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particularly central roles in the study of LTI systems and their applications. The first o
these, discussed in Section 4.4, is referred to as the convolution property, which is centry)
to many signals and systems applications, including filtering. The second, discussed j,
Section 4.5, is referred to as the multiplication property, and it provides the foundatioy
for our discussion of sampling in Chapter 7 and amplitude modulation in Chapter §. 1,
Section 4.6, we summarize the properties of the Fourier transform.

4.4 THE CONVOLUTION PROPERTY

As we saw in Chapter 3, if a periodic signal is represented in a Fourier series—i.e., g
a linear combination of harmonically related complex exponentials, as in eq. (3.38)—
then the response of an LTI system to this input can also be represented by a Fourier
series. Because complex exponentials are eigenfunctions of LTI systems, the Fourier serieg
coefficients of the output are those of the input multiplied by the frequency response of
the system evaluated at the corresponding harmonic frequencies.

In this section, we extend this result to the situation in which the signals are aperiodic,
We first derive the property somewhat informally, to build on the intuition we developed for
periodic signals in Chapter 3, and then provide a brief, formal derivation starting directly
from the convolution integral.

Recall our interpretation of the Fourier transform synthesis equation as an expression
for x(#) as a linear combination of complex exponentials. Specifically, referring back to
eq. (4.7), x(¢) is expressed as the limit of a sum; that is,

1 (*= . . " .
x() = EEJ X(jw)e!'dw = llmo—z—; E X(fkwo)e!* 0w, (4.47)
wg—>

- k=~

As developed in Sections 3.2 and 3.8, the response of a linear system with impulse response
R(?) to a complex exponential /¥ is H(jkwq)e/*o', where

+

H(jkowo) = [ wh(t)e—jk“’o’dt. (4.48)

—20

We can recognize the frequency response H{jw), as defined in eq. (3.121), as the Fourier
transform of the system impulse response. In other words, the Fourier transform of the
impulse response (evaluated at @ = kwg) is the complex scaling factor that the LTI system
applies to the eigenfunction e/%*¢/, From superposition [see eq. (3.124)], we then have

1

2 , ; 1 = . , i
5 >, X(jkwgle!*wo — 5— > X(jkwo)H(jkwo)e o,

k=—c0 k=—x

and thus, from eq. (4.47), the response of the linear system to x(z) is

1 & .
lim =— > X(jkwo)H(jkwg)e v
wy—0 27 P (4.49)
1 (* ‘
—J X(jw)H(jw)e'* dw.
27 J o

y(®)
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Since y(¢) and its Fourier transform Y (jw) are related by
+

y(t) = % f . Y(jw)e' dw, (4.50)

we can identify Y(jw) from eq. (4.49), yielding

Y(jw) = X(jo)H(jo). 4.51)
As a more formal derivation, we consider the convolution integral
400
y() = J x(T)h(t — T)dT. 4.52)
We desire Y(jw), which is
+oo “+oo .
Y(jo) = Fy@} = J U x(Th(t — 'r)dfr} e ¥, (4.53)

-

Interchanging the order of integration and noting that x(7) does not depend on ¢, we have

—00 —00

Y(jw) = J " x(7) l J T h(t - T)e'j“”dt} dr. 4.54)

By the time-shift property, eq. (4.27), the bracketed term is ¢ /*" H(jw). Substituting this
into eq. (4.54) yields :

+o0 _ +o0 )
Y(jw) = J’ x(N)e I "H(jw)dT = H(jw)J x(r)e 17 dr. (4.55)

e

The integral is X(jw), and hence,

Y(jw) = H(jo)X(jw).
That is,

W) = B * x(t) <o Y(jw) = H(jw)X(jo). @.56)

Equation (4.56) is of major importance in signal and system analysis. As expressed
in this equation, the Fourier transform maps the convolution of two signals into the product
of their Fourier transforms. H(jw), the Fourier transform of the impulse response, is the
frequency response as defined in eq. (3.121) and captures the change in complex amplitude
of the Fourier transform of the input at each frequency w. For example, in frequency-
selective filtering we may want to have H(jw) = 1 over one range of frequencies, so that
the frequency components in this band experience little or no attenuation or change due to
the system, while over another range of frequencies we may want to have H(jw) = 0, so
that components in this range are eliminated or significantly attenuated.
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The frequency response H(jw) plays as important a role in the analysis of LTT Sys-
"tems as does its inverse transform, the unit impulse response. For one thing, since h(r)
- completely characterizes an LTI system, then so must H(jw). In addition, many of the
properties of LTT systems can be conveniently interpreted in terms of H(jw). For exap,.
ple, in Section 2.3, we saw that the impulse response of the cascade of two LTI syste
is the convolution of the impulse responses of the individual systems and that the ovey.
all impulse response does not depend on the order in which the systems are cascadeq,
Using eq. (4.56), we can rephrase this in terms of frequency responses. As illustrated iy
Figure 4.19, since the impulse response of the cascade of two LTI systems is the cop.
volution of the individual impulse responses, the convolution property then implies thgt
the overall frequency response of the cascade of two systems is simply the product of
the individual frequency responses. From this observation, it is then clear that the overa]
frequency response does not depend on the order of the cascade.

