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Abstract—In “Big Data” research, the data acquired
from many sources are fused and analyzed to obtain valu-
able and sometimes unexpected information. Even though
the volumes of data are unprecedented, the data are
usually stored for post-experiment analysis and for sharing
among scientists. Typical scenarios implicitly assume that
the data are stored and can be re-analyzed later. The real-
ity is, unfortunately, not so ideal because the data may be
“non-persistent” and allow only one-time use. We propose
to reformulate how big data programs are developed, and
introduce the notion of data-carrying programs that are,
in a sense, self-validating. By writing these programs in a
specially-defined language, and transforming them to store
sample data, programs can save enough data to provide
high-confidence validation of their results.
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I. NON-PERSISTENT DATA (NPD)

A spy movie usually starts with a high-tech gadget
giving an agent a secret mission. The gadget self-
destructs after one-time use, leaving no evidence con-
necting the mission to any high-level government offi-
cial. While this movie plot may seem far-fetched, one-
time use data are already around us.

Big data is one of the hottest topics in recent years.
The data acquired from many sources are fused and
analyzed to obtain valuable and sometimes unexpected
information, from customer preference to healthcare,
from physics to biology. Plenty of stories are avail-
able about the rapidly growing data: petabytes of data
are generated from experiments in physics, biology,
medicine, etc. Even though the volumes of data are
unprecedented, the data are usually stored for post-
experiment analysis and for sharing among scientists.
Typical scenarios in big data analytics implicitly assume
that the data are stored and can be re-analyzed later if
desired. Cloud computing, with the seemingly unlimited
computing and storage resources, is considered the so-
lution for many problems related to big data. The reality
is, unfortunately, not so ideal because the data may be
“non-persistent” (i.e., transient) for various reasons. An-
alyzing non-persistent data (NPD) requires rethinking

about how analysis programs are written. Why would
data be non-persistent? What are the examples of non-
persistent data?

e The data volumes are too high and the data
archives have no obvious value. Many countries
deploy traffic cameras to visually monitor con-
gestion. The information is valuable for trav-
ellers when they are on the roads but the values
from obsolete data are unclear. Most travellers
would like to know whether the roads they are
about to travel are congested. Few travellers
would be interested knowing whether the same
roads were congested one week earlier. As a
result, the data from traffic cameras are usually
not archived.

e  Anotherreason is the cost. Storing large amount
of data would require significant amounts of re-
sources. For surveillance cameras, the common
practice is to store the data for a short duration
(say two weeks). If no event (such as a crime)
is reported, the archived data are erased and the
storage capacity is reused.

e Yet another reason of non-persistent data is
that analyzing large amounts data is computa-
tionally intense. Even if the data are archived,
the high computation demand makes analyzing
the entire archive, or a significant portion, pro-
hibitively expensive (in terms of time as well
as money). For pay-per-use cloud computing,
the cost to rerun analysis programs can be a
significant limit. Thus, the data are practically
non-persistent. To put this in another way, non-
persistent data can be processed only once and
then they are lost forever because reprocessing
the data is infeasible or uneconomic.

e Internet of Things (IoT) may collect and pro-
cess large amounts of data. These things do
not have enough storage space to archive all
the data. Transmitting data require resources:
energy, radio spectrum, etc. Thus, these things
may never transmit all the sensed data.



e Re-analyzing the data may take too long and
decisions must be made quickly. Imagine that
the data from sensors suggest imminent natu-
ral disasters (such as earthquakes or volcanic
eruptions). Government officials must decide
whether to evacuate residents. Even though the
data are archived and re-analysis is feasible, the
decisions must be made before re-analysis can
complete.

e Even if all the data are save and there is plenty
of time analyzing the data, the data may still be
“lost” because the data or the analysis programs
cannot be easily located.

Due to the reasons mentioned above, many sources
of data can be considered as non-persistent. The ques-
tion is whether it would be possible to analyze non-
persistent data and find valuable information with some
degrees of confidence.

