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(10.58)

lently, laz™!| < 1.
ion (10.3), we see,
I'=a;x2] = g2,

lently, |az™!| > 1,
ot converge, How-

(10.59)

—a?, ... that s,

sform is particu-
owing example:

(10.60)
11in a power series
(10.61)

(10.62)

(10.63)
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or equivalently,

x[n] = #u[n - 11

In Problem 10.63 we consider a related example with region of convergence |z| < |a].

10.4 GEOMETRIC EVALUATION OF THE FOURIER TRANSFORM
FROM THE POLE-ZERO PLOT

In Section 10.1 we noted that the z-transform reduces to the Fourier transform for |z| = 1
(i.e., for the contour in the z-plane.corresponding to the unit circle), provided that the
ROC of the z-transform includes the unit circle, so that the Fourier transform converges.
In a similar manner, we saw in Chapter 9 that, for continuous-time signals, the Laplace
transform reduces to the Fourier transform on the jw-axis in the s-plane. In Section 9.4,
we also discussed the geometric evaluation of the continuous-time Fourier transform from
the pole-zero plot. In the discrete-time case, the Fourier transform can again be evaluated
geometrically by considering the pole and zero vectors in the z-plane. However, since in
this case the rational function is to be evaluated on the contour |z| = 1, we consider the
vectors from the poles and zeros to the unit circle rather than to the imaginary axis. To
illustrate the procedure, let us consider first-order and second-order systems, as discussed
in Section 6.6.

10.4.1 First-Order Systems

The impulse résponse of a first-order causal discrete-time system is of the general form
hin) = a"uln], (10.64)

and from Example 10.1, its z-transform is

1 _z

- = , 2 >l (10.65)
— az Z—a

H(z) = 1

For |a| < 1, the ROC includes the unit circle, and consequently, the Fourier transform of
h[n] converges and is equal to H(z) for z = e/. Thus, the frequency response for the
first-order system is
Jjoy — 1 |’I:
H(e'®) = = \ (10.66)
Figure 10.13(a) depicts the pole-zero plot for H(z) in eq. (10.65), including the
vectors from the pole (at z = a) and zero (at z = 0) to the unit circle. With this plot, the
geometric evaluation of H(z) can be carried out using the same procedure as described in
Section 9.4. In particular, if we wish to evaluate the frequency response in eq. (10.65),
we perform the evaluation for values of z of the form z = e/“. The magnitude of the
frequency response at frequency w is the ratio of the length of the vector v; to the length
of the vector v, shown in Figure 10.13(a). The phase of the frequency response is the an-
gle of v; with respect to the real axis minus the angle of v,. Furthermore, the vector v; from
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Figure 10.13 (a) Pole and zero
vectors for the geometric determina-
tion of the frequency response for a
first-order system for a value of a be-
tween 0 and 1; (b) magnitude of the
—m/2 frequency response for a2 = 0.95 and
a = 0.5; (c) phase of the frequency
© | response for a = 0.95 and a = 0.5.

~ the zero at the origin to the unit circle has a constant length of unity and thus has n
effect on the magnitude of H(e/). The phase contributed to H(e/*) by the zero is th
angle of the zero vector with respect to the real axis, which we see is equal to w. Fo
0 < a < 1, the pole vector has minimum length at = 0 and monotonically increases i
length as w increases from zero to 7. Thus, the magnitude of the frequency response will b
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maximum atw = 0and will decrease monotonically as @ increases from O to 7. The angle
of the pole vector begins at zero and increases monotonically as w increases from zero to
ar. The resulting magnitude and phase of H(e/®) are shown in Figures 10.13(b) and (c),
respectively, for two values of a.

The magnitude of the parameter a in the discrete-time first-order system plays a
role similar to that of the time constant 7 for the continuous-time first-order system of
Section 9.4.1. Note first that, as illustrated in Figure 10.13, the magnitude of the peak
of H(e/®) at w = 0 decreases as |a| decreases toward 0. Also, as was discussed in Sec-
tion 6.6.1 and illustrated in Figures 6.26 and 6.27, as |a| decreases, the impulse response
decays more sharply and the step response settles more quickly. With multiple poles, the
speed of response associated with each pole is related to its distance from the origin, with
those closest to the origin contributing the most rapidly decaying terms in the impulse re-
sponse. This is further illustrated in the case of second-order systems, which we consider
next.

10.4.2 Second-Order Systems

Next, let us consider the class of second-order systems as discussed in Section 6.6.2, with
impulse response and frequency response given in egs. (6.64) and (6.60), which we re-
spectively repeat here as

o sin(n + 1)8

ey uln] (10.67)

hln] =

and

1

H(e™y = s ——
™) 1 — 2rcosfejo + p2e~J2w

(10.68)

where 0 < r <1 and 0 < 0 < 7. Since H(e/®) = H(z)|,~ ., we can infer from
eq. (10.68) that the system function, corresponding to the z-transform of the system
impuise response, is

1
1—(Qrcos@)z7t + 2772

H(z) = (10.69)

The poles of H(z) are located at

7z = rel®, 2 = re” I, (10.70)

and there is a double zero at z = 0. The pole-zero plot and the pole and zero vectors with
0 < 0 < 7/2 are illustrated in Figure 10.14(a). In this case, the magnitude of the frequency
response equals the square of the magnitude of v; (since there is a double zero at the origin)
divided by the product of the magnitudes of v, and v3. Because the length of the vector v;
from the zero at the origin is 1 for all values of w, the magnitude of the frequency response
equals the reciprocal of the product of the lengths of the two pole vectors v, and v3. Also,
the phase of the frequency response equals twice the angle of v; with respect to the real
axis minus the sums of the angles of v, and vs. In Figure 10.14(b) we show the magnitude
of the frequency response for » = 0.95 and r = (.75, while in Figure 10.14(c) we display
the phase of H(e/®) for the same two values of ». We note in particular that, as we move
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Figure 10.14  (a) Zero vector v, and pole
vectors v, and v, used in the geometric cal-
culation of the frequency responses for
a second-order system; (b) magnitude
of the frequency response correspond-
ing to the reciprocal of the product

of the lengths of the pole vectors for
r=0.95and r = 0.75; (c) phase of
the frequency response for r = 0.95
and r = 0.75.