X(t) =——~| Hy(jw) Hy(jw) f——a— y()

A 4

(@

X(t) =—————{ Hy(jw}Ho () —- y(t)

()

Hy(jo) —> vty Figure 4.19 Three equivalent LT
systems. Here, each block represents

an LTI system with the indicated

) frequency response.

X(t) —- Hz(]w)

Y

As discussed in Section 4.1.2, convergence of the Fourier transform is guaranteed
only under certain conditions, and consequently, the frequency response cannot be defined
for every LTI system. If, however, an LTI system is stable, then, as we saw in Section 2.3.7
and Problem 2.49, its impulse response is absolutely integrable; that is,

rw |h(£)|dt < . 4.57

—c0

Equation (4.57) is one of the three Dirichlet conditions that together guarantee the exis-
tence of the Fourier transform H(jw) of A(f). Thus, assuming that k() satisfies the other
two conditions, as essentially all signals of physical or practical significance do, we se¢
that a stable LTI system has a frequency response H(jw). ]

In using Fourier analysis to study LTI systems, we will be restricting ourselves ¥
to systems whose impulse responses possess Fourier transforms. In order to use trans- §
form techniques to examine unstable LTI systems we will develop a generalization of §
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the continuous-time Fourier transform, the Laplace transform. We defer this discussion to
Chapter 9, and until then we will consider the many problems and practical applications
that we can analyze using the Fourier transform.

4.4.1 Examples

To illustrate the convolution property and its applications further, let us consider several
examples. '

$

Example 4.15
Consider a continuous-time LTI system with impulse response
() = 8(t — tp). (4.58)
The frequency response of this system is the Fourier transform of k(¢) and is given by
H(jow) = e~ /%, 4.59)

Thus, for any input x(¢) with Fourier transform X( jw), the Fourier lIansforﬁl of the output
is

H(jw)X(jw) (4.60)
= e 10 X(jw).

Y(jo)

This result, in fact, is consistent with the time-shift property of Section 4.3.2. Specifi-

cally, a system for which the impulse response is 6 (¢ — ;) applies a time shift of £, to the
input—that is,

T y(@®) = x(t — 10).

Thus, the shifting property givenin eq. (4.27) also yields eq. (4.60). Note that, either from
our discussion in Section 4.3.2 or directly from eq. (4.59), the frequency response of a
system that is a pure time shift has unity magnitude at all frequencies (i.e., |e~/¢%| = 1)
and has a phase characteristic —w#, that is a linear function of w.

Example 4.16

As a second example, let us examine a differentiator—that is, an LTI system for which
the input x(¢) and the output y(¢) are related by

y(E) =

dx(t)
dr -~

From the differentiation property of Section 4.3.4,
Y(jo) = joX(jo). 4.61)

Consequently, from eq. (4.56), it follows that the frequency response of a differentiator
is

H(jw) = jo. 4.62)
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Example 4.17

Consider an integrator—that is, an LTI system specified by the equation

¥(1) = L x(t)dT.

The impulse response for this system is the unit step u(z), and therefore, from Exap.
ple 4.11 and eq. (4.33), the frequency response of the system is

H(jw) = L + 76 (w).
Jjow

Then using eq. (4.56), we have
Y(jo) = H(jo)X(jw)

= L X(jw) + 7X(jw)5(@)
Jjo

= L X(jw) + mX(0)8(w),
Jw

which is consistent with the integration property of eq. (4.32).

Example 4.18

As we discussed in Section 3.9.2, frequency-selective filtering is accomplished with an
LTI system whose frequency response H( jw) passes the desired range of frequencies and
significantly attenuates frequencies outside that range. For example, consider the ideal
lowpass filter introduced in Section 3.9.2, which has the frequency reponse illustrated in
Figure 4.20 and given by

1 |jo| <o,

0 |o|>w. 4.63)

H(jw) = [
Now that we have developed the Fourier transform representation, we know that the
impulse response A(z) of this ideal filter is the inverse transform of eq. (4.63). Using the
result in Example 4.5, we then have

sinw,t ‘
= ¢ 0} 4
h(t) o (4.64)

which is plotted in Figure 4.21.

H{w)

g 0 ®w,
-—Stopband —+- Passband Stopband —~

Figure 4.20 Frequency response of an ideal lowpass filter.
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Figure 4.21 Impulse response of an ideal lowpass filter.

