedule except that the or-

dering within each cluster is the (geometrically) sorted order rather than

random. Intuitively, this scheduling policy tries to exploit locality when

creating clusters and also when executing iterations in each cluster.

Figure 5.3(a) gives the overall execution time on different numbers of cores,

as well as the abort ratio on four cores. Figure 5.3(b) shows the speedup relative

to seq for the various schedules.

The sorted schedule exhibits the worst performance of all the evaluated

schedules. Although sorting the points achieves better locality in the mesh,

these results illustrate the tradeoff described earlier: sorting the points is good

154

Table 5.2: Execution time (in seconds) and abort ratios for Delaunay trian-
gulation

Schedule 1 core 2 cores 4 cores

Exec. Time Exec. Time Exec. Time Abort Ratio

seq 17.623 — — —

default 18.982 11.634 7.284 3.54%

part 17.555 9.174 5.631 0.34%

sorted 49.250 16.770 8,491 0.67%

1 2 3 4
of Cores

0.5

1

1.5

2

2.5

3

Sp
ee

du
p

part
default
sorted

Figure 5.3: Speedup vs. # of cores for Delaunay triangulation

for locality but it leads to a poorly shaped history-DAG and affects algorithmic

performance. However, abandoning locality completely is not the best solution

either. The best performance is achieved with the part schedule. This achieves a

good balance between locality in the mesh (as each core focuses on points from

a single partition at a time) and randomness for the DAG (as the interleaving of

different cores’ iterations is essentially random). With this schedule, we achieve

a speedup of 3.13 on 4 cores.

155

5.6.3 Boykov-Kolmogorov maxflow

Scheduling issues. Unlike Delaunay triangulation and refinement, the itera-

tions in B-K maxflow do relatively little work. Most perform a single step of

a breadth-first search. Furthermore, augmenting paths in image segmentation

problems tend to be short, so even iterations that perform augmentation are

short. The cost of obtaining work from the worklist, especially in parallel, is

a significant concern in this application, and thus the effect of scheduling on

overhead and contention for shared structures is paramount.

Like mesh refinement, B-K maxflow involves a graph traversal, so the lo-

cality concerns are similar. The amount of dynamically generated work is rela-

tively small compared to mesh refinement, so ensuring that the original distri-

bution of work exploits locality and concurrency is important.

Evaluation The sequential implementation is a Java port of the original se-

quential C code, which uses a queue for the worklist. The input data is a

1024x1024 image segmentation problem based on overlapping checkerboards.

We evaluated five parallel schedules for this application:

• default — the default schedule.

• queue — this is the same policy as default, except the labeling policy uses

FIFO labeling. This schedule approximates the sequential schedule of ex-

ecution since it will perform an approximate breadth-first traversal.

• chunked — this is the same policy as queue, except it uses the random clus-

tering policy, and aims to create clusters of size 16. Dynamically generated

iterations are assigned to new, unlabeled clusters. The ordering within a

cluster is random.

156

• hist — this is the same policy as chunked, except the clustering function

uses the inherited rule for dynamically generated iterations. Intra-cluster

ordering is LIFO ordering. This is essentially the same schedule as hist in

mesh refinement.

• part — This schedule is the same as part in mesh refinement, except the or-

dering policy uses cluster-major ordering and the clustering policy uses the

inherited rule for new work. This clustering policy is key, because in this

application, data-centric clustering may not assign newly created work to

the current cluster. As the input graph has a grid structure, the partition-

ing used for data-centric clustering is block-based.

Figure 5.4(a) gives the execution time on different numbers of cores, as well

as the abort ratio on four cores. Figure 5.4(b) shows the speedup relative to

seq for the parallel schedules. We see that default performs the worst, actually

slowing down compared to sequential execution by a factor of 10 on four cores,

while part performs the best, achieving a speedup of 2.67x over seq.

Table 5.3: Execution time (in ms) and abort ratios for B-K maxflow

Schedule 1 core 2 cores 4 cores

Exec. Time Exec. Time Exec. Time Abort Ratio

seq 384 — — —

default 1166 1759 3191 0.367%

queue 608 1000 1470 0.235%

chunked 508 593 623 0.109%

hist 363 391 404 0.071%

part 421 240 144 0.001%

157

1 2 3 4
of Cores

0

0.5

1

1.5

2

2.5

3

Sp
ee

du
p

part
hist
chunked
queue
default

Figure 5.4: Speedup vs. # of cores for B-K maxflow

This application illustrates the effects of scheduling overhead on execution

performance. The locality effect of newly created work manifests itself in better

single-core performance for queue over default. However, both default and queue

perform poorly on four cores, slowing down compared to the same schedule

on one core. This is because accessing the worklist is a significant portion of

each iteration, and if a schedule uses dynamic labeling, the worklist is global.

These accesses are guarded by locks to ensure correct labeling of clusters, thus

resulting in poor performance.

This effect can be mitigated by reducing the overhead of dynamic labeling.

One approach is demonstrated by chunked: iterations are grouped into clusters,

reducing the amount of labeling that must be done. This reduces execution time,

but still has significant overhead during clustering: newly created work is as-

signed to new clusters, thus requiring synchronization to ensure correct cluster

formation. The hist schedule keeps newly created work in the current cluster,

eliminating the need to add and remove newly created work in the global work-

list, which produces better results.

158

All of the previously discussed schedules rely on dynamic labeling to some

extent, and this requires synchronization on a global worklist. By using static

labeling, we no longer require a global worklist and this bottleneck is removed.

We see that the part schedule, which uses static labeling and inherited cluster

assignment for new work, is the best performing schedule.

This application demonstrates the need to carefully consider the overhead

implicit in a scheduling decision, as it can have dramatic effects on application

performance.

inherited vs. partitioned clustering As discussed in Section 5.3.1, scheduling

using the inherited clustering policy produces a different schedule than the tra-

ditional owner-comnputes heuristic. We evaluated the performance of inherited

clustering versus the owner-computes approach of partitioned clustering to de-

termine what difference, if any, existed between the two schedules. We thus

compared the performance of two variants of B-K maxflow, one using the inher-

ited policy, and the other using the clustered policy while keeping the labeling

and ordering policies fixed.

In order to produce a fair comparison between inherited and partitioned clus-

tering, we rewrote the inherited scheduler to use a similar implementation as the

partitioned scheduler (rather than the fully optimized local-worklist implemen-

tation described in Section 5.3.1). This meant that the performance difference

between the two systems measured just scheduling differences, rather than in-

cluding implementation effects. It is important to note, in light of the results pre-

sented earlier, that this scheduler modification had the effect of slowing down

the inherited scheduler.