NPD may be streaming data (generated continu-
ously) or archived data. If the streaming data are not
saved, analysis must occur while the data are produced.
For archived data, since the data can be processed
only once, the data are equivalent to a stream. Existing
programming languages’ internal data represent pro-
grams’ states and are inappropriate for processing non-
persistent data. Let us consider the common approach
for analyzing data. A team of researchers develops a
program and tests the program on a small sample of
the data. When they are confident that the program
“works”, the program is used to analyze the much
larger volume and possibly non-persistent data. This
is not a satisfactory solution for “big data” because
the potential of big data analytics is the possibility of
discovering something unexpected, something unavail-
able on a smaller set of sample data. If all the relevant
information were already in the smaller dataset, it would
no longer be necessary analyzing the larger dataset. If
the information is absent in the smaller dataset, how
could anyone write a program and confidently claim that
the program could find anything new in the larger set
of data? We believe that the problem lies in the current
design of programming languages. Existing languages
are not designed to deal with non-persistent data. In
other words, new programming languages are needed.

II. EXISTING WORK

Two well-known large-scale data processing lan-
guages are MapReduce [8] and Dryad [10]. Both allow
programmers to develop analysis pipelines consisting
of multiple stages, each of which applies a different
type of processing to data. Both require programmers
to write operations for each stage using low-level lan-
guages such as Java. To ease the challenge of writing
programs in systems like MapReduce and Dryad, higher

level languages are introduced to allow applications
to express using SQL-like constructs compiled down
into MapReduce or Dryad pipelines. Examples of such
languages include Pig Latin [12], DryadLINQ [15],
Sawzall [13] and GLADE [6]. Most of them focus on
batch processing programs, where all of the data is
available at the beginning of computation. This makes
them ill-suited for online analysis problems, where data
sources produce streams of data.

Languages like Hadoop-online [7], SPC [4] and
Apache Storm [1] used MapReduce-like strategies to
tackle streaming data. While streaming data has some
similarity to NPD (in both cases, the data is not stored),
we note that in general none of these languages tackles
the specific problems of NPD: how can one gain any
confidence that the results of a program are valid?

There has been substantial interest in using sampling
techniques to more efficiently perform computations. In
the databases community, Aqua [2], STRAT [5], and
BlinkDB [3] support approximate queries, where an
SQL-like query can be answered approximately, with
some confidence. These languages target a restricted
class of problems (database queries), and are not suited
for more complex data analysis tasks. Moreover, they
often rely on preprocessing a large, existing database;
they are not designed to handle NPD or provide support
for streaming or validation. SciBORQ [14] and Olston et
al. [11] describe support for sample-based data analysis,
while ApproxHadoop [9] is a system for performing
approximate map-reduce queries. These schemes do not
provide support for NPD, nor do they support operations
on streaming data.

III. PROGRAMMING LANGUAGES FOR PROCESSING
NON-PERSISTENT DATA

A. External Data, Internal Data, and Sampled Data

Before explaining the reason and a conceptual solu-
tion, let us examine the current design of programming
languages. The relationships between processing and
data have always been the center of programming lan-
guages. For procedural languages, the relationships are
usually implicit: programs have functions that process
the data. The code is usually stateless responding to the
contents of the data from the inputs. The relationship
between processing and data is implicitly enforced by
the data types. Object-oriented languages intemalize
some data, called objects’ attributes, so that the behavior
of the code depends on the attributes’ values. Even
though in most cases the attributes’ values are directly
affected by the data to be processed, the attributes are
not the data to be processed. Instead, the attributes
are essentially the programs’ states. The attributes may
not directly represent the data. We call the attributes
this program’s internal data. Figure 1 illustrates how



today’s programs are written: the data are external to
the programs.

Input

Program

Fig. 1. A typical object-oriented program reads external data from
an Input interfaces, processes the data, and stores the information as
internal data in the form of attributes.

To explain this further, consider a program whose
sole purpose is to determine the content in an input
device that contains infinite numbers of = or y. This
program can read one letter at a time and reports the
occurrences of x and y. A simple program would have
the following structure:

initialize xcount to zero;
initialize ycount to zero;
while True do
read oneletter from Input;
if oneletter is x then
| increment xcount;
else
| increment ycount;
end
end

This program has two counters to store the numbers
of occurrences of x and y so far. For simplicity, we do
not consider overflow of the counters. The counters are
the program’s internal data. The letter from Input is the
external data. The program’s internal data (oneletter and
the two counters) are directly affected by the data to be
processed (reading from Input) but there is no guarantee
that the counters are updated correctly. In particular,
oneletter is reused and the previously read letter (the
external data) is lost in the next iteration.

