EE 301 Midterm Exam #1 October 1, Fall 2003

Name:		
Instructions		

- Follow all instructions carefully!
- This is a 60 minute exam containing 4 problems totaling 120 points.
- You may **only** use your brain and a pencil (or pen) to complete this exam. You **may not** use your book, notes or a calculator.

Good Luck.

Name:
Problem 1. (30pt)
a) LTI Systems
Consider an LTI system with impulse response $h(t) = e^{-at}u(t)$ and input $x(t) = u(t)$.
Compute the output $y(t)$.
b) Formal Logic
Negate the logical statement $\forall x, Px \Rightarrow Qx$
c) Logical Statements
Consider the following definition: "A signal $x(t)$ is bounded if there exists an $M>0$ such
that for all t , $ x(t) < M$."
Give the definition of an unbounded signal.

Name:

Problem 2.(30pt) *LTI System Properties*

Consider the following LTI system

$$y(t) = \int_0^\infty g(\tau)x(t-\tau)d\tau$$

where g(t) > 0 for all t.

- a) Prove that the system is linear.
- ${\bf b)}$ Compute the system's impulse response.
- c) Is the system, memoryless? Why?
- d) Is the system, causal? Why?

Problem 3.(30pt) Sinusoidal Inputs to LTI Systems Consider the discrete-time LTI system

$$y_n = h_n * x_n$$

where h_n is the real-valued impulse response of the system.

- a) Show that if $x_n = e^{j\omega n}$ then the output has the form $y_n = Ce^{j\omega n}$ were C is a complex number.
- **b)** Calculate an expression for C in terms of the function h_n .

Name:

Problem 4.(30pt) Digital to Analog Conversion

Consider a linear system

$$y(t) = \mathcal{S}[x_n]$$

with discrete-time input x_n and continuous time output y(t).

Assume there exists a period T such that if $y(t) = \mathcal{S}[x_n]$ then $y(t - kT) = \mathcal{S}[x_{n-k}]$ for all integers k. Notice that this property is similar to time invariance.

Further define the function

$$h(t) \stackrel{\triangle}{=} \mathcal{S}[\delta_n]$$

as the response of the system to a discrete-time impulse.

- a) Determine the response of the system to $x_n = \delta_{n-k}$, a DT delta function at time k. Justify (prove) your answer.
- b) Determine the response of the system to any DT input x_n . Justify (prove) your answer.
- c) Explain in words why this system might be useful.