Figure 5.5 shows the performance of the two clustering policies on multiple

cores. On four cores, we found that inherited clustering ran 19% faster than

159

1 2 3 4
of Cores

0.5

1

1.5

2

2.5

Sp
ee

du
p

Inherited Clustering
Partitioned Clustering

Figure 5.5: Performance of inherited vs. partitioned clustering for B-K
maxflow

partitioned clustering. This indicates that the locality gains from using inherited

clustering can be significant when compared to the owner-computes heuristic,

and these benefits are independent of the performance gains obtained through

a more optimized implementation.

5.6.4 Preflow-push maxflow

Scheduling issues. Iterations in preflow-push are the shortest among our ex-

ample applications; the push and relabel operations are cheap, and the regu-

lar nature of the graph means that nodes have few neighbors. The majority of

the overhead arises from contention, either in interacting with the global work-

list, or in keeping processors isolated from each other. Furthermore, unlike B-

K maxflow, this algorithm is almost entirely based on newly generated work.

Thus it is important to have a scheduling policy that can suitably cluster and

label this new work to assign it to the appropriate processor.

Evaluation. The best performing sequential implementation uses the follow-

ing schedule (inspired by our parallel experiments): when a unit of work is

160

1 2 3 4
of Cores

0

0.5

1

1.5

2

2.5

3

Sp
ee

du
p

part
hist
chunked
default

Figure 5.6: Speedup vs. # of cores for preflow-push maxflow

removed from the main worklist, it is transferred to a secondary worklist. The

algorithm processes the secondary worklist until exhausted, then returns to the

main worklist to get the next unit of work. We compared this sequential sched-

ule, seq, to the schedules default, chunked, hist, and part from B-K maxflow, using

a 128x128 instance of the segmentation problem.

Table 5.4: Execution time (seconds) and abort ratios for preflow-push
maxflow

Schedule 1 core 2 cores 4 cores

Exec. Time Exec. Time Exec. Time Abort Ratio

seq 4.93 — — —

default 32.09 83.62 144.59 12.23%

chunked 25.69 30.64 37.87 22.17%

hist 5.45 4.63 4.83 14.04%

part 5.12 2.64 1.72 <0.01%

Preflow-push, even more than B-K maxflow, shows tremendous sensitivity

to scheduling overheads. Computing a maxflow on the input data requires

161

about 30 million iterations of the main loop. Unsurprisingly, default performs

very poorly, and although chunked does show improvement due to larger it-

eration clusters, newly generated work is still handled too slowly to result in

speedup.

By using a local worklist to speed up clustering of new work, we are able to

at least match sequential performance, as shown in the hist schedule. However,

the abort ratios here show the importance of intelligently clustering the iteration

space. Thus, the part schedule, which statically clusters iteration space to reduce

conflicts and lower scheduling overhead, achieves the best performance and

results in a 2.86x speedup on 4 cores.

5.6.5 Unordered agglomerative clustering

Scheduling issues. Agglomerative clustering builds a binary tree from the

bottom up so a node cannot be created before its children. Specifically, an el-

ement often cannot be clustered until after some other elements have been pro-

cessed. A poor schedule can result in repeatedly attempting to cluster elements

which cannot be clustered yet (line 15), leading to an explosion in the amount

of work done.

Evaluation. We evaluated three different schedules for this application using

200,000 initial points. The best sequential version uses the same locality op-

timizations as the hist schedule below, but without the conflict checking and

synchronization overheads.

• default — The default schedule.

• chain — This schedule improves locality using a programmer-specified dy-

namic labeling policy. If an iteration does not successfully form a data

162

cluster between a and b, the labeling policy assigns the iteration associ-

ated with b to the processor next, based on a scheduler hint inserted into

the iteration at line 15.

• hist — This schedule is the same as chain, except when a and b are success-

fully combined in a data cluster (line 13). In this case, the schedule assigns

the newly created iteration to the current iteration cluster (as in the inher-

ited clustering policy), using another scheduler hint. This does not affect

iterations generated by line 15, otherwise the loop would never terminate.

Table 5.5: Execution time (in seconds) and abort ratios for agglomerative
clustering

Schedule 1 core 2 cores 4 cores

Exec. Time Exec. Time Exec. Time Abort Ratio

seq 4.28 — — —

default 153.41 73.93 47.93 0.27%

chain 12.02 6.68 4.17 0.22%

hist 5.17 2.97 1.89 0.07%

While default achieves good self-relative speedup using more cores, its per-

formance is poor compared to the best sequential seq. Due to the scheduling

issue discussed above, default executes more than 13 times as many iterations as

seq.

The user-defined labeling function in chain results in a much more efficient

schedule than default, performing about 10 times fewer iterations. It also ex-

hibits better locality than default, and hence runs 12 times faster. Finally, hist

exploits additional locality due to its clustering of newly created work after a

successful clustering, leading to a real speedup of 2.3 on four cores.

163

1 2 3 4
of Cores

0

0.5

1

1.5

2

2.5

Sp
ee

du
p

hist
chain
default

Figure 5.7: Speedup vs. # of cores for agglomerative clustering

Table 5.6: Highest-performing scheduling policies for each application

Scheduling Policy

Application Clustering Labeling Ordering

MR random / inherited dynamic / random — / LIFO

DT data-centric / — static / data-centric cluster-major / random

BK data-centric / inherited static / data-centric cluster-major / LIFO

PP data-centric / inherited static / data-centric cluster-major / LIFO

AC unit / custom dynamic / custom — / —

We see that for this application, algorithmic effects dominate the perfor-

mance, and the necessary schedule to mitigate these effects is complex and

problem-specific. Our scheduling framework allows us to specify this kind of

complex scheduling.

5.6.6 Summary of results

Our experimental results clearly demonstrate it is beneficial to provide schedul-

ing flexibility across applications—the default Galois scheduling policy tends to

164

perform poorly. Furthermore, across different applications the optimal schedul-

ing policy can differ. Table 5.6 summarizes the scheduling policies that we

found to perform the best for each of our applications. The applications are

abbreviated as follows: MR — Delaunay mesh refinement; DT — Delaunay

triangulation; BK — B-K maxflow; PP — preflow-push maxflow; AC — un-

ordered agglomerative clustering. The policies are presented as follows: clus-

tering shows first the policy for initial work, then the policy for dynamically

generated work; labeling specifies dynamic or static labeling, then the specific

policy; and ordering shows first the cluster interleaving policy, then the intra-

cluster ordering policy.