From Example 4.18, we can begin to see some of the issues that arise in filter design
that involve looking in both the time and frequency domains. In particular, while the ideal
lowpass filter does have perfect frequency selectivity, its impulse response has some char-
acteristics that may not be desirable. First, note that A(f) is not zero for ¢ < 0. Consequently,
the ideal lowpass filter is not causal, and thus, in applications requiring causal systems,
the ideal filter is not an option. Moreover, as we discuss in Chapter 6, even if causality
is not an essential constraint, the ideal filter is not easy to approximate closely, and non-
ideal filters that are more easily implemented are typically preferred. Furthermore, in some
applications (such as the automobile suspension system discussed in Section 6.7.1), oscil-
latory behavior in the impulse response of a lowpass filter may be undesirable. In such
applications the time domain characteristics of the ideal lowpass filter, as shown in Fig-
ure 4.21, may be unacceptable, implying that we may need to trade off frequency-domain
characteristics such as ideal frequency selectivity with time-domain properties.

For example, consider the LTI system with impulse response

k() = e *u(p). (4.65)
The frequency response of this system is

H(jw) =

e T (4.66)

Comparing egs. (3.145) and (4.66), we see that this system can be implemented with
the simple RC circuit discussed in Section 3.10. The impulse response and the magnitude
of the frequency response are shown in Figure 4.22. While the system does not have the
strong frequency selectivity of the ideal lowpass filter, it is causal and has an impulse
response that decays monotonically, i.e., without oscillations. This filter or somewhat more
complex ones corresponding to higher order differential equations are quite frequently
preférred to ideal filters because of their causality, ease of implementation, and flexibility
in allowing trade-offs, among other design considerations such as frequency selectivity
and oscillatory behavior in the time domain. Many of these issues will be discussed in
more detail in Chapter 6.

The convolution property is often useful in evaluating the convolution integral—i.e.,
in computing the response of LTI systems. This is illustrated in the next example.
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Figure 4.22 (a) Impulise response of the LTI system in eq. (4.65);
(b) magnitude of the frequency response of the system.

Example 4.19
Consider the response of an LTI system with impulse response

r@) = e “u(®), a>0,

fo the input signal

x®) = e "u@t), b>0.

Rather than computing y(¢#) = x(z) * h(¢) directly, let us transform the problem into the
frequency domain. From Example 4.1, the Fourier transforms of x(¢) and A(z) are

X(jw) =

b+ jw

Therefore,

S S 467
(a+ jo)b+ jo)

Y(jw) =

To determine the output y(£), we wish to obtain the inverse transform of Y(jo).
This is most simply done by expanding Y(jw) in a partial-fraction expansion. Such
expansions are extremely useful in evaluating inverse transforms, and the generfﬂ
method for performing a partial-fraction expansion is developed in the appendix. For this
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example, assuming that b # q, the partial fraction expansion for Y(jw) takes the form

B

Y(je) = a+ jo +b+ja)’

(4.68)

where A and B are constants to be determined. One way to find A and B is to equate the
right-hand sides of egs. (4.67) and (4.68), multiply both sides by (@ + jw)(b + jw), and
solve for A and B. Alternatively, in the appendix we present a more general and efficient
method for computing the coefficients in partial-fraction expansions such as eq. (4.68).
Using either of these approaches, we find that

1

/ = :——B,
4 b—a

and therefore,

. 1 1 1
Y(jow) = 5

—-a a+ja)_b+jw ) (4.69)

The inverse transform for each of the two terms in eq. (4.69) can be recognized
by inspection. Using the linearity property of Section 4.3.1, we have

() =

- a[e_“’u(t) -~ e Py

When b = g, the partial fraction expansion of eq. (4.69) is not valid. However, with
b = a, eq. (4.67) becomes

1

U= e

Recognizing this as

) 1 _.4d [ 1 ]
(a+ jw)? Jdw |a+ jo!
we can use the dual of the differentiation property, as given in eq. (4.40). Thus,

_ ¥ 1
e %u(t) < .
a+t jw
e u(t) <> i[ 1 ]= :
Tdo |a+ jo (a+ jw)*

and consequently,

() = te"“u(r).

Example 4.20

As another illustration of the usefulness of the convolution property, let us consider the

problem of determining the response of an ideal lowpass filter to an input signal x(¢) that
has the form of a sinc function. That is,

sinw;t

o) = art

& Of course, the impulse response of the ideal lowpass filter is of a similar form, namely,
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sinw .t

h(t) = i

The filter output y(¢) will therefore be the convelution of two sinc functions, which, as y,
now show, also turns out to be a sinc function. A particularly convenient way of deriving
this result is to first observe that

Y(jo) = X(jo)H(jo),

. 1 [(.()[ = Wi
X =
(o) { 0 elsewhere

and

. 1 lol=o
H = €. ;
 HGe) { 0 elsewhere i

Therefore, A j

. 1 |o| = wo
Y = ’
(o) { 0 elsewhere

where wg is the smaller of the two numbers w; and w.. Finally, the inverse Fourier trans-
form of Y(jw) is given by :

sinw. .t

; ifw, < w;
T
¥ =< .
sinw;t .
— ifw; = w,
Tt

That is, depending upon which of w. and w; is smaller, the output is equal to either x(f)
or h(t).