along the unit circle from w = 0 toward w = 7, the length of the vector v; first decreases
and then increases, with a minimum length in the vicinity of the pole location, at w = 0.
This is consistent with the fact that the magnitude of the frequency response peaks for
near 0 when the length of the vector v; is small. Based on the behavior of the pole vectors,
it is also evident that as r increases toward unity, the minimum length of the pole vectors
will decrease, causing the frequency response to peak more sharply with increasing r.
Also, for r near unity, the angle of the vector v, changes sharply for w in the vicinity of

. Furthermore, from the form of the impulse response [eq. (10.67) and Figure 6.29] or the
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step response [eq. (6.67) and Figure 6.30], we see, as we did with the first-order system,
that as the poles move closer to the origin, corresponding to r decreasing, the impulse
response decays more rapidly and the step response settles more quickly.

1: 10.5 PROPERTIES OF THE z-TRANSFORM

As with the other transforms we have developed, the z-transform possesses a number of
properties that make it an extremely valuable tool in the study of discrete-time signals and
systems. In this section, we summarize many of these properties. Their derivations are
analogous to the derivations of properties for the other transforms, and thus, many are left
as exercises at the end of the chapter. (See Problems 10.43 and 10.51-10.54.)

10.5.1 Linearity

If
z ) '
x1[n] «— Xi(2), with ROC = Ry,
and
z
x[n} «— X5(z), withROC = R,,
then
Z
axi[n] + bxy[n] «— aXi(z) + bXy(z), with ROC containing R; N R,. (10.71)

As indicated, the ROC of the linear combination is at least the intersection of Ry
and R,. For sequences with rational z-transforms, if the poles of aX;(z) + bX,(z) consist
of all of the poles of X;(z) and X,(z) (i.e., if there is no pole-zero cancellation), then the
region of convergence will be exactly equal to the overlap of the individual regions of
convergence. If the linear combination is such that some zeros are introduced that cancel
poles, then the region of convergence may be larger. A simple example of this occurs
when x1[n] and x;[n] are both of infinite duration, but the linear combination is of finite
duration. In this case the region of convergence of the linear combination is the entire
z-plane, with the possible exception of zero and/or infinity. For example, the sequences
a"u[n] and a"u[n — 1] both have a region of convergence defined by |z| > |a|, but the
sequence corresponding to the difference (a"u[n] — a”u[n — 1]) = 8[n] has a region of
convergence that is the entire z-plane.

10.5.2 Time Shifting
If .

Zz
x[n] «— X(z), withROC = R,
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z .
x[n — ng] «— 77™X(z), with ROC = R, except for
the possible addition or dele- (10.72)
tion of the origin or infinity.

Because of the multiplication by z™™, for no > 0 poles will be introduced at z = (),
which may cancel corresponding zeros of X(z) at z = 0. Consequently, z = 0 may be
pole of z7" X(z) while it may not be a pole of X(z). In this case the ROC for z~ ™ X(z) equals
the ROC of X(z) but with the origin deleted. Similarly, if ny < 0, zeros will be introduced
at z = 0, which may cancel corresponding poles of X(z) at z = 0. Consequently, 7 = 0
may be a zero of 27" X(z) while it may not be a pole of X(z). In this case z = ©is a pole
of 77" X(z), and thus the ROC for z7™X(z) equals the ROC of X(z) but with the 7z = «
deleted.

10.5.3 Scaling in the z-Domain
If

Z
x[n] «— X(z), withROC = R,

Z
Zix(n] < X(—ZZ—) with ROC = |z|R, (10.73)
0

where |z9|R is the scaled version of R. That is, if z is a point in the ROC of X(z), then the
point |zg|z is in the ROC of X(z/z¢). Also, if X(z) has apole (or zero) at 7 = a, then X(z/z9)
has a pole (or zero) at z = zpa.

An important special case of eq. (10.73) is when 0 = e/ In th1s case, |z|R = R
and

. z - .
/2" x[n] «—— X(e™/°°7). (10.74)

The left-hand side of eq. (10.74) corresponds to multiplication by a complex exponential
sequence. The right-hand side can be interpreted as a rotation in the z-plane; that is, all
pole-zero locations rotate in the z-plane by an angle of wy, as illustrated in Figure 10.15.
This can be seen by noting that if X(z) has a factor of the form 1 — az™?, then X(e™/“°z)
will have a factor 1 —ae/®0z~1, and thus, a pole or zero at z = ain X(z) will become a pole
or zero at 7 = ae/® in X(e~/“0z). The behavior of the z-transform on the unit circle will
then also shift by an angle of wy. This is consistent with the frequency-shifting property
set forth in Section 5.3.3, where multiplication with a complex exponential in the time
domain was shown to correspond to a shift in frequency of the Fourier transform. Also,
in the more general case when 7y = rpe/®0 in eq. (10.73), the pole and zero locations are
rotated by wg and scaled in magnitude by a factor of rg.
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Figure 10.15 Effect on the pole-zero plot of time-domain multiplica- e
tion by a complex exponential sequence e/«": (a) pole-zero pattern for the
z-transform for a signal x[n]; (b) pole-zero pattern for the z-transform of
x[njef#en,
10.5.4 Time Reversal
If
Z .
x[n] «— X(z), with ROC = R,
then
z L
A—n} < X(}),  with ROC = L. (10.75) i

That is, if zq is in the ROC for x[n], then 1/z is in the ROC for x[—n].