While every application we evaluated (other than the two maxflow prob-

lems) required a different set of scheduling policies to produce the best results,

there are some common features which can inform a programmer’s choice of

schedules. When dealing with partitioned data structures, as in all applications

other than agglomerative clustering, it is beneficial to perform data-centric clus-

tering and labeling (though this is not the best schedule for mesh refinement, it

approaches the optimal schedule in performance). When new work is created,

inherited clustering should be chosen (a slight modification of this policy was

necessary for agglomerative clustering to ensure termination). Cluster-major

ordering is useful as it promotes locality. As these choices seem like natural

starting points for designing a scheduling policy for an application, the Galois

system provides this policy for programmers to use “out-of-the-box.”

It is possible that even for a single application there is not a particular

scheduling policy that performs the best. In irregular programs, behavior can

be very input dependent. For lack of space, we have only evaluated each ap-

plication on a single input set, and have not investigated this input-dependent

165

variability in scheduling. However, for the general types of inputs we have con-

sidered for each application (e.g. image segmentation problems for B-K maxflow

and preflow-push maxflow), we feel that there is likely only small amounts of

variability in the optimal scheduling policy across inputs. We leave a full study,

which would also consider other types of inputs which may have significantly

different behavior, to future work.

5.7 Summary

In this chapter we presented a general framework for scheduling data-parallel

computation, suited for both regular and irregular applications. We described

how a schedule can be defined through three policies: clustering, labeling and

ordering. We also showed how the object-oriented nature of the Galois system

can be leveraged to easily implement our framework. This framework sub-

sumes the scheduling policies of data-parallel systems such as OpenMP [96],

and it affords the Galois system significantly more flexibility than toolkits such

as Intel’s Thread Building Blocks [67], which does not provide control over

scheduling for general iterators.

Through an evaluation of the framework on several real-world applications,

we demonstrated that different schedules can exhibit widely varying perfor-

mance on a given application, and that there is no single, best-performing

schedule across all applications. We did, however, discover a combination of

scheduling policies which gives acceptable performance across a range of ap-

plications. By extending the Galois system with our scheduling framework,

we can give programmers a set of reasonable default schedules, as well as al-

low them to explore the space of possible schedules, arriving at the particular

schedule that best suits their application.

166

CHAPTER 6

CONTEXT AND CONCLUSIONS

6.1 Other models of parallelism

Generalized data-parallelism is not the only model of parallelism that exists

in programs; for some programs, alternate approaches to parallelization may

be more appropriate. We briefly discuss other approaches to parallelism, and

how they compare with amorphous data-parallelism. This is not meant to be

a comprehensive review of other approaches to parallelism, but rather to place

amorphous data-parallelism, and the Galois system in particular, in the broader

context of parallel programming models.

6.1.1 Decoupled software pipelining

Ottoni et al. proposed a method for parallelizing loops called Decoupled Soft-

ware Pipelining (DSWP) [97]. Data-parallel loops are parallelized by executing

loop iterations concurrently. DSWP takes a fundamentally different approach

to parallelizing loops, drawing an analogy with software pipelining [2]. In soft-

ware pipelining, different instructions from multiple iterations are executed in

parallel on multiple functional units. Similarly, in DSWP, different tasks from

multiple iterations are executed in parallel on multiple processors.

The basic DSWP algorithm for parallelizing loops is fairly straightforward.

A compiler examines the loop and produces a dependence graph, capturing

both the data and control dependences in the loop. Strongly connected com-

ponents (SCCs) of the dependence graph are then condensed, and the resulting

condensed graph is sorted topologically. SCCs are then assigned to different

167

processors, with communication instructions inserted to communicate the ap-

propriate dependence information between them. Thus, when executing a loop

in parallel, each processor will be responsible for a portion of instructions in

a loop, and it will execute those instructions for each iteration, forwarding the

results to the next processor in the pipeline.

If this approach were to be applied to amorphous data-parallel programs

such as those we have studied, the dependence graph of a loop would consist

of a single SCC containing all the instructions of the loop. This is because of

the dependences between iterations induced by updates to shared structures

such as the graph. In order to avoid such situations, Vachharajani et al. intro-

duced speculation into DSWP [129]. This allows some edges to be speculatively

ignored. This may allow DSWP to find parallelism in applications such as De-

launay mesh refinement.

A more significant problem with DSWP is that, like thread-level speculation,

it is fundamentally tied to the sequential loop ordering to guide its paralleliza-

tion. Thus, as with TLS, we cannot apply the improved scheduling techniques

proposed in Chapters 4 and 5. This may unnecessarily restrict the performance

of parallel execution by limiting locality and increasing the likelihood of mis-

speculation.

6.1.2 Task parallelism

Unlike in data-parallelism, where the same operations are applied to different

pieces of work, task parallelism envisions different parts of a program (“tasks”)

executing simultaneously. In some sense, task parallelism is a generalization of

data-parallelism (as each unit of work in a data-parallel program can be viewed

as a separate task), but the programming models for each tend to be significantly

168

different.

The main programming question in task parallelism is how to identify tasks

that can be executed in parallel. One approach is to use fork-join parallelism to

spawn additional threads of execution which run in parallel with the spawning

thread. A well-known implementation of this style of parallelism is Cilk [14, 38],

which provides non-blocking function calls, called spawns, that allow a thread to

invoke a method which will be run concurrently while the thread continues to

execute. These methods can then make additional non-blocking calls, produc-

ing yet more parallel computation. Each of these asynchronous methods can be

viewed as a task, thus the execution can be viewed as a tree, with spawn edges

linking tasks. To account for data dependences (for example, return values from

an asynchronously executed method that the calling thread needs to consume),

additional data dependence edges are inserted, creating a directed acyclic graph

(DAG) representing the program.

An advantage of this style of parallelism is that the DAG completely cap-

tures all the dependences that a program must respect, and available parallelism

is immediately evident; nodes in the DAG which are not connected can be exe-

cuted in parallel. This requires that parallel tasks execute in isolation from one

another. The Cilk run-time system exploits this to dynamically schedule tasks in

parallel without regard to synchronization between them. This approach breaks

down if data dependences cannot be determined ahead of time; it is no longer

apparent which tasks can be executed in parallel. Agrawal et al. extended Cilk

to allow tasks to be executed in parallel as transactions and rolled back if they

are not independent, thus dynamically enforcing isolation between concurrent

tasks [1]. This extension can be analogized with our progression from data-

parallelism (with independent parallel tasks) to amorphous data-parallelism

169

(with speculatively independent parallel tasks).