If the line between else and end increments xcount
(should be ycount), the program is wrong. The question
is how to discover this mistake. The common approach
is to test this program using a finite set of input that
contains known numbers of = and y. If the program’s
output is unexpected, the program is inspected carefully
with the hope to identify the mistake. The difficulty is
that the test input must contain x and y (and noth-
ing else). The program is incorrect if the real, non-
persistent, data contains x, y, and z. The program will
increment ycount when the input is z. Obviously, this
is an oversimplified example. A real program would
be much more complex and finding the mistake would
not be so easy. When processing non-persistent data
for discovering unexpected information, unfortunately,
there may be no luxury of using smaller sets of data for
testing.

For non-persistent data, one approach to validating
programs’ correctness is to rely on samples created
while processing the data. What does this mean? It
means that the same program should create the sample
data while processing the data. In addition to main-
taining the program’s states, the program needs to
store the samples. Consider the following conceptual
design. Instead of discarding the non-persistent external
data, this program takes samples while processing the
data. To validate this program’s correctness, it uses the
same procedure to process the sampled data and the
complete data. Since the input data can be infinitely
long, the sample data will also grow indefinitely. Thus,
the program must discard the sample data from time to
time. The following code snippet describes this concept.
The gray-background code is generated by the compiler.
Please notice that the if - else - end section in the gray-
background has the identical structure to the original
program, except the internal variables (xsamplecount
and ysamplecount) are different.

initialize xcount to zero;

initialize ycount to zero;

initialize xsamplecount to zero;
initialize ysamplecount to zero;

while True do

read oneletter from Input;

/l save sample data and the results
if takesample is true then

store oneletter as samples;

if oneletter is x then

‘ increment xsamplecount;
else

‘ increment ysamplecount;

end
end
/Il original program
if oneletter is x then
| increment xcount;
else
| increment ycount;
end
end

We call this program “data-carrying” because it
carries sample data during execution. To illustrate how
this program works, consider a section of the input:

clyly | @lxzly | z|ly|ly |y
cly @z Jylaly [y ]y

This section of input data contains 20 letters: 9
x and 11 y. Suppose the program samples 7 letters



(gray background). The samples can be used to check
whether the program is correct. The sampling code is
added by the compiler, not hand-written. This provides
a consistent solution for saving samples, transforming
some of the non-persistent data to persistent.

Many important questions arise for this approach.
First, which data should be sampled? This depends on
the applications and the data contents. For some applica-
tions, random samples may suffice. Periodic sampling
may be appropriate for some applications but this is
prone to aliasing problems. For some other applications,
sampling may be triggered by events detected in the
data. Second, how often should the samples be taken?
Sampling slows down the program because the sampled
data are processed twice. If the sampling rate is too
high, the overhead can be unacceptable and the required
storage can be costly. If the sampling rate is too low,
the samples may not be representative to validate the
program.

B. Utility of sampling

One obvious question is, why is sampling data better
than using a smaller input? The answer is that the
sampled data is constructed online from the real NPD.
As a result, it will better reflect the characteristics of
the NPD, due to the properties of random sampling. If
a programmer were to rely on hand-generated smaller
input sets, the programmer might mistakenly generate
only inputs that contain x and y, and miss the error that
arises when the NPD contains z. Please note that we
cannot guarantee that the sampled data will display the
same properties as the original data, sampling from the
original data may improve confidence confidence. Also,
inadequately covering possible inputs is a common error
when building test suites.

Another question is, how does the sampled data
help the programmer catch errors? In particular, if
the sampled program is automatically generated from
the original program, as in our example, then any
errors in the original program might be reflected in
the sampled program—the sampled program does not
correctly account for zs, either. Here, however, we note
that the sampled data is much smaller than the NPD—
and can be stored. As a result, the sampled program has
output that is easier to digest, and, more importantly, the
sampled input data is easier to analyze. For example,
manual inspection of the sampled data could reveal the
existence of a z in the input.

Manual inspection is an instance of a more general
tactic: because the sampled data is substantially smaller
than the original NPD, programmers can use alternate
analyses to compare the output of the sampled program
to the expected output. Consider a complex, optimized,
data-mining program that operates over NPD. That

same program can be run over sampled NPD and then,
because the sampled data is smaller, a simpler, but
slower, program that solves the same problem can also
be run over the sampled data, providing validation of the
result, and some confidence that the complex program
is doing the right thing when run over NPD.