4.5 THE MULTIPLICATION PROPERTY

The convolution property states that convolution in the time domain corresponds to mul-
. tiplication in the frequency domain. Because of duality between the time and frequency
v domains, we would expect a dual property also to hold (i.e., that multiplication in the time
' domain corresponds to convolution in the frequency domain). Specifically,

1 (*
@) = s(p(@) < R(o) = 7— f S(j0)P(j(w— 6))d6 O (470)

This can be shown by exploiting duality as discussed in Section 4.3.6, together with the
convolution property, or by directly using the Fourier transform relations in a manner anal-
ogous to the procedure used in deriving the convolution property.

Multiplication of one signal by another can be thought of as using one signal to scale
or modulate the amplitude of the other, and consequently, the multiplication of two sig-
nals is often referred to as amplitude modulation. For this reason, eq. (4.70) is sometimes
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. referred to as the modulation property. As we shall see in Chapters 7 and 8, this property
has several very important applications. To illustrate eq. (4.70), and to suggest one of the
- applications that we will discuss in subsequent chapters, let us consider several examples.

Example 4. ZI

the s1gna1 .

Then

p(t) = coswgt.

S(jw)
A

1

Let s(f) be a s1gna1 whose spectrum S( jw) is deplcted‘m Flgure 4, 23(a) Also, con31der

' L .r'
LI

P(jw) = mé(w — wo) + 775((» + wyg),

as sketched in Figure 4.23(b), and the spectrum R( Jjw) of r(t) = s(t)p(z) is obtained by

(g = 0y) (—ag+ wy)

"

w P(jw). 0
g (b) L) (6]
Ro) = 5- [8(0) * o]
'~ o Ar2+
T —wg T wg T ©

o"_"' o) (wg+ )

Figure 4.23 Use of the multiplication pfoperty-in Example 4.21: (a) the
Fourier transform of a signal s(f); (b) the Fourier transform of p(f) = €os wyt;
(c) the Fourier transform of r(t) = s(t)p(t).
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an application of eq. (4.70), yielding

+oo

R(©) = 5 J SGIOP(j(w — 6))d6
1 1 |
= ES(](&) —wo)) + ES(](‘H + wo)), @

which is sketched in Figure 4.23(c). Here we have assumed that wo > w1, 50 that the
two nonzero portions of R(jw) do not overlap. Clearly, the spectrum of r(¢) consists of
the sum of two shifted and scaled versions of S(jw).

From eq. (4.71) and from Figure 4.23, we see that all of the information in the
signal s(?) is preserved when we multiply this signal by a sinusoidal signal, although the
information has been shifted to higher frequencies. This fact forms the basis for siny.
soidal amplitude modulation systems for communications. In the next example, we leam
how we can recover the original signal s(¢) from the amplitude-modulated signal r(r).

Example 4.22
Let us now consider r(#) as obtained in Example 4.21, and let }l

g(t) = r@)p(),

where, again, p(tf) = coswgf. Then, R(jw), P(jw), and G(jw) are as shown ip
Figure 4.24.

From Figure 4.24(c) and the linearity of the Fourier transform, we see that g(s)
is the sum of (1/2)s(¢) and a signal with a spectrum that is nonzero only at higher frequen-

R(jw)
A2
A A
—~wp (1)0 w
@)
s P(jw) T
—g (b) (1)0 w
Gljw)
A/4 A2 A4
A A_—— ;
—2wg —~w4 0q 2wp o

©

Figure 4.24 Spectra of signals considered in Example 4.22: (a) R(jw);
(b) P(je); () Glje).
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cies (centered around *2wyg). Suppose then that we apply the signal g(¢) as the input to

a frequency-selective lowpass filter with frequency response H(jw) that is constant at
{ low frequencies (say, for |w| < w1) and zero at high frequencies (for |w| > w;). Then
the output of this system will have as its spectrum H(jw)G(jw), which, because of the
particular choice of H(jw), will be a scaled replica of S(jw). Therefore, the output itself
will be a scaled version of s(¢). In Chapter 8, we expand significantly on this idea as we
== develop in detail the fundamentals of amplitude modulation.