Task parallelism is most useful when a program can be readily broken down

into a DAG of interrelated tasks. This approach is not as appropriate for amor-

phous data-parallelism: if a task DAG were to ignore data dependences it would

appear as a single-level tree, providing very little useful information; if the DAG

were to include dependences, then all tasks would conservatively depend on

one another, leading to no apparent parallelism (except through speculative

techniques).

From a philosophical perspective, the greatest downside to task parallelism

is that it requires an explicit notion of parallel tasks. Programmers must con-

sider parallelism at all times when writing their applications. Cilk requires

programmers to specify which methods can be executed asynchronously, and

explicitly specify synchronization points in the program. This makes writing

Cilk programs (and task parallel programs in general) more difficult than writ-

ing sequential programs. We feel that to make parallel programming accessible

to more programmers, it must be possible to easily transition from sequential

programs to parallel programs with little programmer effort, as in Galois user

code, which maintains sequential semantics while delegating parallelism to the

Galois class libraries.

6.1.3 Stream parallelism

Another approach to parallelism is stream parallelism [48, 127], where a pro-

gram is broken up into several units, or “actors”, which operate on “streams” of

data. These actors can be connected together to form a dependence graph, with

some actors consuming the output of other actors. These actors can then be

distributed among several processors. Stream programs are relatively straight-

170

forward to parallelize. The only communication between actors is through the

data streams, as they share no other state. Thus, synchronization is straightfor-

ward. Parallelism can be obtained in many ways [43, 44]:

• Task parallelism: Independent actors can be executed simultaneously on

different processors.

• Pipelined execution: Dependent actors can operate on a stream in a

pipelined manner. Consider two actors, A and B, with B consuming the

stream output of A. If A and B are mapped to different processors, as A

produces output, it can immediately be sent to B for processing, even as A

continues to process the input stream.

• Data-parallelism: If an actor performs “stateless” data-parallelism (i.e.,

the data-parallel operations require no updates to the actor’s state), the

actor itself can be distributed among several processors to exploit the data-

parallelism.

While stream programming is an attractive approach to parallelization as

it requires very little effort to synchronize, and compilers and run-time sys-

tems can automatically produce parallel code from a sequential program, it is

a restrictive programming model. It only applies to programs such as image

and video processing which operate on data streams. The model is not general

enough to handle the highly “state-ful” loops that we see in amorphous data-

parallelism.

6.1.4 Functional and data-flow languages

All the models of parallel programming to this point are based on imperative

languages. However, non-imperative languages can often support parallelism

171

in a much more natural way. For example, functional programs lend themselves

to parallelization [50]. State is immutable, so synchronization is not a concern.

Furthermore, the purely functional style often makes parallelism naturally ex-

plicit: operations such as map and reduce are naturally data-parallel. This has

led to the development of explicitly data-parallel languages such as NESL [13],

as well as large-scale parallel architectures such as Google’s MapReduce [31].

An closely related approach is that of dataflow languages [69], which express

programs in terms of operations which are linked together based on dataflow.

Conceptually, each operation is a box with one or more inputs and one or more

outputs. Programs are created by linking together the inputs and outputs of

these boxes. When the inputs to the operation are available, the box can “fire,”

producing its output, which in turn makes inputs available to other operations.

Much like functional programs, dataflow programs make explicit the available

parallelism (as any operations with available input can be fired, regardless of

where in the program they appear). However, both dataflow languages as well

as functional languages suffer because of the lack of mutable shared state; this

makes them unsuitable for programs exhibiting amorphous data-parallelism,

which focus on updates to shared data structures.

6.2 Summary of contributions

Through a series of application studies, we identified a common paradigm of

parallelism that appears in irregular programs, amorphous data-parallelism. This

type of parallelism manifests itself as algorithms over worklist of various kinds.

Unlike in traditional data-parallelism, we allow iterations of the parallel loop

to have dependences between one another. This broader definition of data-

parallelism appears in numerous applications, and exposes a large class of al-

172

gorithms to potential parallelization.

As a result of these studies, we developed the Galois approach for paral-

lelizing algorithms that exhibit amorphous data-parallelism. This approach

imagines parallel programs as being composed of three parts: (i) user code

with largely sequential semantics, with set iterators to express amorphous data-

parallelism; (ii) class libraries annotated with semantic information such as

commutativity and locality properties; and (iii) a run-time system which spec-

ulatively executes the user code in parallel while leveraging the semantics of

the class libraries to perform accurate dependence detection and intelligent

scheduling of parallel work.

Recall that in Chapter 1, we laid out three features that a system for par-

allelizing irregular applications should possess: a reasonable sequential pro-

gramming model, a dynamic approach to parallelization, and a higher level of

abstraction. The design of the Galois system exhibits each of these qualities:

Intuitive programming model: The user code of the Galois system is purely

sequential in nature, as discussed in Section 3.2.1. Programmers do not have

to deal with locks, threads or any notion of parallelism when writing Galois

programs. The only additional features of the Galois programming model are

the ordered and unordered set iterators. Each of these iterators have well under-

stood sequential semantics and as such programmers do not need to understand

how their code may execute in parallel. The Galois class libraries and run-time

ensure that the user code precisely matches its sequential semantics when run

in parallel. This feature makes it straightforward to develop code for the Galois

system: once it works sequentially, it will work in parallel.

Each of the extensions that we presented to the baseline Galois system (par-

titioning in Chapter 4 and scheduling in Chapter 5) do little to reduce the ease

173

of writing Galois programs. Partitioning requires only changes to the Galois

class libraries; the object oriented nature of the Galois approach means that user

code needs to change very little to leverage any locality semantics that objects

might possess. Scheduling changes can be made purely in the run-time; com-

plex scheduling decisions can be hidden from the programmer can can be spec-

ified by a single line in the user code.

This work presented the first easy-to-use, flexible programming model for writing

programs with amorphous data-parallelism.

Optimistic parallelization: The Galois run-time performs optimistic paral-

lelization of programs containing Galois iterators. By speculatively executing

code in parallel, the Galois approach can successfully parallelize programs ex-

hibiting amorphous data-parallelism that are not amenable to parallelization by

other techniques.

The Galois approach provides two significant benefits over existing dynamic

approaches. First, the programmer determines where parallelization may be

profitable, as indicated by the optimistic iterators; this prevents the Galois run-

time from overspeculating, which would otherwise lead to a waste of hardware

resources. Second, the usercode provides crucial semantic information regard-

ing ordering constraints to the run-time, allowing the run-time to make intelli-

gent scheduling decisions which can have a significant impact on performance,

as we saw in Chapter 5.

We developed the first optimistic parallelization system that can exploit key semantic

properties of algorithms and data structures to obtain significant parallel performance.

