
Something cool with higher order functions ¶
In the last lecture, we looked at higher order functions: the idea that you can write functions that use other
functions as arguments or as return values. One cool consequence of higher order functions: you don't need
multi-argument functions anymore: you only ever need functions that accept one argument.

You might think this is trivial: if I want to write a function that takes two integers, just write a
function that accepts a structure with two integer fields. This is more subtle than that: we will
not use any notion of "tuples": pieces of data that actually represent multiple pieces of data.

Consider a simple function of two arguments:

In [1]: def myFun(x, y) :
 return 3 * x + y

print myFun(3, 8)

We can write a version of this function that only ever accepts one argument at a time. What we're going to
do is take advantage of closures (remember Lecture 3) to write a function that takes the first argument, then
returns a new function that incorporates the first argument and accepts the second argument. We can then
call this new function on the second argument to produce the same result as the original function.

In [2]: def myFunCurry(x) : #note that this only takes one argument!
 def inner(y) : #this function takes the second argument!
 return 3 * x + y
 return inner

print myFunCurry(3)(8)

Let's deconstruct what happened. When we call myFun(3), we're getting back a new function that closed
over 3:

In [3]: inter = myFunCurry(3)
print inter

17

17

<function inner at 0x103ba9938>

This function is the same as if we had written a function that substituted in 3 for x:

In [4]: def inter2(y) :
 return 3 * 3 + y
print inter2

These new functions can then accept y as their argument to finish the computation:

In [5]: for i in range(1, 100) :
 for j in range(1, 100) :
 assert(myFun(i, j) == myFunCurry(i)(j))

We can generalize this to functions of 3 arguments:

In [6]: def myFun3(x, y, z) :
 return x ** 2 + 3 * y + z

print myFun3(3, 4, 5)

In [7]: def myFun3Curry(x) :
 def inner1(y) :
 def inner2(z) :
 return x ** 2 + 3 * y + z
 return inner2
 return inner1

print myFun3Curry(3)(4)(5)

In [8]: for i in range (1, 100) :
 for j in range (1, 100) :
 for k in range (1, 100) :
 assert(myFun3(i, j, k) == myFun3Curry(i)(j)(k))

We call this process (moving from a function that takes k arguments to a series of functions that each take 1
argument) Currying. "Currying" is named after Haskell Curry -- and so is the Haskell programming language!

<function inter2 at 0x103ba96e0>

26

26

Data structures
We have already seen two basic data structures in python. First, we saw lists:

In [9]: list1 = [0, 2, 4, 6, 8]
print type(list1)
print list1
print list1[2:4]
list2 = list1 + [10]
print list2

Wait, two data structures? Yes! Strings in Python are a data structure too. In fact, like lists, strings are a
sequence data structure, that supports several of the same operations as lists:

In [10]: string1 = 'Hello'
print type(string1)
print len(string1)
print string1[1:4]
string2 = string1 + '!'
print string2
for s in string2 :
 print s

Tuples
Another sequence type in Python is the tuple. These look a lot like lists, with a few exceptions. First, you
define them with () instead of []. Second, tuples are immutable. Once you define them, you cannot add
or remove items from them. Think of tuples as a way of defining structures. You can get at the elements of
tuples by indexing into them, just like lists or strings:

<type 'list'>
[0, 2, 4, 6, 8]
[4, 6]
[0, 2, 4, 6, 8, 10]

<type 'str'>
5
ell
Hello!
H
e
l
l
o
!

In [11]: tuple1 = ('Hello', 3.14, 2)
print "{} {}".format(tuple1, type(tuple1))
print "{} {}".format(tuple1[1], type(tuple1[1]))

And you can get at elements of a tuple by iterating over them (again, just like lists or strings)

In [12]: for t in tuple1 :
 print "{} {}".format(t, type(t))

Here's a fancier way to iterate over a tuple:

In [13]: for i, t in enumerate(tuple1) :
 print "{} {}".format(t, type(t))
 print "{} {}".format(tuple1[i], type(tuple1[i]))

What's going on with enumerate up there? That's a special function for iterating through sequence types
(meaning you can use it on strings and lists, too) that emits tuples as its output. The tuples it emits are of the
form (index, value). The looping code takes advantage of a handy Python trick called unpacking that
lets you get at the elements of a tuple without having to index them.

In [14]: s, f, i = tuple1
print s
print f
print i

('Hello', 3.14, 2) <type 'tuple'>
3.14 <type 'float'>

Hello <type 'str'>
3.14 <type 'float'>
2 <type 'int'>

Hello <type 'str'>
Hello <type 'str'>
3.14 <type 'float'>
3.14 <type 'float'>
2 <type 'int'>
2 <type 'int'>

Hello
3.14
2

In [15]: for packed in enumerate(tuple1) :
 print packed

Using tuples as your replacement for C-like structs can be tricky, if the tuples get complicated (think about
how hard it might be to remember the organization of the tuple). Python provides named tuples as a way
around this, which we will get to when we talk about objects.

Sets
Python includes sets as a built-in data type. They operate just like Java sets or STL sets: unordered groups
of elements that maintain a uniqueness property, where each value only appears once in the set

In [16]: set1 = {'a', 'b', 'c'}
print set1 #note the ordering!