Example 4.23

s Another illustration of the usefulness of the Fourier transform multiplication property is
provided by the problem of determining the Fourier transform of the signal

sin(z) sin(#/2)
w2 ’

x(t) =

The key here is to recognize x(f) as the product of two sinc functions:

6 = w(gn@ )(sin(t/Z))‘

it mt

Applying the multiplication property of the Fourier transform, we obtain

X(jo) = %s[&“’} 5| S22

7t Tt

Noting that the Fourier transform of éach sinc. function is a rectangular pulse, we can
proceed to convolve those pulses to obtain the function X(jw) displayed in Figure 4.25.
 X(jo)

1/2

N

3 ®
2

\

=

1
2 2

Figure 4.25 The Fourier transform of x(?) .in Example 4.23.

4.5.1 Frequency-Selective Filtering with Variable Center Frequency

As suggested in Examples 4.21 and 4.22 and developed more fully in Chapter 8, one of the
important applications of the multiplication property is amplitude modulation in commu-
nication systems. Another important application is in the implementation of frequency-
selective bandpass filters with tunable center frequencies that can be adjusted by the
simple turn of a dial. In a frequency-selective bandpass filter built with elements such
as resistors, operational amplifiers, and capacitors, the center frequency depends on a
number of element values, all of which must be varied simuitaneously in the correct way
if the center frequency is to be adjusted directly. This is generally difficult and cumber-
some in comparison with building a filter whose characteristics are fixed. An alternative
to directly varying the filter characteristics is to use a fixed frequency-selective filter and
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shift the spectrum of the signal appropriately, using the principles of siﬁuspidal amplitude

modulation.

For example, consider the system shown in Fig}lre 4.26. Here, an input signa|
x(?) is multiplied by the complex exponential signal e/“<!, The resulting signal is they
passed through a lowpass filter with cutoff frequency wo, and the output is multiplied by
e~ 7o The spectra of the signals x(?), y(r), w(f), and f(¢) are illustrated in Figure 4.7

 The Continuous-Time Fourier Transform Chap, 4

B

elodt Ideal lowpass eloct

filter

H(jw)

y(t) 1 wit)

x(® X > —>(*) - f{(t)
{

—Wy (1)0 (O]
Figure 4.26 Implementation of a bandpass filter using amplitude modula- ‘
tion with a complex exponential carrier. ;
X(jeo)

‘Frequency response of
ideal lowpass filter

(v — vg) (—w, + wg)

Figure 4.27 Spectra of the signals
in the system of Figure 4.26.
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Specifically, from either the multiplication property or the frequency-shifting property it
follows that the Fourier transform of y(f) = ¢/“<'x(t) is

¢ .
Y(jo) = j 88 — w )X(w — 6)do
so that Y(jw) equals X(jw) shifted to the right by w. and frequencies in X(jw) near
® = . have been shifted into the passband of the lowpass filter. Similarly, the Fourier
transform of f(f) = e ““w(f) is ‘

F(jo) = W(j(o + wo)),

so that the Fourier transform of F (jw) is W (jw) shifted to the left by .. From Figure 4.27,
we observe that the overall system of Figure 4.26 is equivalent to an ideal bandpass fil-
ter with center frequency —w. and bandwidth 2wy, as illustrated in Figure 4.28. As the

frequency w. of the complex exponential oscillator is varied, the center frequency of the
bandpass filter varies.

Hjow) _

“:2% “  Figure 4.28 Bandpass filter equiva-
“o~>] lent of Figure 4.26.

Inithe system of Figure 4.26 with x() real, the signals y(¢), w(z), and f(¢) are all
complex. If we retain only the real part of f(¢), the resulting spectrum is that shown in
Figure 4.29, and the equivalent bandpass filter passes bands of frequencies centered
around o, and —w, as indicated in Figure 4.30. Under certain conditions, it is also possi-
ble to use sinusoidal rather than complex exponential modulation to implement the system
of the latter figure. This is explored further in Problem 4.46.

MU

- g o !
Figure 4.29 Spectrum of Re{f(f)}
|20~} |<-200 associated with Figure 4.26.

H(jo)

1
2

|
o J I:wc ®  Figure 4.30 Equivalent bandpass
2 2ug flter for Ge{f(t)} in Figure 4.29.
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' 4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consjg.
ered some of the important properties of the Fourier transform. These are summarized i
Table 4.1, in which we have also indicated the section of this chapter in which each prop-

erty has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourie;
transform pairs. We will encounter many of these repeatedly as we apply the tools of

