Cover Sheet

Test Duration: 120 minutes.
Coverage: Comprehensive.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains five problems.
All work should be done in the blue books provided.
Do not return this test sheet, just return the blue books.

NOTES:

• You need only plot the magnitude of a DTFT over $-\pi < \omega < \pi$, but it is very important to keep in mind that a DTFT is always periodic with period 2π.

• You must clearly label the DTFT magnitude plot requested and show as much detail as possible, clearly pointing out regions over $-\pi < \omega < \pi$ for which the DTFT is zero.

• You MUST show all work and explain how you got your answer concisely but with sufficient detail to receive full credit.

• The unit of T_s is seconds for all parts.

Notes:

Great semester! it was a pleasure having each of you in class this semester!
I really enjoyed teaching 301 this semester. Good luck on the Final!

Have a great summer!

Final Grades: The final grades are due next Monday, May 5.
It takes a while to grade the finals, get them recorded in the database, rank order every one, determine grade cut-offs, etc.
Thus, the final grades may not be done until Sunday night possibly.
Note: We are not allowed to post grades, not even with a partial SSN.
Problem 1. Consider the discrete-time LTI system described by the difference equation

\[y[n] = x[n+3] + 2x[n+2] + 3x[n+1] + 3x[n] + 3x[n-1] + 2x[n-2] + x[n-3] \quad (1) \]

(a) Plot the impulse response of the system, \(h[n] \).

(b) Determine and write a simple, closed-form expression for \(H(\omega) \), the DTFT of \(h[n] \).
 \(\text{Hint: Think convolution of two discrete-time rectangles of different widths.} \)

(c) Roughly sketch the magnitude, \(|H(\omega)| \), of the frequency response over \(-\pi < \omega < \pi\).

 (i) Explicitly list all frequencies within the range \(0 < \omega < \pi \) for which \(H(\omega) = 0 \).
 (ii) Explicitly state the numerical value of \(H(0) \).

(d) Is \(H(\omega) \) both real-valued and symmetric? If so, provide an explanation as to why \(H(\omega) \) is both real-valued and symmetric.

(e) Determine and write an expression for the time-domain output \(y[n] \) obtained when the signal \(x[n] \) below is input to the LTI system described by Equation (1).

\[x[n] = \cos \left(\frac{2\pi}{5} n \right) + \cos \left(\frac{2\pi}{3} n \right) + \cos \left(\frac{4\pi}{5} n \right) \]

Problem 2. A discrete-time signal is created by sampling a continuous-time signal as

\[x[n] = x_a(nT_s) \]

where

\[x_a(t) = T_s \frac{\sin(Wt)}{\pi t} \]

and the time between samples is given by

\[T_s = \frac{2\pi}{\frac{3}{2}W} = \frac{3\pi}{2W} \]

(i) Plot the magnitude of the DTFT of \(x[n] \) over \(-\pi < \omega < \pi \).

(ii) \(x[n] \) is passed through the DT linear system drawn below with impulse response \(h_a[n] = 2 \left\{ \frac{\sin(\frac{3}{2}n)}{\pi n} \cos \left(\frac{3\pi}{4} n \right) \right\} \) AND \(h_b[n] = 2 \left\{ \frac{\sin(\frac{\pi}{2}n)}{\pi n} \right\} \) yielding the output denoted \(y_{ab}[n] \). Plot magnitude of the DTFT of \(y_{ab}[n] \) over \(-\pi < \omega < \pi \).
Problem 3.
Consider the continuous-time signal below equal to a sum of four sinewaves.

\[x(t) = \cos(6t) + \cos(12t) + \cos(15t) + \cos(18t) + \cos(21t) + \cos(24t) \]

A discrete-time signal is created by sampling \(x(t) \) according to \(x[n] = x(nT_s) \) for \(T_s = \frac{2\pi}{24} \).

(a) Plot the magnitude of the DTFT of \(x[n] \), \(|X(\omega)| \), over \(-\pi < \omega < \pi \).

(b) \(x[n] \) is passed through a DT linear system described by the difference equation

\[y[n] = \sum_{k=0}^{7} x[n-k] \]

Plot the magnitude of the DTFT of the impulse response of the system, i.e., the frequency response, \(|H(\omega)| \), over \(-\pi < \omega < \pi \).

(c) Plot magnitude of the DTFT of the output \(y[n] \), \(|Y(\omega)| \), over \(-\pi < \omega < \pi \).

Problem 4.
Consider the continuous-time signal \(x_a(t) = \left\{ \frac{\sin(3t)}{\pi t} \right\}^2 \cos(4t) \). A discrete-time signal is created by sampling \(x_a(t) \) according to \(x[n] = x(nT_s) \) for \(T_s = \frac{2\pi}{16} \).

(a) Plot the magnitude of the DTFT of \(x[n] \), \(|X(\omega)| \), over \(-\pi < \omega < \pi \). Show all work.

(b) \(x[n] \) is passed through a DT linear system described by the difference equation

\[y[n] = \frac{1}{2} y[n-1] + x[n] - 2x[n-1] \]

Plot \(|Y(\omega)| \), the magnitude of the DTFT of the output \(y[n] \), over \(-\pi < \omega < \pi \).

Problem 5.
Consider the continuous-time signal \(x(t) = x_a(t) * \left\{ \frac{\sin(2t)}{\pi t} \right\} \), where \(* \) denotes convolution and \(x_a(t) \) is the periodic train of Dirac delta functions described below.

\[x_a(t) = \sum_{k=-\infty}^{\infty} \delta(t-k4\pi) \]

A discrete-time signal is created by sampling \(x(t) \) according to \(x[n] = x(nT_s) \) for \(T_s = \frac{2\pi}{4} \).

(i) Plot the magnitude of the DTFT of \(x[n] \) over \(-\pi < \omega < \pi \).

(ii) \(x[n] \) is passed through a DT linear system with impulse response \(h[n] = 2\frac{\sin(\frac{\pi}{8}n)}{\pi n} \cos\left(\frac{5\pi}{8}n\right) \) yielding the output \(y[n] \). Plot magnitude of the DTFT of \(y[n] \) over \(-\pi < \omega < \pi \).