10.5.5 Time Expansion

As we discussed in Section 5.3.7, the continuous-time concept of time scaling does not

directly extend to discrete time, since the discrete-time index is defined only for integer

values. However, the discrete-time concept of time expansion—i.e., of inserting a number

of zeros between successive values of a discrete-time sequence x[#]—can be defined and

X(e 3 ‘ dogs play an important role in discrete-time signal and system analysis. Specifically, the
sequence x([n], introduced in Section 5.3.7 and defined as

[ x[n/k], if nis a multiple of k (10.76
Xpln] = { 0, if n is not a multiple of k (10.76)

has k — 1 zeros inserted between successive values of the original signal. In this case, if

Z
x[n] «— X(z), with ROC = R,
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xpln] << X(Z),  withROC = RV, (10,

That is, if z is in the ROC of X(z), then the point z'/* is in the ROC of X(z*). Also, if X,
has a pole (or zero) at z = a, then X(z*) has a pole (or zero) at z = aV*,

The interpretation of this result follows from the power-series form of the
transform, from which we see that the coefficient of the term z7" equals the value g
the signal at time #. That is, with

+c0

X(2) = Z x[n]z™"

n=—

it follows that

40 +o

XE@) = > AnlE@H™ = > xnlcn (10.78)

A= —00 n=—ow

Examining the right-hand side of eq. (10.78), we see that the only terms that appear are of.
the form z~*". In other words, the coefficient of the term z™™ in this power series equals
0 if m is not a multiple of k and equals x[m/k] if m is a multiple of k. Thus, the inverse
transform of eq. (10.78) is x(y[n].

10.5.6 Conjugation
If

x[n] <> X(z), withROC = R, (10.79)

A[n] <= X*(&"), with ROC = R. (10.80)

Consequently, if x[#] is real, we can conclude from eq. (10.80) that
X(z) = X'(Z').

Thus, if X(z) has a pole (or zero) at z = 2y, it must also have a pole (or zero) at the com-
plex conjugate point z = z;. For example, the transform X(z) for the real signal x[n] in
Example 10.4 has poles at z = (1/3)e™/™4, '

10.5.7 The Convolution Property
If

z
x1[n] «— Xi(z), withROC = Ry,
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and

z
x3[n] «— X5(z), withROC = R,,
then

x1ln] * xaln] <> X;(2)Xx(z), with ROC containing Ry N Ry, | (10:81)

Just as with the convolution property for the Laplace transform, the ROC of
X1(2)X5(z) includes the intersection of R; and R, and may be larger if pole-zero can-
cellation occurs in the product. The convolution property for the z-transform can be
derived in a variety of different ways. A formal derivation i$ developed in Problem 10.56.
A derivation can also be carried out analogous to that used for the convolution property for
the continuous-time Fourier transform in Section 4.4, which relied on the interpretation
of the Fourier transform as the change in amplitude of a complex exponential through an

LTI system.

For the z-transform, there is another often useful interpretation of the convolution
property. From the definition in eq. (10.3), we recognize the z-transform as a series in
z~! where the coefficient of 77" is the sequence value x[n]. In essence, the convolution
property equation (10.81) states that when two polynomials or power series X;(z) and
X,(z) are multiplied, the coefficients in the polynomial representing the product are the
convolution of the coefficients in the polynomials X;(z) and X»(z). (See Pro_blem 10.57).

Example 10.15
Consider an LTI system for which

yln] = hln] * x[n], (10.82)
where
h[n] = 6[n] — 8[n — 1].
Note that
8] = 8ln— 1] = 1 — 771, (10.83)

with ROC equal to the entire z-plane except the origin. Also, the z-transform in
eq. (10.83) has a zero at z = 1. From eq. (10.81), we see that if

x[n] < X(z), withROC = R,

then

ynl < (1 - 27 HX(), (10.84)

with ROC equal to R, with the possible deletion of z = 0 and/or addition of z = 1.
Note that for this system

yln] = [8[n] = 8[n — 1]] * x[n} = x[n] ~ x[n - 1].
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That is, y[r] is the first difference of the sequence x[n]. Since the first-difference opera-
tion is commonly thought of as a discrete-time counterpart to differentiation, eq, (10.83)
can be thought of as the z-transform counterpart of the Laplace transform differentiatioy
property presented in Section 9.5.7.

Example 10.16

Suppose we now consider the ifivetse of first differencing, namely, accumulation or sup.-
mation. Specifically, let w[#n] be the running sum of x[n]:

n

wlnl = > x[k] = uln] * x[n]. (10.85) -

=—0

Then, using eq. (10.81) together with the z-transform of the unit step in Example 10.1,
we seé that
n z 1
wln] = Z x[k] «— 1_—Z_1X(Z), (10.86)

= 00

with ROC including at least the intersection of R with |z| > 1. Eq. (10.86) is the discrete-
time z-transform counterpart of the intégration property in Section 9.5.9.

Diffe_rentiation in the z-Domain

x[n] <> X(z), withROC = R,

Z
nxln] «— —z22@  with ROC = R. (10.87)

This property follows in a straightforward manner by differentiating both sides of the
expression for the z-transform given in eq. (10.3). As an example of the use of this property,
let us apply it to determining the inverse z-transform considered in Example 10.14.