C. A (Somewhat) Formal Model

To understand the difficulties in generating a sam-
pled version of the program for validation, let us con-
sider the problem a little bit more formally. We can
think of the original program as a function f that takes
an input data stream [ to produce output O:

f:I—>0 (1)

To validate the result of this program, a validation
function vy considers both the input and the output of
f to decide whether the result is correct or not.

vy I x O — {true, false} (2)

The essential problem with the validation of big-
data programs is that the input data (and possibly the
output data as well) are too large to efficiently validate.
When processing non-persistent data, the input data can
be seen only once, making the validation problem much
more difficult.

Framing the problem in this manner suggests sev-
eral possible solutions. First, one could imagine online
validation within a window of input data: If each output
corresponds to a small window of the input stream, then
the amount of data that needs to be saved to perform
validation is bounded by the window. For example,
if, rather than counting the number of = in the entire
stream, the analysis program counted the number of =
in a 5-item window, validation can be performed by
saving some windows of the input, and discarding them
once validation is complete.

For many analysis programs, unfortunately, the
amount of data required to produce enough output for
validation is too large to save. In such cases, we turn to
the sampling approach, described above. We may design
a sampling function s that transforms the input stream
into a much smaller amount of data:

s: I —I'"and |I| > |I'| (3)

This sampled input stream is passed to a transformed
program that operates over the sampled data and pro-
duces some output:
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A new validation function is produced: v'; validates
the transformed program over the sampled data:

vp i I' x O — {true, false} (5)

The problem of testing validity of a data analysis
program can thus be cast as the problem of finding s,
f', and v’ such that:

Vi (s(2), f'(s(D))) = v (L, f(1)) (6)

In other words, if the transformed program validates,
the original program is believed to produce a valid
output. Crucially, because the transformed program op-
erates on a smaller (sampled) input and produces a
smaller output, the modified validation function can be
evaluated even in scenarios where it may be impractical
to run the original validation function.

The next question, naturally, is whether f’, s and
1.-} exist for every program? If we adopt the natural
requirement that reduces the size of the input, we can
see that even for very simple models of computation,
there exist analysis programs that cannot be effectively
run in a sampled manner.

It is well-known that proving the equivalence of
two Turing machines is unsolvable. Thus, we intend
to ask, and informally answer, a simpler question by
considering that the function f is a finite automaton
that detects the appearance of an event called 'x’. This
finite automaton starts at the initial state *1°. If the input
stream contains one 'X’, the finite automata enters a
different state '2’. If the input stream contains no 'X’,
the finite automata stays at the initial state.

Figure 2 depicts this finite automata. Here, A is the
set of input alphabets.

A-x
orO)

Fig. 2. A state machine detects the presence of x.

This finite automata can be implemented as follows.

start at state 1;
while True do
read oneletter from Input;
if oneletter is x then
| move to state 2;
end
end

It is conceivable that this program may be incor-
rectly written as

start at state 1;
while True do
read oneletter from Input;
if oneletter is x then
| move to state 1;
end
end

If = is a rare event, it is possible that the sample
contains no x. The finite automata does not enter state
2" and this is the comrect behavior. This correct result
cannot be distinguished from the result of the incorrect
program.

This example explains that even for a two-state finite
automata, sampling cannot help validate the correctness
of the program. The implication of this example is pro-
found: it is not possible to debug a finite automaton by
testing it using samples when processing non-persistent
data. Nevertheless, a more relaxed correctness criterion,
which states that the validation function should be cor-
rect with high confidence may allow for validation even
of this type of program. The above discussion suggests
the need to restrict the space of possible programs f,
sampling functions s, and input stream characteristics
to make progress in this problem. For example, if the
analysis program is computing some aggregate measure
of the input stream (e.g. the proportion of 1’s in a
binary input stream), then sampling of the input stream
should produce a somewhat similar result, with higher
confidence.