The Gontinuous-Time Fourier Transform

Chap. 4

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM
Section Property Aperiodic signal Fourier transform
x() X(jo)
0] Y(jw)
43.1 Linearity ax(t) + by(t) aX(jw) + bY(jw)
432 Time Shifting x(t — to) e X (jw)
4.3.6 Frequency Shifting 2190 x(£) X(j(w — wo))
433 Conjugation x (0 X'(= jw)
435 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(qi‘) liX (ﬁo—)
Scaling : CIRNC
44 Convolution x() * y(t) X(jo)Y(jw) .
- . . e
4.5 Muttiplication x()y(®) 511—7 [ X(jO)Y(j(w — 6)do 8
434 Differentiation in Time %x(t) joX(jo)
t
434 Integration J x(t)dt jLwX( Jjo) + 7X(0)8(w)
4.3.6 Differentiation in tx(t) J iX (jw)
Fre ‘ dw
quency
X(jw) = X*(— jo) 1
RefX(jw)} = Re(X(~ jw)} ,
433 Conjugate Symmetry x(¢) real In{X(jo)} = —Im{X(— jw)} ]
for Real Signals ()l = 1X(= je)]
X (jo) = —LX(— jw)
433 Symmetry forRealand  x(¢) real and even X(jw) real and even
Even Signals
433 Symmetry for Realand  x(#) real and odd X(jw) purely imaginary and odd
0Odd Signals
433 Even-Odd Decompo- *) _=_ gv{x(t)} Lx(#) roall i}e{X(](f))}
sition for Real Sig- %o = 0dlx(®} [x()reall  jIm{X(jw)}
nals
437 Parseval’s Relation for Aperiodic Signals

jw Ix(Pdr =

1 +o
o | WaorPdo
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Signal

Fourier series coefficients

Fourier transform (if periodic)
+oo . +w » .
> apelo 27 > @@ ~ kwo) - a
—— k=—o
el ‘ 278(w — wo) o - ! .
a, = 0, otherwise
= =1
cos wgt 7[8(w — wo) + 8(w + wo)] @ ==y .
a, =0, otherwise
1
. T a = —a—y =
t - 8 - - 8 + 2j
s J[ (@~ wo) @+ wo)] a, = 0, otherwise
=1 a=0%k#0 o
x) =1 27 8(w)

this is the Fourier series representation for
any choice of T > 0

Periodic square wave
1, |t| <T )
xo) = [0, <=1
and
x(¢+T) = x()

4w

k

Z 2sin kwo T 8w — kao)

sin kwo T]
k

Wy T] . ( ka)o T] )
— Sinc =
m aT

i : 27 : 27k 1
Zﬁﬁ(r—nT) -T—k;ma(w— —T-) a =  forallk
1, < 2sinwT,
3 . —
X( ){ O, |t| > Tl w
sin Wt X(jw) = { ol <W _
t 0 lo|j>W
8(n 1 —
u(z) o + 7 8(w) —
8(t — 1) e ot —_
e u(p), Refay > 0 ! —
’ a+ jo
te"*u(t), Refa} > 0 _1 —
’ (a+ jw)
Z;"T":ﬁe“”u(t), 1 .
Rela) > 0 (a+ jo)
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Fourier analysis in our examination of signals and systems. All of the transform pairs,
except for the last one in the table, have been considered in examples in the Preceding
sections. The last pair is considered in Problem 4.40. In addition, note that severa] o
the signals in Table 4.2 are periodic, and for these we have also listed the corresponding
Fourier series coefficients.

4.7 SYSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT
DIFFERENTIAL EQUATIONS

As we have discussed on several occasions, a particularly important and useful clagg
of continuous-time LTI systems is those for which the input and output satisfy a linesr
constant-coefficient differential equation of the form

N k k
> a0 Z n 220 @mn

k=0

In this section, we consider the question of determining the frequency response of
such an LTI system. Throughout the discussion we will always assume that the
frequency response of the system exists, i.e., that eq. (3.121) converges.

There are two closely related ways in which to determine the frequency response
H(jw) for an LTI system described by the differential equation (4.72). The first of these,
which relies on the fact that complex exponential signals are eigenfunctions of LT[
systems, was used in Section 3.10 in our analysis of several simple, nonideal filters.
Specifically, if x(f) = e/*!, then the output must be y(t) = H(jw)e/*’. Substituting these
expressions into the differential equation (4.72) and performing some algebra, we can
then solve for H(jw). In this section we use an alternative approach to arrive at the same
answer, making use of the differentiation property, eq. (4.31), of Fourier transforms.

Consider an LTI system characterized by eq. (4.72). From the convolution property,

Y(jw) = H(jw)X(jw),

or equivalently,

Hjw) = 392

LAY 473
X (o) “r

: where X(jw), Y(jw), and H(jw) are the Fourier transforms of the input x(¢), output (),
i and impulse response k(f), respectively. Next, consider applying the Fourier transform to
* both sides of eq. (4.72) to obtain

N, gk y(t) d*x(1)
[z ‘ =G Zbk ol s (4.74)

From the linearity property, eq. (4.26), this becomes
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and from the differentiation property, eq. (4.31);
N M
> a(jo)r(jo) = > bi(je)X(jw),
k=0 ‘ k=0

or equivalently,

k=0 .