Example 10.17
X(z) = log(l + az’"), | > lal, (10.88)

X -1
— (@) _  az 2] > |al. (10.89)

z
nxin] <= dz 1+ az7V’

By differentiating, we have converted the z-transform to a rational expression. The
inverse z-transform of the right-hand side of eq. (10.89) can be obtained by using Exam-
ple 10.1 together with the time-shifting property, eq. (10.72), set forth in Section 10.5.2.
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Specifically, from Example 10.1 and the linearity property,

n Z a
a(—a)*uln] «— Trar™ |z| > |al. (10.90)

Combining this with the time-shifting property yields

~1
n-1 z g
a=a)'uln—1] < o, | >ld|
Consequently,
x[n] = —_(;Q uln — 1], (10.91)

Example 10.18

As another example of the use of the differentiation property, consider determining the
inverse z-transform for

X@ =~ > 1d] (10.92)
A —az71)? ’
From Example 10.1,
n Z 1
a"uln] «— T az " |Z| > |al, . (10.93)
and hence,
R z  d 1 _ az!
na'uln] <— Z'JE (1 — az_l) T A =az )y |z| > |al. (10.94)
10.5.92 The Initial-Value Theorem
If x[n] = 0, n <0, then
x[0] = lim X(2). (10.95)
z7—>0

This property follows by considering the limit of each term individually in the ex-
pression for the z-transform, with x[#] zero for n < 0. With this constraint,

o

X(z) = > xlnlz ™

n=0

Asz — o, 77" — 0 for n > 0, whereas for n = 0, z7" = 1. Thus, eq. (10.95) follows.
As one consequence of the initial-value theorem, for a causal sequence, if x[0] is
finite, then lim,_,» X(z) is finite. Consequently, with X(z) expressed as a ratio of polyno-
mials in z, the order of the numerator polynomial cannot be greater than the order of the
denominator polynomial; or, equivalently, the number of finite zeros of X(z) cannot be
greater than the number of finite poles.
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Example 10.19

The initial-value theorem can also be useful in checking the correctness of the z
transform calculation for a signal. For example, consider the signal x[n]}in Example 10 3
From eq. (10.12), we see that x[0] = 1. Also, from eq. (10.14),

_ 3,1
-3z

a-Ieha-Iry

H

lim X(z) = lim
Z—> Z~—>0o
which is consistent with the initial-value theorem.

10.5.10 Summary of Properties

In Table 10.1, we summarize the properties of the z-transform.

10.6 SOME COMMON z-TRANSFORM PAIRS

As with the inverse Laplace transform, the inverse z-transform can often be easily evalu-
ated by expressing X(z) as a linear combination of simpler terms, the inverse transforms of
which are recognizable. In Table 10.2, we have listed a number of useful z-transform pairs.
Each of these can be developed from previous examples in combination with the proper-
ties of the z-transform listed in Table 10.1. For example, transform pairs 2 and 5 follow
directly from Example 10.1, and transform pair 7 is developed in Example 10.18. These,
together with the time-reversal and time-shifting properties set forth in Sections 10.5.4
and 10.5.2, respectively, then lead to transform pairs 3, 6, and 8. Transform pairs 9 and 10
can be developed using transform pair 2 together with the linearity and scaling properties
developed in Sections 10.5.1 and 10.5.3, respectively.

10.7 ANALYSIS AND CHARACTERIZATION OF LTI SYSTEMS
USING z-TRANSFORMS

The z-transform plays a particularly important role in the analysis and representation of
discrete-time LTI systems. From the convolution property presented in Section 10.5.7,

Y(z) = H2)X(2), (10.96)

where X(z), Y(z), and H(z) are the z-transforms of the system input, output, and impulse
response, respectively. H(z) is referred to as the system function or transfer function of the
system. For z evaluated on the unit circle (i.e., for z = €/“), H(z) reduces to the frequency
response of the system, provided that the unit circle is in the ROC for H(z). Also, from
our discussion in Section 3.2, we know that if the input to an LTI system is the complex
exponential signal x[n] = z", then the output will be H(z)z". Thatis, z" is an eigenfunction
of the system with eigenvalue given by H(z), the z-transform of the impulse response.

Many properties of a system can be tied directly to characteristics of the poles, zeros,
and region of convergence of the system function, and in this section we illustrate some
of these relationships by examining several important system properties and an important
class of systems.
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TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal Transform ROC

1. 8[n] ' 1 Allz

2. uln] |zl > 1

11—z

3. —u[-n-—1}

<
1—2z71 ld <1

4, 8[n — m] " All z, except
0@fm=>0)or
o (if m < 0)
n 1
5. a"uln] T=az ' |Z| = |a|
6. —a'ul-n—1 — l2| < |et]
1-azl
n azh]
7. na”uin] m \Zl > ia\
1] %
8 —natul-n =11 g |z] <lal
1 — [coswolz™!
9. [cos wonlu[n] [~ Booswole! T 22 2l >1
. [sinwg]z™!
) >
10. [sinwonlu[n] T Zeoswole ' +22 lz| > 1
1 — [reoswplz™!
11. [ cos wonluln] 1~ Dreoswolz! + P22 |z >r
: -1

12. [ sinwonuln] [rsinaolz lz| > r

1 —[2rcoswglz™! + r2z2

10.7.1 Causality

A causal LTI system has an impulse response A[n] that is zero for n < 0, and therefore is
right-sided. From Property 4 in Section 10.2 we then know that the ROC of H(z) is the
exterior of a circle in the z-plane. For some systems, e.g., if A{n] = 8[n], so that H(z) = 1,
the ROC can extend all the way in to and possibly include the origin. Also, in general, for
a right-sided impulse response, the ROC may or may not include infinity. For example,
if h[n] = 8[n + 1], then H(z) = z, which has a pole at infinity. However, as we saw in
Property 8 in Section 10.2, for a causal system the power series

H(z) = > hlnlz™"
n=0

does not include any positive powers of z. Consequently, the ROC includes infinity. Sum-
marizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its system function is
the exterior of a circle, including infinity.
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If H(z) is rational, then, from Property 8 in Section 10.2, for the system to be causal,
the ROC must be outside the outermost pole and infinity must be in the ROC. Equivalently,
the limit of H(z) as z —> o must be finite. As we discussed in Section 10.5.9, this is
equivalent to the numerator of H(z) having degree no larger than the denominator when
both are expressed as polynomials in z. That is:

A discrete-time LTI system with rational system function H(z) is causal if and only if:
(a) the ROC is the exterior of a circle outside the outermost pole; and (b) with H(z)
expressed as a ratio of polynomials in z; the order of the numerator cannot be greater
than the order of the denominator.