Exploiting abstractions: The fundamental approach in all aspects of the de-

sign of the Galois system has been to raise the level of abstraction that program-

174

mers use when writing parallel programs. As we have already discussed, the

user code makes use of two abstractions to express amorphous data-parallelism,

which naturally capture the potential parallelism inherent in a program as well

as provide key semantic information to the run-time.

The Galois system also provides a higher-level shared memory abstraction.

Rather than focusing on individual reads and writes, as in most parallelization

schemes, Galois focuses on shared objects and the methods that manipulate them.

By expressing all accesses to shared memory in terms of method invocations on

objects, we are able to leverage the semantics of shared objects in several ways:

semantic commutativity allows us to precisely capture when concurrently ex-

ecuting iterations are in fact dependent; semantic information about object ef-

fects allow us to provide semantic rollback; partitioning information allows us

to capture semantic locality and use it to perform locality-enhancing scheduling

as well as reduced-overhead conflict detection.

We have shown how programmers can easily capture many key semantic properties

of their algorithms and data structures, and clearly demonstrated the utility of these

abstractions in successfully exploiting parallelism in irregular programs.

6.3 Future work

While this thesis presents a viable foundation for a study of parallelism in ir-

regular programs, the Galois system as presented is only a first step to fully

exploiting the parallelism in irregular programs. There are several promising

avenues for future work.

Compiler analysis: To this point, we have only considered run-time ap-

proaches to parallelizing irregular applications; we use no compiler analyses.

175

However, there are several interesting areas where compiler analysis can be use-

ful. For example, analysis can be useful in determining which objects are truly

shared in a system; the run-time system does not need to track objects that are

only accessed by one iteration at a time, reducing overheads.

Compiler analysis can also be useful in determining a “point of no return”

for iterations. For example, in Delaunay mesh refinement, once the extent of

a cavity has been determined, it is no longer necessary for an iteration to roll

back; this is the point of no return. At this point, no conflict checks need to be

performed, as there is no way for an iteration to come into conflict with another.

This can further reduce overheads.

Verification: The Galois system makes use of a multitude of object semantics

when making parallelization and scheduling decisions. In the current imple-

mentation, we assume that the semantics as specified by the programmer are

correct. However, it may be possible to bring to bear formal verification tools to

ensure that, for example, the commutativity conditions specified by a program-

mer do indeed match the semantics of an object.

Scalability: We have only studied the performance of the Galois system on

small scale multicore systems. The performance of this particular implementa-

tion, and indeed of the approach in general, is still untested on larger scale sys-

tems. Simple commutativity checks may not be feasible on large-scale systems,

as they require centralized data structures. By performing studies on larger sys-

tems, we can also investigate performance optimizations such as architecture-

aware abstract domain mapping (as discussed in Section 4.2.2).

176

Expanding the scope of parallel execution: To this point, we have only in-

vestigated programs with single iterators. It may be beneficial to extend the

Galois system to exploit the parallelism in nested iterators (as discussed in Sec-

tion 3.2.4), or “pipelined” iterators, where one loop produces work that is con-

sumed by a second loop. Expanding the scope of parallelism in this manner

opens up interesting areas of study for scheduling and locality.

An pessimist sees the difficulty in every opportunity;

An optimist sees the opportunity in every difficulty.

— Sir Winston Churchill

177

BIBLIOGRAPHY

[1] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism in
transactional memory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pages 163–174,
New York, NY, USA, 2008. ACM.

[2] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Soft-
ware pipelining. ACM Comput. Surv., 27(3):367–432, 1995.

[3] Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data
types. Lecture Notes in Computer Science, 1241:32–59, 1997.

[4] Gene M. Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In AFIPS Conference Proceedings,
volume 30, pages 483–485, 1967.

[5] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leis-
erson, and Sean Lie. Unbounded transactional memory. In HPCA ’05:
Proceedings of the 11th International Symposium on High-Performance Com-
puter Architecture, 2005.

[6] Lars Ole Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[7] Richard J. Anderson and João C. Setubal. On the parallel implementation
of goldberg’s maximum flow algorithm. In SPAA ’92: Proceedings of the
fourth annual ACM symposium on Parallel algorithms and architectures, pages
168–177, New York, NY, USA, 1992. ACM Press.

[8] Christos D. Antonopoulos, Xiaoning Ding, Andrey Chernikov, Filip
Blagojevic, Dimitrios S. Nikolopoulos, and Nikos Chrisochoides. Multi-
grain parallel delaunay mesh generation: challenges and opportunities
for multithreaded architectures. In ICS ’05: Proceedings of the 19th annual
international conference on Supercomputing, 2005.

[9] Tongxin Bai, Xipeng Shen, Chengliang Zhang, William N. Scherer III,
Chen Ding, and Michael L. Scott. A key-based adaptive transactional
memory executor. In Proceedings of the NSF Next Generation Software Pro-
gram Workshop. Mar 2007. Invited paper. Also available as TR 909, Depart-
ment of Computer Science, University of Rochester, December 2006.

178

[10] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoor-
thy, J. Ramanujam, Atanas Rountev, and P. Sadayappan. Automatic data
movement and computation mapping for multi-level parallel architec-
tures with explicitly managed memories. In PPoPP ’08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel pro-
gramming, pages 1–10, New York, NY, USA, 2008. ACM.

[11] J.L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[12] A. Bernstein. Analysis of programs for parallel processing. IEEE Transac-
tions on Electronic Computers, 1966.

[13] Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and
Siddhartha Chatterjee. Implementation of a portable nested data-parallel
language. J. Parallel Distrib. Comput., 21(1):4–14, 1994.

[14] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multi-
threaded runtime system. In Proceedings of the Fifth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP), pages 207–
216, Santa Barbara, California, July 1995.

[15] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: preventing data races and deadlocks. In
OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 211–230,
New York, NY, USA, 2002. ACM.

[16] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership
types for object encapsulation. SIGPLAN Not., 38(1):213–223, 2003.

[17] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. Interna-
tional Journal of Computer Vision (IJCV), 70(2):109–131, 2006.

[18] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable
programming interface for performance evaluation on modern proces-
sors. The International Journal of High Performance Computing Applications,
14(3):189–204, Fall 2000.

[19] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung,
Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun. The ATOMOS

179

transactional programming language. In PLDI ’06: Proceedings of the Con-
ference on Programming Language Design and Implementation, 2006.

[20] Brian D. Carlstrom, Austen McDonald, Christos Kozyrakis, and Kunle
Olukotun. Transactional collection classes. In Principles and Practices of
Parallel Programming (PPoPP), 2007.