N ' . M
Y(jw) {2 ak(jao"] = X(jo) [Zbk(jw)k}
k=0

Thus, from eq. (4.73),

. M : Nk
Hijw) = L2 _ Zi=obile) (4.76)
X(jo) S oaljo)t

Observe that H(jw) is thus a rational function; that is, it is a ratio of polynomials
in (jw). The coefficients of the numerator polynomial are the same coefficients as those
that appear on the right-hand side of eq. (4.72), and the coefficients of the denominator
polynomial are the same coefficients as appear on the left side of eq. (4.72). Hence, the
frequency response given in eq. (4.76) for the LTI system characterized by eq. (4.72) can
be written down directly by inspection.

The differential equation (4.72) is commonly referred to as an Nth-order differen-
tial equation, as the equation involves derivatives of the dutput y(f) up through the Nth
derivative. Also, the denominator of H(jw) in eq. (4.76) is an Nth-order polynomial in
(jw).

Example 4.24

. Consider a stable LTI system characterized by the differential equation

dy ( ) 4 ay(®) = x(), @.77)

with @ > 0. From eq. (4.76), the frequency response i§

.1
H(jw) =~ Jera 4.78)

. Comparing this with the result of Example 4.1, we ee that eq. (4.78) is the Fourier
: transform of e~%u(f). The impulse response of the system is then recognized as

h(®) = e "u(®).
Example 4.25 ‘
Consider a stable LTI system that is characterized by the differential equation

d*y@) | ,dy@®
de? dt

+ 4920 d x(t)

+ 3y(t) = + 2x(0).
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From eq. (4.76), the frequency response is

(jo)+2

U = Gop + 4w +3

4.79)

To determine the corresponding impulse response, we require the inverse Fourier trang.
form of H(jw). This can be found using the technique of partial-fraction expansion em.
ployed in Example 4.19 and discussed in detail in the appendix. (In particular, see Ex.
ample A.1, in which the details of the calculations for the partial-fraction expansion of
eq. (4.79) are worked out.) As a first step, we factor the denominator of the right-hand
side of eq. (4.79) into a product of lower order terms:

Jo+2

HG) = Z G0 +3)

(4.80)

Then, using the method of partial-fraction expansion, we find that

1 1
H(jo) = —2 2
o) =01t jos3

The inverse transform of each term can be recognized from Example 4.24, with the result
that

h(t) = %e"u(t‘) + %6_3’140).

The procedure used in Example 4.25 to obtain the inverse Fourier transform is gen-
erally useful in inverting transforms that are ratios of polynomials in jw. In particular,
we can use eq. (4.76) to determine the frequency response of any LTI system described
by a linear constant-coefficient differential equation and then can calculate the impulse
response by performing a partial-fraction expansion that puts the frequency response into
a form in which the inverse transform of each term can be recognized by inspection. In
addition, if the Fourier transform X(jw) of the input to such a system is also a ratio of
polynomials in jw, then so is Y(jw) = H(jw)X(jw). In this case we can use the same
technique to solve the differential equation—that is, to find the response y(¢) to the input
x(?). This is illustrated in the next example.

Example 4.26
Consider the system of Example 4.25, and suppose that the input is
x(®) = e 'u(r).

Then, using eq. (4.80), we have

Lo . Lo Jo +2 1
o) = HGXGo) = | o 5580 | 7

_ jo+2 @481
(jo + 1)*(jo +3) .
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As discussed in the appendix, in this case the partial-fraction expansion takes the form

. An A Az
YGo) = it Got 2 T jot 3

(4.82)

where Ay, Ay, and Ay are constants to be determined. In Example A.2 in the appendix,

the technique of partial-fraction expansion is used to determine these constants. The
values obtained are

1 1 1
Ay = e Ap = 3 Ay = @
so that
l 1 1
— i 3 __x ]
Yie) ]w+1 (o +1?7  jo+3 (483)

Again, the inverse Fourier transform forieach term in eq. (4.83) can be obtained by in-
spection. The first and third terms are of the same type that we have encountered in the
preceding two examples, while the inverse transform of the second term can be obtained
from Table 4.2 or, as was done in Example 4.19, by applying the dual of the differenti-

ation property, as given in eq. (4.40), to 1/( ]w + 1). The inverse transform of eq. (4.83)
is then found to be

y(t) = %e“ + %te“ - %e‘& u(z).