Example 10.20 by

Considér a system with system function whose algebraic expression is

Without even knowing the ROC for this system, we can conclude that the system is not
causal, because the numerator of H(z) is of higher order than the denominator.

Example 10.21

Consider a system with system function

1 N 1
—T T

H(z) = . 2| >2 (10.97)

Since the ROC for this system function is the exterior of a circle outside the outermost
pole, we know that the impulse response is right-sided. To determine if the system is
causal, we then need only check the other condition required for causality, namely that
H(z), when expressed as a ratio of polynomials in z, has numerator degree no larger than
the denominator. For this eXample,

2-377! 2P -3z
(I=3z0H1 -2z 2-3z+1

H(z) = (10.98)

so that the numerator and denominator of H(z) are both of degree two, and consequently |
we can conclude that the system is causal. This can also be verified by calculating the ‘
inverse transform of H(z). Iii particular, using transform pair 5 in Table 10.2, we find
that the impulse response of this system is

h[n] = [(%)n + 2’1} u[n]. (10.99)

1, Suf

Since A[n] = 0 for n < 0, we can confirm that the system is causal.

10.7.2 Stability

As we discussed in Section 2.3.7, the stability of a discrete-time LTI system is equivalent to
its impulse response being absolutely summable. In this case the Fourier transform of 4[n]

on
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converges, and consequently, the ROC of H(z) must include the unit circle. Summarizingf
we obtain the following result: k

An LTI system is stable if and only if the ROC of its system function H(z) includeg
the unit circle, z] = 1.

Example 10.22

Consider again the system function in eq. (10.97). Since the associated ROC s the regjop
|z} > 2, which does not include the unit circle, the system is not stable. This can also be
seen by noting that the impulse response in eq. (10.99) is not absolutely summable. If 3
however, we consider a system whose system function has the same algebraic expression’
as in eq. (10.97) but whose ROC is the region 1/2 < |¢| < 2, then the ROC does contaip :
the unit circle, so that the corresponding system is noncausal but stable. In this cage,
using transform pairs 5 and 6 from Table 10.2, we find that the corresponding impulse :
response is

hin] = (%) uln] = 2"u[—n - 1], (10.100)

which is absolutely summable. :

Also, for the third possible choice of ROC associated with the algebraic expression ;
for H(z) in eq. (10.97), namely, |7] < 1/2, the corresponding system is neither causal :
(since the ROC is not outside the outermost pole) nor stable (since the ROC does not "
include the unit circle). This can also be seen from the impulse response, which (using ;
transform pair 6 in Table 10.2) is

hin] = — [@ + 2"}{[—;1 ~1].

As Example 10.22 illustrates, it is perfectly possible for a system to be stable but !
not causal. However, if we focus on causal systems, stability can easily be checked by
examining the locations of the poles. Specifically, for a causal system with rational system ;
function, the ROC is outside the outermost pole. For this ROC to include the unit circle, :
|lz| = 1, all of the poles of the system must be inside the unit circle. That is: '

A causal LTI system with rational system function H(z) is stable if and only if all of
the poles of H(2) lic inside the unit circle—i.e., they must all have magnitude smaller
than 1.

Example 10.23

Consider a causal system with system function

1
H(z) = T—ar

which has a pole at z = a. For this system to be stable, its pole must be inside the unit
circle, i.e., we must have |a| < 1. This is consistent with the condition for the absolute
summability of the corresponding impulse response A[n] = a"u[n].
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Example 10.24

The system function for a second-order system with complex poles was given in
eq. (10.69), specifically,

1

1—(@2rcos@)z! + r2z-2’ (10.101)

H(z) =

with poles located at z; = re/® and 7z, = re”/®. Assuming causality, we see that the
ROC is outside the outermost pole (i.e., |z| > |7]). The pole-zero plot and ROC for this
system are shown in Figure 10.16 for r < 1 and r > 1. For r < 1, the poles are inside
the unit circle, the ROC includes the unit circle, and therefore, the system is stable. For
r > 1, the poles are outside the unit circle, the ROC does not include the unit circle, and
the system is unstable.

9m 9m.
Unit circle Unit circle

z-plane

Re

(@ (b)

Figure 10.16 Pole-zero plot for a second-order system with complex poles:
@r<t{b)yr>1.

10.7.3 LTI Systems Characterized by Linear Constant-Coefficient

Difference Equations

For systems characterized by linear constant-coefficient difference equations, the proper-
ties of the z-transform provide a particularly convenient procedure for obtaining the system
function, frequency response, or time-domain response of the system. Let us illustrate this
with an example.