[21] C.C.Foster and E.M.Riseman. Percolation of code to enhance parallel dis-
patching and execution. IEEE Transactions on Computers, 21(12):1411–1415,
1972.

[22] Bradford L. Chamberlain, Sung-Eun Choi, E. Christopher Lewis, Calvin
Lin, Lawrence Snyder, and Derrick Weathersby. ZPL: A machine indepen-
dent programming language for parallel computers. Software Engineering,
26(3):197–211, 2000.

[23] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of
pointers and structures. In PLDI ’90: Proceedings of the ACM SIGPLAN
1990 conference on Programming language design and implementation, pages
296–310, New York, NY, USA, 1990. ACM.

[24] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios Liaskovitis,
Anastassia Ailamaki, Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos
Hardavellas, Todd C. Mowry, and Chris Wilkerson. Scheduling threads
for constructive cache sharing on cmps. In SPAA ’07: Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms and architectures,
pages 105–115, New York, NY, USA, 2007. ACM Press.

[25] L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces.
In SCG ’93: Proceedings of the ninth annual symposium on Computational ge-
ometry, 1993.

[26] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side effects.
In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 232–245, New York, NY, USA,
1993. ACM.

[27] Marcelo Cintra, José F. Martı́nez, and Josep Torrellas. Architectural sup-
port for scalable speculative parallelization in shared-memory multipro-
cessors. In International Symposium on Computer Architecture (ISCA), pages
13–24, Vancouver, Canada, June 2000.

180

[28] David G. Clarke, John M. Potter, and James Noble. Ownership types for
flexible alias protection. SIGPLAN Not., 33(10):48–64, 1998.

[29] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein,
editors. Introduction to Algorithms. MIT Press, 2001.

[30] Manuvir Das. Unification-based pointer analysis with directional assign-
ments. SIGPLAN Not., 35(5):35–46, 2000.

[31] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. In OSDI’04: Proceedings of the 6th conference on Sympo-
sium on Opearting Systems Design & Implementation, pages 10–10, Berkeley,
CA, USA, 2004. USENIX Association.

[32] Alain Deutsch. Interprocedural may-alias analysis for pointers: beyond
k-limiting. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference
on Programming language design and implementation, pages 230–241, New
York, NY, USA, 1994. ACM.

[33] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers. In
PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on Programming
language design and implementation, pages 242–256, New York, NY, USA,
1994. ACM.

[34] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger. The
notions of consistency and predicate locks in a database system. Commu-
nications of the ACM, 19(11):624–633, Nov 1976.

[35] Paul Feautrier. Dataflow analysis of array and scalar references. Interna-
tional Journal of Parallel Programming, 20(1):23–53, 1991.

[36] Joseph A. Fisher. Very long instruction word architectures and the eli-512.
In ISCA ’98: 25 years of the international symposia on Computer architecture
(selected papers), 1998.

[37] Java Collections Framework. http://java.sun.com/j2se/1.5.0/docs/guide/collections/
index.html.

[38] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implemen-
tation of the Cilk-5 multithreaded language. In Proceedings of the ACM

181

SIGPLAN ’98 Conference on Programming Language Design and Implementa-
tion, pages 212–223, Montreal, Quebec, Canada, June 1998. Proceedings
published ACM SIGPLAN Notices, Vol. 33, No. 5, May, 1998.

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[40] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph?
a shape analysis for heap-directed pointers in c. In POPL ’96: Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 1–15, New York, NY, USA, 1996. ACM.

[41] Rakesh Ghiya, Laurie J. Hendren, and Yingchun Zhu. Detecting paral-
lelism in c programs with recursive data structures. In Computational Com-
plexity, pages 159–173, 1998.

[42] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the
maximum-flow problem. J. ACM, 35(4):921–940, 1988.

[43] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream programs.
In ASPLOS-XII: Proceedings of the 12th international conference on Architec-
tural support for programming languages and operating systems, pages 151–
162, New York, NY, USA, 2006. ACM Press.

[44] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin,
Ali S. Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoff-
mann, David Maze, and Saman Amarasinghe. A stream compiler for
communication-exposed architectures. In ASPLOS-X: Proceedings of the
10th international conference on Architectural support for programming lan-
guages and operating systems, pages 291–303, New York, NY, USA, 2002.
ACM.

[45] Jim Gray. The transaction concept: virtues and limitations (invited paper).
In VLDB ’1981: Proceedings of the seventh international conference on Very
Large Data Bases, pages 144–154. VLDB Endowment, 1981.

[46] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects
with confined types. In OOPSLA ’01: Proceedings of the 16th ACM SIG-
PLAN conference on Object oriented programming, systems, languages, and ap-
plications, pages 241–255, New York, NY, USA, 2001. ACM.

182

[47] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized
incremental construction of delaunay and voronoi diagrams. Algorithmica,
7(1):381–413, December 1992.

[48] Jayanth Gummaraju, Joel Coburn, Yoshio Turner, and Mendel Rosen-
blum. Streamware: programming general-purpose multicore processors
using streams. SIGOPS Oper. Syst. Rev. (ASPLOS 2008), 42(2):297–307,
2008.

[49] B. Hackett and R. Rugina. Region-based shape analysis with tracked lo-
cations. In Proceedings of the 32th Annual ACM Symposium on the Principles
of Programming Languages, Long Beach, CA, January 2005.

[50] Kevin Hammond and Greg Michelson, editors. Research Directions in Par-
allel Functional Programming. Springer-Verlag, London, UK, 2000.

[51] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation
support for a chip multiprocessor. SIGOPS Oper. Syst. Rev., 32(5):58–69,
1998.

[52] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.
Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Kunle Olukotun. Transactional memory coherence and
consistency. isca, 00:102, 2004.

[53] Tim Harris and Keir Fraser. Language support for lightweight transac-
tions. In OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN con-
ference on Object-oriented programing, systems, languages, and applications,
pages 388–402, New York, NY, USA, 2003. ACM Press.

[54] L. Hendren and A. Nicolau. Parallelizing programs with recursive data
structures. IEEE Transactions on Parallel and Distributed Systems, 1(1):35–47,
January 1990.

[55] Laurie J. Hendren, Joseph Hummell, and Alexandru Nicolau. Abstrac-
tions for recursive pointer data structures: improving the analysis and
transformation of imperative programs. In PLDI ’92: Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and imple-
mentation, pages 249–260, New York, NY, USA, 1992. ACM.

[56] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2003.

183

[57] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodol-
ogy for highly-concurrent transactional objects. In PPoPP ’08: Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, pages 207–216, New York, NY, USA, 2008. ACM.