In [17]: set2 = {'a', 'b', 'c', 'a'}
print set2

In [18]: set2.add('d')
print set2
set2.remove('a')
print set2

In [19]: set3 = set() #empty set initialization
print set3
set3.add('a')
set3.add('b')
set3.add('a')
print set3

(0, 'Hello')
(1, 3.14)
(2, 2)

set(['a', 'c', 'b'])

set(['a', 'c', 'b'])

set(['a', 'c', 'b', 'd'])
set(['c', 'b', 'd'])

set([])
set(['a', 'b'])

In [20]: for d in set2 :
 print d

Comprehensions
Python provides set and list comprehensions, which are efficient ways of processing sets and lists to
produce new sets and lists (think mathematical set notation)

In [21]: import numpy as np
data = list(np.random.randint(-4, 4, 25))
print data

In [22]: absdata = [abs(d) for d in data]
print absdata

In [23]: absset = {abs(d) for d in data}
print absset

Dictionaries
The final "basic" data structure in Python is the dictionary. (Other languages call them "associative arrays."
You probably know them as "maps"): data structures that let you map keys to values. Each key in a Python
dictionary is unique, and that key maps to a certain value.

In [24]: dict1 = {'a': 0, 'b': 1, 'c': 3}
print dict1['a'], dict1['c']

In [25]: dict1['a'] = 10
print dict1['a'], dict1['c']

c
b
d

[-1, 3, 2, -2, 3, 2, 0, 3, -2, 2, -2, -3, 3, -2, -1, -2, 0, -4, -2,
0, -4, 3, -2, -4, 3]

[1, 3, 2, 2, 3, 2, 0, 3, 2, 2, 2, 3, 3, 2, 1, 2, 0, 4, 2, 0, 4, 3, 2
, 4, 3]

set([0, 1, 2, 3, 4])

0 3

10 3

When iterating over a dictionary, you iterate over the keys. If you want to iterate over both the keys and the
values, use iteritems

In [26]: for k in dict1 :
 print k, dict1[k]

for k, v in dict1.iteritems() :
 print k, v

Wait, what's going on with iteritems? We're not calling it like we do other functions like len or min or
max. iteritems is a method of the dict class. dict1 in the above example (like all Python data) is an
object. (We saw similar ways of calling methods when we append items to lists, or add items to sets.)

Classes and Objects
This is not a particularly formal introduction to the Python data model and object model. For
that, please refer to documentation on the Python data model
(https://docs.python.org/2/reference/datamodel.html) and Python classes
(https://docs.python.org/2/tutorial/classes.html).

Python, like C++ and Java, is object oriented. The basic data model in Python is that everything is an object
of some sort. An object combines data and methods. Everything in Python is an object, including "simple"
data like integers and floats.

A class in python defines a set of attributes: these can be variables or methods. This defines a set of
properties that you want all objects of a certain type to have. An object in Python is an instance of a class: it
shares attributes with all other classes, but can also have attributes (think: member data) that is different
from other instances. This lets you have objects with their own "local" data.

Methods for a class take an extra self argument. When you invoke a method on an object (think
myList.append(x)), this self argument refers to the object you invoked the method on (in the example,
myList).

a 10
c 3
b 1
a 10
c 3
b 1

https://docs.python.org/2/reference/datamodel.html
https://docs.python.org/2/tutorial/classes.html

In [27]: class Counter (object) :
 totalCount = 0 #shared number across all instances

 def __init__(self) : #constructor for the class.
 self.count = 0 #local count for each instance

 def incr(self) :
 Counter.totalCount += 1
 self.count += 1

 def __str__(self) : #special function like "toString" in Java
 return "Total count: {}, Local count: {}".format(Counter.total
Count, self.count)

In [28]: c1 = Counter()
c2 = Counter()
print c1
print c2

In [29]: for i in range(0,5) :
 c1.incr()
 c2.incr()

print c1
print c2

Classes themselves, like functions, are just objects, as are the methods inside them:

In [30]: print type(Counter)
print type(Counter.incr)

Unsurprisingly, like with functions, Python lets you create new classes dynamically and return them. This
gives us a handy way to create things that behave like structures, using the namedtuple method:

In [31]: import collections
Point = collections.namedtuple('Point',['x', 'y', 'color'])

Total count: 0, Local count: 0
Total count: 0, Local count: 0

Total count: 10, Local count: 5
Total count: 10, Local count: 5

<type 'type'>
<type 'instancemethod'>

In [32]: p = Point(2.4, 3.7, 'red')
print p

In [33]: print p.x, p.y, p.color

Pandas
The place where you will probably be using classes the most is when manipulating pandas dataframes: this
is the key class provided by pandas (in addition to series), and it provides a number of instance methods for
manipulating data. We will not spend a lot of time deconstructing pandas dataframes in class -- we will
explain as much as is needed in relevant homeworks. You can also look at the docs
(https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)

In []: import pandas as pd
data = pd.read_csv('hw02_problem3.csv', header=None, skipinitialspace=
True)
print type(data)
data

In []: data1 = data[(data[2] == 'white')]
print type(data1)
data1

In []: data2 = data[(data[2] == 'white')][[0, 1]]
data2

Point(x=2.4, y=3.7, color='red')

2.4 3.7 red

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