Example 10.25

Consider an LTI system for which the input x[n] and output y[n] satisfy the linear
constant-coefficient difference equation

yln] — %y[n = 1] = x[n] + %x[n ~1]. (10.102)
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Applying the z-transform to both sides of eq. (10.102), and using the linearity Property
set forth in Section 10.5.1 and the time-shifting property presented in Section 10.5.2, we
obtain

Y(2) - %Z“IY(Z) - X(0) + %Z_IX(Z),

1+1
Y(z) = X(2) 1—%} (10.103)
— 1

From eq. (10.96), then,

_ Y@ _ 1+5
H(z) X0 1= %z“‘ (10.104)
This provides the algebraic expression for H(z), but not the region of convergence,
In fact, there are two distinct impulse responses that are consistent with the difference
equation (10.102), one right sided and the other left sided. Correspondingly, there are
two different choices for the ROC associated with the algebraic expression (10.104).
One, |z] > 1/2, is associated with the assumption that A[#] is right sided, and the other,
|z] < 1/2, is associated with the assumption that A{n] is left sided.
Consider first the choice of ROC equal to |z| > 1. Writing

Hz = (1 + lz‘l)l_;

L1’
3 1z

we can use transform pair 5 in Table 10.2, together with the linearity and time-shifting
properties, to find the corresponding impulse response '

n n~1
hln] = (%) u[nl + %(%) uln — 11

For the other choice of ROC, namely, || < 1, we can use transform pair 6 in
Table 10.2 and the linearity and time-shifting properties, yielding

1 n 1 1 n—1
hln] = — (—2—) u[—n—11- 3 (E) ul—n).
In this case, the system is anticausal (h[n] = 0 for n > 0) and unstable.

For the more general case of an Nth-order difference equation, we proceed in a man-
ner similar to that in Example 10.25, applying the z-transform to both sides of the equation
and using the linearity and time-shifting properties. In particular, consider an LTI system
for which the input and output satisfy a linear constant-coefficient difference equation of
the form ‘

N M
> apyln— k] = > bx[n — k). (10.105)
k=0" k=0
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Then taking z-transforms of both sides of eq. (10.105) and using the linearity and time-
shifting properties, we obtain

N M
Z az *Y () = z bz *X(2),
k=0 k=0

or
N M
Y@ D> at = X(2) > bk,
k=0 k=0
so that
M
Y( ) zbkz"k
Z k=0
H@) = = . 10.10
Zakz
k=0

We note in particular that the system function for a system satisfying a linear constant-
coefficient difference equation is always rational. Consistent with our previous example
and with the related discussion for the Laplace transform, the difference equation by itself
does not provide information about which ROC to associate with the algebraic expression
H(z). An additional constraint, such as the causality or stability of the system, however,
serves to specify the region of convergence. For example, if we know in addition that the
system is causal, the ROC will be outside the outermost pole. If the system is stable, the
ROC must include the unit circle.

10.7.4 Examples Relating System Behavior to the System Function

As the previous subsections illustrate, many properties of discrete-time LTI systems can
be directly related to the system function and its characteristics. In this section, we give
several additional examples to show how z-transform properties can be used in analyzing

- systems.

Example 10.26

Suppose that we are given the following information about an LTI system:
1. If the input to the system is x;[n] = (1/6)" u[n], then the output is

1 n 1 n
yiln] = [a (5) + 10 (5) }u[n],
where a is a real number.

2. If xp[n] = (—1)", then the output is y2[n] = %(—1)". As we now show, from
these two pieces of information, we can determine the system function H(z) for this
system, including the value of the number a, and can also immediately deduce a number
of other properties of the system.

The z-transforms of the signals specified in the first piece of information are
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1 1
Xi(z) = ? || > I3 (10.1Q7) '

10

Yi(z) = +
1 e

2¢!
(et 1) -5+ Dzt
= = il
(1-3z7H1—-3z7Y)
From eq. (10.96), it follows that the algebraic expression for the system function is
Yi(z) _ [(a+10)— (5 + Dz [l = g27']
@ A= 5D - 1)

(10.108)

> 2,
|2 5

H(z) = (10.109)

Furthermore, we know that the response to x;[n] = (~1)" must equal (--1)" multiplied
by the system function H(z) evaluated at z = —1. Thus from the second piece of infor-
mation given, we see that

ayr?

% N [<a+10(>§;£5)+ a6
2\3

Solving eq. (10.110), we find thata = —9, so that

(=2 - k)

- Iena -y

(10.110)

H(z)

1- 87714 1772

Hz) = ———7—,
© =T

2_ 1B, 1
-8+

H(z) = ————.
2—32z+ 14

(10.113)

Also, from the convolution property, we know that the ROC of ¥1(z) must include;
at least the intersections of the ROCs of X;(z) and H(z). Examining the three possible;
ROCs for H(z) (namely, |z| < 1/3, 1/3 < |z| < 1/2, and |z] > 1/2), we find that the only
choice that is consistent with the ROCs of X(z) and ¥;(z) is |z| > 1/2.

Since the ROC for the system includes the unit circle, we know that the system
is stable. Furthermore, from eq. (10.113) with H(z) viewed as a ratio of polynomials in
z, the order of the numerator does not exceed that of the denominator, and thus we cal
conclude that the LTI system is causal. Also, using eqs. (10.112) and (10.106), we camgy
write the difference equation that, together with the condition of initial rest, characterizes
the system:

y[n] — %y[n -1]1+ éy[n —=2] = x[n] — ~1gx[n -1+ %x[n —-2].

Example 10.27

Consider a stable and causal system with impulse response h[n] and rational syste
function H(z). Suppose it is known that H(z) contains a pole at 7 = 1/2 and a z¢
somewhere on the unit circle. The precise number and locations of all of the other pol
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and zeros are unknown. For each of the following statements, let us determine whether
we can definitely say that it is true, whether we can definitely say that it is false, or
whether there is insufficient information given to determine if it is true or not:

(a) F{(1/2)"hn)} converges.

(b) H(e/®) = 0 for some w.

(¢) A[n] has finite duration.

(d) A[n]is real.

(e) gln] = nl[hln] * h[n]] is the impulse response of a stable system.