From the preceding examples, we see how the techniques of Fourier analysis allow
us to reduce problems concerning LTI systems characterized by differential equations to
straightforward algebraic problems. This important fact is illustrated further in a number
of the problems at the end of the chapter. In addition (see Chapter 6), the algebraic structure
of the rational transforms encountered in dealing with LTI systems described by differen-
tial equations greatly facilitate the analysis of their frequency-domain properties and the

development of insights into both the time-domain and frequency-domain characteristics
of this important class of systems. S ~

+ SUMMARY

In this chapter, we have developed the Fourier transform representation for continous-time
signals and have examined many of the properties.that make this transform so useful. In
particular, by viewing an aperiodic signal as the limit of a periodic signal as the period
becomes arbitrarily large, we derived the Fourier transform representation for aperiodic
signals from the Fourier series representation for periodic signals developed in Chapter 3.
In addition, periodic signals themselves can be represented using Fourier transforms con-
sisting of trains of impulses located at the harmonic frequencies of the periodic signal and
with areas proportional to the corresponding Fourier series coefficients.

The Fourier transform possesses a wide variety of important properties that de-
scribe how different characteristics of signals are reflected in their transforms, and in
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this chapter we have derived and examined many of these properties. Among them g,
two that have particular significance for our study of signals and systems. The first is fpe
convolution property, which is a direct consequence of the eigenfunction property of cop,.
plex exponential signals and which leads to the description of an LTI system in terpg
of its frequency response. This description plays a fundamental role in the frequency.
domain approach to the analysis of LTI systems, which we will continue to explore i -
subsequent chapters. The second property of the Fourier transform that has extremely
important implications is the multiplication property, which provides the basis for the
frequency-domain analysis of sampling and modulation systems. We examine these sys.
tems further in Chapters 7 and 8.

We have also seen that the tools of Fourier analysis are particularly well suited t,
the examination of LTI systems characterized by linear constant-coefficient differentiy]
equations. Specifically, we have found that the frequency response for such a system cap
be determined by inspection and that the technique of partial-fraction expansion can thep
be used to facilitate the calculation of the impulse response of the system. In subsequent
chapters, we will find that the convenient algebraic structure of the frequency responses
of these systems allows us to gain considerable insight into their characteristics in both the
time and frequency domains.

The first section of problems belongs to the basic category and the answers are pro-
vided in the back of the book. The remaining three sections contain problems belonging
to the basic, advanced, and extension categories, respectively.

BASIC PROBLEMS WITH ANSWERS

4.1. Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms
of:
(@) e 2Dy —1)  (b) e Ut
Sketch and label the magnitude of each Fourier transform.

4.2. Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms
of:
@ 8¢+ 1)+8¢—-1) (b Lu(-2-1+ut-2)}
Sketch and label the magnitude of each Fourier transform.

4.3. Determine the Fourier transform of each of the following periodic signals:
(a) sinQ2wt + %) (b) 1 + cos(6mt + %)

4.4. Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier
transforms of:
(@) Xi(jw) = 27 é(w) + md(w — 47r) + 7 6(w + 4)
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4.5.

4.6.

4.7.

4.8.

4.9.

2, 0=w=2
M) X(jw) =< -2, 2=w<0
0, |w|>2
Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier
transform of X(jw) = |X(jw)|e/*XU®), where
X(jo)| = 2{u( +3) ~ u(w - 3},
IX(jw) = —%w + . ,
Use your answer to determine the values of ¢ for which x(¢) = 0.
Given that x(¢) has the Fourier transformn X(jw), express the Fourier transforms of
the signals listed below in terms of X(jw). You may find useful the Fourier transform
properties listed in Table 4.1.
@ x@=xqA-+x(—-1-9
(b) x3(t) = x(3r —6)
© x(0) = Gx—1)
For each of the following Fourier transforms, use Fourier transform properties (Table
4.1) to determine whether the corresponding time-domain signal is (i) real, imaginary,
or neither and (i) even, odd, or neither. Do this without evaluating the inverse of any
of the given transforms.
@ X,(jw) = u(w) — ulw —2)
®) X;(jw) = cos2w)sin(3)
(© X;3(jw) = A(w)e/®®), where A(w) = (sin2w)/w and B(w) = 2w + J
@ X(jo) = Zi_ G 8 — )
Consider the signal ¢
0, t<-—1
xt)=<t+1 —I=e=1l
L t>1
(a) Use the differentiation and integration properties in Table 4.1 and the Fourier
transform pair for the rectangular pulse in Table 4.2 to find a closed-form ex-
pression for X(jw).
(b) What is the Fourier transform of g(r) = x(r) — 17
Consider the signal

_ 10 | >1
x(’)“{(t+1)/2, “l=t=1

(a) With the help of Tables 4.1 and 4.2, determine the closed-form expression for
X(jw).

(b) Take the real part of your answer to part (a), and verify that it is the Fourier
transform of the even part of x(¢).

(c) What is the Fourier transform of the odd part of x(¢)?