[58] Maurice Herlihy, Victor Luchangco, Mark Moir, and III William
N. Scherer. Software transactional memory for dynamic-sized data struc-
tures. In PODC ’03: Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 92–101, New York, NY, USA, 2003.
ACM Press.

[59] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architec-
tural support for lock-free data structures. In ISCA ’93: Proceedings of the
20th annual international symposium on Computer architecture, pages 289–
300, New York, NY, USA, 1993. ACM Press.

[60] Maurice P. Herlihy and William E. Weihl. Hybrid concurrency control for
abstract data types. In PODS ’88: Proceedings of the seventh ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages 201–
210, New York, NY, USA, 1988. ACM Press.

[61] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 12(3):463–492, 1990.

[62] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun.
ACM, 29(12):1170–1183, 1986.

[63] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interpro-
cedural pointer alias analysis. ACM Trans. Program. Lang. Syst., 21(4):848–
894, 1999.

[64] John Hogg. Islands: aliasing protection in object-oriented languages. SIG-
PLAN Not., 26(11):271–285, 1991.

[65] S. Horwitz, P. Pfieffer, and T. Reps. Dependence analysis for pointer vari-
ables. In Proceedings of the SIGPLAN ’89 Conference on Program Language
Design and Implementation, Portland, OR, June 1989.

[66] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse parallel de-
launay mesh refinement. In SPAA ’07: Proceedings of the nineteenth an-
nual ACM symposium on Parallel algorithms and architectures, pages 339–347,
New York, NY, USA, 2007. ACM Press.

184

[67] Intel Corporation. Intel thread building blocks 2.0.
http://osstbb.intel.com.

[68] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–
425, 1985.

[69] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in
dataflow programming languages. ACM Comput. Surv., 36(1):1–34, 2004.

[70] Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization
of lisp-like structures. In POPL ’79: Proceedings of the 6th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 244–
256, New York, NY, USA, 1979. ACM.

[71] J.T.Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming
with sets: An introduction to SETL. Springer-Verlag Publishers, 1986.

[72] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for ir-
regular graphs. Journal of Parallel and Distributed Computing, 48(1):96–129,
1998.

[73] Ken Kennedy and John Allen, editors. Optimizing compilers for modren
architectures:a dependence-based approach. Morgan Kaufmann, 2001.

[74] B. W. Kernighan and S. Lin. An effective heuristic procedure for parti-
tioning graphs. The Bell System Technical Journal, pages 291–308, February
1970.

[75] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Jr. Guy
L. Steele, and Mary E. Zosel. The high performance Fortran handbook. MIT
Press, Cambridge, MA, USA, 1994.

[76] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor architecture
with speculative multithreading. IEEE Trans. Comput., 48(9):866–880, 1999.

[77] Milind Kulkarni, Patrick Carribault, Keshav Pingali, Ganesh Rama-
narayanan, Bruce Walter, Kavita Bala, and L. Paul Chew. Scheduling
strategies for optimistic parallel execution of irregular programs. In Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), 2008.

[78] Milind Kulkarni, L. Paul Chew, and Keshav Pingali. Using transactions

185

in delaunay mesh generation. In Workshops on Transactional Memory Work-
loads, 2006.

[79] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan, Bruce Wal-
ter, Kavita Bala, and L. Paul Chew. Optimistic parallelism benefits from
data partitioning. SIGARCH Comput. Archit. News (Proceedings of ASPLOS
2008), 36(1):233–243, 2008.

[80] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan,
Kavita Bala, and L. Paul Chew. Optimistic parallelism requires abstrac-
tions. SIGPLAN Not. (Proceedings of PLDI 2007), 42(6):211–222, 2007.

[81] William Landi and Barbara G. Ryder. A safe approximate algorithm for
interprocedural aliasing. SIGPLAN Not., 27(7):235–248, 1992.

[82] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure ac-
cesses. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation, pages 24–31, New York,
NY, USA, 1988. ACM Press.

[83] Kin-Keung Ma and Jeffrey S. Foster. Inferring aliasing and encapsulation
properties for java. SIGPLAN Not., 42(10):423–440, 2007.

[84] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul
Acharaya, David Eisenstat, William N. Scherer, III, and Michael L. Scott.
Lowering the overhead of software transactional memory. Technical re-
port, Computer Science Department, University of Rochester, 2006.

[85] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[86] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and
David A. Wood. Logtm: Log-based transactional memory. In HPCA ’06:
Proceedings of the 12th International Symposium on High Performance Com-
puter Architecture, 2006.

[87] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D.
Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting nested
transactional memory in logtm. SIGPLAN Not., 41(11):359–370, 2006.

[88] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,

186

and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conference, pages 530–535, 2001.

[89] J. Eliot B. Moss. Open nested transactions: Semantics and support. In 4th
Workshop on Memory Performance Issues (WMPI), 2006.

[90] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory:
Model and preliminary architectural sketches. In SCOOL ’05: Sychroniza-
tion and Concurrency in Object-Oriented Languages, 2005.

[91] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race
detection. In POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 327–338,
New York, NY, USA, 2007. ACM.

[92] J.B.C Neto, P.A. Wawrzynek, M.T.M. Carvalho, L.F. Martha, and A.R. In-
graffea. An algorithm for three-dimensional mesh generation for arbitrary
regions with cracks. Engineering with Computers, 17:75–91, 2001.

[93] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Rick
Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nest-
ing in software transactional memory. In Principles and Practices of Parallel
Programming (PPoPP), 2007.

[94] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In EC-
COP ’98: Proceedings of the 12th European Conference on Object-Oriented Pro-
gramming, pages 158–185, London, UK, 1998. Springer-Verlag.

[95] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang. The case for a single-chip multiprocessor. In ASPLOS-
VII: Proceedings of the seventh international conference on Architectural support
for programming languages and operating systems, pages 2–11, New York,
NY, USA, 1996. ACM.

[96] OpenMP. http://www.openmp.org.

[97] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Au-
tomatic thread extraction with decoupled software pipelining. In MICRO
38: Proceedings of the 38th annual IEEE/ACM International Symposium on
Microarchitecture, pages 105–118, Washington, DC, USA, 2005. IEEE Com-
puter Society.

187

[98] James Philbin, Jan Edler, Otto J. Anshus, Craig C. Douglas, and Kai Li.
Thread scheduling for cache locality. In Architectural Support for Program-
ming Languages and Operating Systems, pages 60–71, 1996.