Statement (a) is true. F { anzyr h[n]} corresponds to the value of the z-transform of
h[n] at z = 2. Thus, its convergence is equivalent to the point z = 2 being in the ROC.
Since the system is stable and causal, all of the poles of H(z) are inside the unit circle,
and the ROC includes all the points outside the unit circle, including z = 2.

Statement (b) is true because there is a zero on the unit circle.

Statement (c) is false because a finite-duration sequence must have an ROC that
includes the entire z-plane, except possibly z = 0 and/or z = cc. This is,not consistent
with having a pole at z = 1/2. -

Statement (d) requires that H(z) = H*(z"). This in turn implies that if there is
a pole (zero) at a nonreal location z = zp, there must also be a pole (zero) at z = z.
Insufficient information is given to validate such a conclusion. ‘

Statement (e) is true. Since the system is causal, A[n] = 0 for n < 0. Conse- PR
quently, A[n] * h[n] = 0 for n < 0; i.e., the system with A[n] * A[x] as its impulse re-
. sponse is causal. The same is then true for g[r] = n[h[n] * h[n]]. Furthermore, by the
* convolution property set forth in Section 10.5.7, the system function corresponding to
the impulse response A[n] * h[n] is H*(z), and by the differentiation property presented
in Section 10.5.8, the system function corresponding to g[#] is

(10.113) G(z) = —zdiiZ-Hz(z) = —2zH(2) [dizH(z)}. (10.114)

From eq. (10.114), we can conclude that the poles of G(z) are at the same locations as ‘
those of H(z), with the possible exception of the origin. Therefore, since H(z) has all its

poles inside the unit circle, so must G(z). It follows that g[»] is the impulse response of
a causal and stable system.

10.8 SYSTEM FUNCTION ALGEBRA AND BLOCK DIAGRAM
REPRESENTATIONS

Just as with the Laplace transform in continuous time, the z-transform in discrete time
allows us to replace time-domain operations such as convolution and time shifting with
algebraic operations. This was exploited in Section 10.7.3, where we were able to replace
the difference-equation description of an LTI system with an algebraic description. The
use of the z-transform to convert system descriptions to algebraic equations is also helpful
in analyzing interconnections of LTI systems and in representing and synthesizing systems
as interconnections of basic system building blocks. . '
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10.8.1 System Functions for Interconnections of LTI Systems

The system function algebra for analyzing discrete-time block diagrams such as series; v
parallel, and feedback interconnections is exactly the same as that for the corresponding
continuous-time systems in Section 9.8.1. For example, the system function for the cascade

of two discrete-time LTI systems is the product of the system functions for the individya]

systems in the cascade. Also, consider the feedback interconnection of two systems, a5

shown in Figure 10.17. It is relatively involved to determine the difference equation or im-

pulse response for the overall system working directly in the time domain. However, with

the systems and sequences expressed in terms of their z-transforms, the analysis involveg

only algebraic equations. The specific equations for the interconnection of Figure 10.17

exactly parallel egs. (9.159)—(9.163), with the final result that the overall system function

for the feedback system of Figure 10.17 is

YD _ iy - M@

Xo 9T IV HbLE (10.115)

Hi@)
hqln]

Ho(2) .
hy[n] Figure 10.17 Feedback intercon-
nection of two systems.

10.8.2 Block Diagram Representations for Causal LTI Systems
Described by Difference Equations and Rational
System Functions

Asin Section 9.8.2, we can represent causal LTI systems described by difference equations
using block diagrams involving three basic operations—in this case, addition, multiplica-
tion by a coefficient, and a unit delay. In Section 2.4.3, we described such a block diagram
for a first-order difference equation. We first revisit that example, this time using system
function algebra, and then consider several slightly more complex examples to illustrate
the basic ideas in constructing block diagram representations.

Example 10.28

Consider the causal LTI system with system function

L (10.116)

1—2z71

( H(z) = -
' 4

Using the results in Section 10.7.3, we find that this system can also be described by the
difference equation s

yinl - 3yln = 11 = xin],
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together with the condition of initial rest. In Section 2.4.3 we constructed a block diagram
representation for a first-order system of this form, and an equivalent block diagram
(corresponding to Figure 2.28 witha = —1/4 and b = 1) is shown in Figure 10.18(a).
Here, z7! is the system function of a unit delay. That is, from the time-shifting property,
the input and output of this system are related by

wln] = y[n — 11

The block diagram in Figure 10.18(a) contains a feedback loop much as for the sys-
tem considered in the previous subsection and pictured in Figure 10.17. In fact, with
some minor modifications, we can obtain the equivalent block diagram shown in Fig-
ure 10.18(b), which is exactly in the form shown in Figure 10.17, with H{(z) = 1 and
H,(z) = —1/4z7". Then, applying eq. (10.115), we can verify that the system function
of the system in Figure 10.18 is given by eq. (10.116).

xIn] O, > yln]
. I

n..
ions
lica- '
ram Figure 10.18 (a) Block diagram representations of the causal LTI system
:tem in Example 10.28; (b) equivalent block diagram representation.
Tate
Example 10.29
Suppose we now consider the causal LTT system with system function
_ 1
He = 2720 (L Ja—2m, (10.117)
! 1-2 7! 1—1 71

116)

As eq. (10.117) suggests, we can think of this system as the cascade of a system with
J the - system function 1/[1 — (1/4)z7'] and one with system function 1 — 2z~!. We have il-

lustrated the cascade in Figure 10.19(a), in which we have used the block diagram in
Figure 10.18(a) to represent 1/[1 — (1/4)z™']. We have also represented 1 — 277! using
a unit delay, an adder, and a coefficient multiplier. Using the time-shifting property, we
then see that the input v[r] and output y[n] of the system with system function 1 — 277!
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are related by
y[r] = v[n] — 2v[n — 11.