D. Why Language Support?

Another important question is whether this should
be supported by a programming language. We think
so. The language support can appropriately restrict the
types of operations performed during an analysis pro-
gram so that (i) the resulting program can be validated
using a sampling approach (e.g. it does not allow writing
the finite automaton program described above); (ii) the
transformed, sampled program can be automatically
generated; and (iii) programmers can convey semantic
information that informs how the input data should



be sampled and how the analysis program should be
transformed. These sorts of restrictions are common
in many languages used for analyzing data and these
languages allows only operations with certain behaviors,
or statistical languages like R, which use knowledge
of data types such as vectors to implement analysis
operations. The new languages should explicitly support
samples from the data, as illustrated in Figure 3.

Program

Fig. 3. Programs written in the proposed new language automatically
store data samples. Compared with Figure 1, some of the input
data are automatically sampled by the language and stored with the
program’s internal data.

IV. PROPOSED LANGUAGE FEATURES

Writing a validation function that satisfies the re-
strictions described above may be complicated. Given
the wide variety of possible analysis programs and
validation strategies, we believe a much more promising
approach is to rely on code transformations to auto-
matically generate the sampled, validated variant of
the code from the original program. To perform these
transformations, it is necessary to identify operations on
non-persistent data, to identify sources of non-persistent
data, and to analyze the program code to determine
which computations should be performed in the sampled
variant. All of these tasks are eased through the use
of programming language features such as types and
special control constructs. Through the use of special
types, the programmer can identify non-persistent data.
As this data is processed by a program, a type system
can identify which computations are being performed
over non-persistent data, feeding that information to a
compiler that can generate the transformed program.
While we do not propose a specific new language in this
article, we believe that any language that can tackle the
problems identified above must contain several features:

o  The language must be able to operate on persis-
tent data, non-persistent data, and sampled data,
and be able to distinguish them. The intention
is that the original computation operates on
original data but it is also possible that the
programmer might already perform some sam-
pling as part of the analysis. As a result, later
validation may want to take advantage of the
existing sampled data. This may require a type
system that can track whether data are “origi-
nal” or “sampled”. For sampled data, it needs

to provide information about the sampling that
was done (e.g. the sampling rate).

o To facilitate the generation of validation func-
tions, the language must have some way of
specifying which data is too big and should be
subject to sampling. Not all data in the original
program needs to be sampled. For example,
much of the data might be scalar configuration
parameters. Large-scale input data needs to be
identified and sampled.

e Validating functions should be automatically
generated and the language must have some
ways of defining validation functions. More-
over, the validation function can be analyzed to
ensure that its computations can use sampled
data.

One alternative to introducing language support is
to incorporate the necessary functionality for analyzing
non-persistent data in a library. However, this approach
has some drawbacks. As our example shows, the code
to perform the sampled version of the program is
intimately tied to the structure of the original code: a
different program would lead to a different “sampled
version.” Moreover, the clear correspondence between
the sampled version of the code and the original pro-
gram means that there is redundancy between the two
versions.

How is a data-carrying program different from pro-
gram annotations that check the program’s correctness?
They are fundamentally different because annotations
are based on the program’s intemal data. In contrast, the
carried data are samples from the external (input) data.
Can existing programming languages accomplish the
same things? Is a new language really necessary? Can
the samples simply be attributes in the programs? To an-
swer these questions, let’s review the primary reason of
creating a programming language: to unify commonly
used features so that programmers can write correct pro-
grams more efficiently. An assembly language is Turing-
complete, so is Java. However, most people would
agree that Java is better for writing complex programs
that involve networking and web applications. If data-
carrying programs are necessary for many applications,
language support would be preferred.

V. CONCLUSION

In conclusion, we believe that the time is ripe to
re-think how big data programs are written. With ever-
more critical decisions are made on the basis of data
analysis programs, it is becoming crucial to validate
those decisions. The fundamental properties of non-
persistent big-data make validation difficult: It is im-
possible to store enough data to re-run an analysis. We



thus propose to reformulate how big data programs are
developed, and introduce the notion of data-carrying
programs that are, in a sense, self-validating. By writing
these programs in a specially-defined language, and
transforming them with compilers that can generate
sampling code, programs can automatically save enough
data to provide high-confidence validation of their re-
sults.

Let us go back to the spy movie mentioned at the be-
ginning of this article. If an agent uses the programming
language with automatic sampling to process the data
from the self-destructing gadget, the agent may keep
enough evidence linking the mission to the high-level
government official. The official, with the fear of being
identified, orders another agent to destroy the runtime
system of the language we propose in this article. A
new movie plot has just been created.
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