[99] Fred J. Pollack. New microarchitecture challenges in the coming gener-
ations of cmos process technologies (keynote address)(abstract only). In
MICRO 32: Proceedings of the 32nd annual ACM/IEEE international sympo-
sium on Microarchitecture, page 2, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[100] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practi-
cal scheduling scheme for parallel supercomputers. IEEE Trans. Comput.,
36(12):1425–1439, 1987.

[101] C. D. Polychronopoulos, D. J. Kuck, and D.A. Padua. Execution of par-
allel loops on parallel processor systems. In Proc. 1986 Int. Conf. Parallel
Processing, 1986.

[102] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime compilation tech-
niques for data partitioning and communication schedule reuse. In Super-
computing ’93: Proceedings of the 1993 ACM/IEEE conference on Supercom-
puting, 1993.

[103] William Pugh. A practical algorithm for exact array dependence analysis.
Commun. ACM, 35(8):102–114, 1992.

[104] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional
memory. SIGARCH Comput. Archit. News, 33(2):494–505, 2005.

[105] Hany E. Ramadan, Donald E. Porter Christopher J. Rossbach, Owen S.
Hofmann, Aditya Bhandari, and Emmett Witchel. Transactional memory
designs for an operating system. In International Symposium on Computer
Architecture (ISCA), 2007.

[106] L. Rauchwerger, Y. Zhan, and J. Torrellas. Hardware for speculative
run-time parallelization in distributed shared-memory multiprocessors.
In HPCA ’98: Proceedings of the 4th International Symposium on High-
Performance Computer Architecture, 1998.

[107] Lawrence Rauchwerger and David A. Padua. Parallelizing while loops
for multiprocessor systems. In IPPS ’95: Proceedings of the 9th International
Symposium on Parallel Processing, 1995.

188

[108] Lawrence Rauchwerger and David A. Padua. The LRPD test: Speculative
run-time parallelization of loops with privatization and reduction paral-
lelization. IEEE Trans. Parallel Distrib. Syst., 10(2):160–180, 1999.

[109] Martin C. Rinard and Pedro C. Diniz. Commutativity analysis: A new
analysis framework for parallelizing compilers. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 54–67, 1996.

[110] A. Rogers and K. Pingali. Process decomposition through locality of ref-
erence. In PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on
Programming language design and implementation, pages 69–80, New York,
NY, USA, 1989. ACM.

[111] R. Ronen, A. Mendelson, K. Lai, S-L. Lu, F. Pollack, and J. P. Shen. Coming
challenges in microarchitecture and architecture. Proc. IEEE, 89(3):325–
340, March 2001.

[112] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems, 24(3), May
2002.

[113] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh,
and Benjamin Hertzberg. McRT-STM: a high performance software trans-
actional memory system for a multi-core runtime. In PPoPP ’06: Pro-
ceedings of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 187–197, New York, NY, USA, 2006. ACM
Press.

[114] William N. Scherer, III and Michael Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings of the
Fifteenth ACM Symposium on Principles of Distributed Computing, 1996.

[115] William N. Scherer, III and Michael L. Scott. Advanced contention man-
agement for dynamic software transactional memory. In PODC ’05: Pro-
ceedings of the twenty-fourth annual ACM symposium on Principles of dis-
tributed computing, pages 240–248, New York, NY, USA, 2005. ACM.

[116] Michael Scott, Michael F. Spear, Luke Dalessandro, and Virendra J.
Marathe. Delaunay triangulation with transactions and barriers. In IEEE
Intl. Symp. on Workload Characterization (IISWC), Boston, MA, September
2007.

189

[117] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 440–446, 1992.

[118] Nir Shavit and Dan Touitou. Software transactional memory. In PODC
’95: Proceedings of the fourteenth annual ACM symposium on Principles of dis-
tributed computing, pages 204–213, New York, NY, USA, 1995. ACM Press.

[119] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Applied Computational Geometry:
Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer
Science, pages 203–222. Springer-Verlag, 1996.

[120] A. Sohn and H. D. Simon. S-HARP: A parallel dynamic spectral parti-
tioner. Lecture Notes in Computer Science, 1457:376–??, 1998.

[121] Standard Template Library. http://www.sgi.com/tech/stl/.

[122] Guy L. Steele Jr. Making asynchronous parallelism safe for the world. In
Proceedings of the 17th symposium on Principles of Programming Languages,
pages 218–231, 1990.

[123] Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL ’96:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 32–41, New York, NY, USA, 1996. ACM.

[124] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C.
Mowry. A scalable approach to thread-level speculation. In ISCA ’00: Pro-
ceedings of the 27th annual international symposium on Computer architecture,
2000.

[125] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, editors. Introduction
to Data Mining. Pearson Addison Wesley, 2005.

[126] Xinan Tang, R. Ghiya, L. J. Hendren, and G. R. Gao. Heap analysis and
optimizations for threaded programs. In PACT ’97: Proceedings of the 1997
International Conference on Parallel Architectures and Compilation Techniques,
page 14, Washington, DC, USA, 1997. IEEE Computer Society.

[127] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit:
A language for streaming applications. In CC ’02: Proceedings of the 11th

190

International Conference on Compiler Construction, pages 179–196, London,
UK, 2002. Springer-Verlag.

[128] Robert Tomasulo. An algorithm for exploiting multiple arithmetic units.
IBM Journal, 11(1):25–33, 1967.

[129] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges,
Guilherme Ottoni, and David I. August. Speculative decoupled software
pipelining. In PACT ’07: Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques (PACT 2007), pages 49–59,
Washington, DC, USA, 2007. IEEE Computer Society.

[130] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, 1990.

[131] T. N. Vijaykumar, Sridhar Gopal, James E. Smith, and Gurindar
Sohi. Speculative versioning cache. IEEE Trans. Parallel Distrib. Syst.,
12(12):1305–1317, 2001.

[132] Christoph von Praun, Luis Ceze, and Calin Cascaval. Implicit parallelism
with ordered transactions. In Principles and Practices of Parallel Program-
ming (PPoPP), 2007.

[133] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael
Donikian, and Donald Greenberg. Lightcuts: a scalable approach to il-
lumination. ACM Transactions on Graphics (SIGGRAPH), 24(3):1098–1107,
July 2005.

[134] W.E. Weihl. Commutativity-based concurrency control for abstract data
types. IEEE Transactions on Computers, 37(12), 1988.

[135] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer
analysis for c programs. SIGPLAN Not., 30(6):1–12, 1995.

[136] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1978.

[137] Peng Wu and David A. Padua. Beyond arrays - a container-centric ap-
proach for parallelization of real-world symbolic applications. In LCPC
’98: Proceedings of the 11th International Workshop on Languages and Compil-
ers for Parallel Computing, 1999.

191