While the block diagram in Figure 10.19(a) is certainly a valid representation of
the system in eq. (10.117), it has an inefficiency whose elimination leads to an alternatiye
block-diagram representation. To see this, note that the input to both unit delay elementg
in Figure 10.19(a) is v[n], so that the outputs of these elements are identical; i.e.,

win] = s[n] = v[n - 1].

Consequently, we need not keep both of these delay elements, and we can simply yge
the output of one of them as the signal to be fed to both coefficient multipliers. The result
is the block diagram representation in Figure 10.19(b). Since each unit delay element
requires a memory register to store the preceding value of its input, the representation in
Figure 10.19(b) requires less memory than that in Figure 10.19(a).

Figure 10.19  (2) Block-diagram representations for-the system in Exam-
ple 10.29; (b) equivalent block-diagram representation using only one unit de-
lay element. '

Example 10.30
Next, consider the second-order system function
1 ' 1
H(z) = = )
I+ 3z YA =727 1+i1 1772

(10.118)

which is also described by the difference equation

y[n] + yn—1] - y[n =21 = x[nl. (10.119)
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Using the same ideas as in Example 10.28, we obtain the block-diagram representation
for this system shown in Figure 10.20(a). Specifically, since the two system function
blocks in this figure with system function z ™! are unit delays, we have

yln —1],
fln—11 = y[n -2},

il

fln]
e[n]

so that eq. (10.119) can be rewritten as

1
) = = 330n = 1)+ ol — 21 + xn),

yin

Figure 10.20 Block-diagram representations for-the system in Exam-

19) ple 10.30: (a) direct form; (b) cascade form; (c) parallel form.
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ylnl = = 3 £l + gelnl + xl

which is exactly what the figure represents. ‘
The block diagram in Figure 10.20(a) is commonly referred to as a direct-fory;
1epresentat10n since the coefficients appearing in the diagram can be determined by
_inspection.from the coefficients appearmg in the difference equation or, equivalently,
the system function. Alternatively, as in continuous time, we can obtain both cascade- -
" form and parallel-form block diagrams with the aid of a bit of system function algebra.
" Specifically, we can rewrite eq. (10.118) as

1 1 :
H(z) = (1 — %2_1>(1 — iz*)’ (10.120)

which suggests the cascade-form representation depicted in Figure 10.20(b) in which °
the system is represented as the cascade of two systems corresponding to the two factors
in eq. (10.120).

Also, by performing a partial-fraction expansion, we obtain

2 1
H@) = 3 + 3
1+3z70 11— 1z

" which leads to the paraliel-form representation depicted in Figure 10.20(c).

Example 10.31

Finally, consider the system function

Tzt~ 12 ' f
HEz) = ——2 . (10.121) |

1 i

1+ ZZ_I - §Z_2
Writing
1 7,01,
- _ -2 10.122

H(z) (1 v éZ_2>(1 Y ok ) ( )

suggests representing the system as the cascade of the system in Figure 10.20(a) and the
system with system function 1 — 2z=! — {772, However, as in Example 10.29, the unit
delay elements needed to implement the first term in eq. (10.122) also produce the de-
layed signals needed in computing the output of the second system. The result is the
direct-form block diagram shown in Figure 10.21, the details of the construction of which !
are examined in Problem 10.38. The coefficients in the direct-form representation can |
be determined by inspection from the coefficients in the system function of eq. (10.121).
We can also write H(z) in the forms

14+ 172710\ 1 = 2571
H@ = |—1 5 |1 (10.123)
1+ 52 1 72
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i
X[N] - (+ > y[n] -
ct-form
ned by
alently,
1scade- [T 1<
dgebra; - L8 |
Figure 10.21 Direct-form representation for the system in Example 10.31.
10.120) and
HG) = 4+ P — - i4f3_1. C(10.124)
. which L4370 1=z
factors Eq. (10.123) suggests a cascade-form representation, while eq. (10.124) leads to a
parallel-form block diagram. These are also considered in Problem 10.38.
The concepts used in constructing block-diagram representations in the preceding
examples can be applied directly to higher order systems, and several examples are con-
sidered in Problem 10.39. As in continuous time, there is typically considerable flexibility
in doing this—e.g., in how numerator and denominator factors are paired in a product rep-
resentation as in eq. (10.123), in the way in which each factor is implemented, and in the
order in which the factors are cascaded. While all of these variations lead to representa-
tions of the same system, in practice there are differences in the behavior of the different
block diagrams. Specifically, each block-diagram representation of a system can be trans-
lated directly into a computer algorithm for the implementation of the system. However,
10.121) because the finite word length of a computer necessitates quantizing the coefficients in the
' block diagram and because there is numerical roundoff as the algorithm operates, each of
these representations will lead to an algorithm that only approximates the behavior of the
original system. Moreover, the errors in each of these approximations will be somewhat
different. Because of these differences, considerable effort has been put into examining i
10.122). the relative merits of the various block-diagram representations in terms of their accuracy ‘
and sensitivity to quantization effects. For discussions of this subject, the reader may turn
to the references on digital signal processing in the bibliography at the end of the book.
and the )
‘he unit S
the de- 10.9 THE UNILATERAL z-TRANSFORM S
t is the B
£ which: The form of the z-transform considered thus far in this chapter is often referred to as the o
ion can_ ’ bilateral z-transform. As was the case with the Laplace transform, there is an alterna- i
0.121)- ‘ - tive form, referred to as the unilateral z-transform, that is particularly useful in analyzing B

causal systems specified by linear constant-coefficient difference equations with nonzero fe

: S initial conditions (i.e., systems that are not initially at rest). In this section, we introduce L

10.123): the unilateral z-transform and illustrate some of its properties and uses, paralleling our
- 9 discussion of the unilateral Laplace transform in Section 9.9.




