Discrete-Time LTI Systems

- DT Convolution
- Define impulse response of DT System that is both Linear and Time-Invariant (LTI)

\[\delta[n] \xrightarrow{\text{LTI}} h[n] \]

To easily derive DT convolution formula, we view \(x[n] \) (input) as a sum of amplitude-scaled and time-shifted (Kronecker) Delta functions \(\Rightarrow \) See Fig. 2.1 on pg. 76

\[x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \]
- **Time-Invariance dictates:**

\[\delta[n-h] \rightarrow \text{LTI} \rightarrow h[n-h] \]

- **Homogeneity aspect of linearity dictates:**

\[x[h] \delta[n-h] \rightarrow \text{LTI} \rightarrow x[h] h[n-h] \]

- **Superposition aspect of linearity dictates:**

\[
\sum_{h=-\infty}^{\infty} x[h] \delta[n-h] \rightarrow \text{LTI} \rightarrow y[n] = \sum_{h=-\infty}^{\infty} x[h] h[n-h] = x[n] * h[n]
\]

See Fig. 2.2 on pg. 79
Summarizing:

\[x[n] \rightarrow h[n] \rightarrow y[n] = x[n] * h[n] \]

\[= \sum_{k=-\infty}^{\infty} x[k] h[n-k] \]

There are at least 3 ways to compute DT convolution:

Method 1: collectively sum

Example: \(y[n] = x[n] + x[n-1] + x[n-2] \)

Find output when: \(x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] \)

Impulse response of system?
\(y[n] = h[n] \) when \(x[n] = \delta[n] \)

\(h[n] = \delta[n] + \delta[n-1] + \delta[n-2] \)
\[x[n] = f[n] + 2 \delta[n-1] + 3 \delta[n-2] \]
\[y[n] = x[n] \ast h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] \]
\[= x[0] h[n] = h[n] \]
\[+ x[1] h[n-1] = 2 h[n-1] \]
Answer is sum: $y[n]$

$x[n]$ of "length" 3
$h[n]$ of "length" 3

$x[n] * h[n]$ of length $3 + 3 - 1 = 5$

Generally: $x[n]$ of "length" N_1
$h[n]$ of "length" N_2

$x[n] * h[n]$ of "length" $N_1 + N_2 - 1$
Note: not concerned with initial conditions in this course ⇒ unless stated otherwise assume system is initially at rest ⇒ all initial conditions = 0

Method 2: "run" input signal thru difference equation (Note: all DT LTI systems may be expressed as a difference equation)

- In the previous example: \(x[n] = 0 \) for \(n < 0 \)
 \[x[0] = 1, \; x[1] = 2, \; x[2] = 3, \; x[n] = 0 \text{ for } n > 2 \]

\(h = 0 \)

\[y[0] = x[0] + x[1] + x[-2] = 1 + 0 + 0 = 1 \]

\[y[1] = x[1] + x[0] + x[-1] = 2 + 1 + 0 = 3 \]

\[y[n] = 0 \text{ for } n > 4 \]
Method 3 Graphical Method similar to that for CT convolution:

\[y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k) \]

1. View \(x(k) \) and \(h[-(k-n)] \) as functions of \(k \)
2. Flip \(h[k] \) about \(k=0 \) to form \(h[-k] \)
3. Time-shift \(h[-k] \) to the right by \(n \) to form \(h[-(k-n)] \)
4. Pointwise-multiply to form product \(x(k)h[-(k-n)] \)
5. Sum the values of the product \(x(k)h[-(k-n)] \) over all \(k \)
6. Ostensibly repeat for each value of \(n \)

See Example 2.3 in text on pg. 83
More generally: \(x[n] = \alpha^n u[n] \)

\[h[n] = \beta^n u[n] \]

\(\alpha + \beta \)

\[y[n] = 0 \text{ for } n < 0. \]

For \(n > 0 \):

\[x[k] = \alpha^k u[k] \]

\[h[-(k-n)] = \beta^{-(k-n)} u[-(k-n)] \]

\[y[n] = \sum_{k=0}^{n} \alpha^k \beta^{n-k} = \beta^n \sum_{k=0}^{n} \left(\frac{\alpha}{\beta} \right)^k \]
\[y(n) = \beta^n \frac{1 - (\frac{\alpha}{\beta})^{n+1}}{1 - \frac{\alpha}{\beta}} = \beta^n \frac{\beta - \frac{\alpha^n}{\beta^n}}{\beta - \alpha} \]

\[= \begin{cases} \frac{\beta}{\beta - \alpha} \beta^n - \frac{\alpha}{\beta - \alpha} \alpha^n \end{cases} u(n) \]

since starts at \(n = 0 \)

Example 2.4 in text on pg. 85

\[x(n) = u(n) - u(n-5) = \begin{cases} 1, & 0 \leq n \leq 4 \\ 0, & \text{otherwise} \end{cases} \]

\[h(n) = \alpha^n \left\{ u(n) - u(n-7) \right\} \]

In contrast to text approach (Method 2), this is short enough to do by Method 1
\(x(0) = x(1) = x(2) = x(3) = x(4) = 1 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x(0)h(n))</td>
<td>1</td>
<td>(a)</td>
<td>(a^2)</td>
<td>(a^3)</td>
<td>(a^4)</td>
<td>(a^5)</td>
<td>(a^6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x(1)h(n-1))</td>
<td>0</td>
<td>1</td>
<td>(a)</td>
<td>(a^2)</td>
<td>(a^3)</td>
<td>(a^4)</td>
<td>(a^5)</td>
<td>(a^6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x(2)h(n-2))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(a)</td>
<td>(a^2)</td>
<td>(a^3)</td>
<td>(a^4)</td>
<td>(a^5)</td>
<td>(a^6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x(3)h(n-3))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(a)</td>
<td>(a^2)</td>
<td>(a^3)</td>
<td>(a^4)</td>
<td>(a^5)</td>
<td>(a^6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x(4)h(n-4))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(a)</td>
<td>(a^2)</td>
<td>(a^3)</td>
<td>(a^4)</td>
<td>(a^5)</td>
<td>(a^6)</td>
<td>0</td>
</tr>
<tr>
<td>(y(n))</td>
<td>1</td>
<td>(1+a)</td>
<td>(1+a+a^2)</td>
</tr>
</tbody>
</table>

\[\frac{1-a^3}{1-a} \quad \frac{1-a^4}{1-a} \quad \frac{1-a^5}{1-a} \quad \frac{a^2(1-a^5)}{1-a} \quad \frac{a^4(1-a^3)}{1-a} \quad \frac{a^3(1-a^4)}{1-a} \]
DT convolution satisfies:

1. Commutativity: \[x_1(n) * x_2(n) = x_2(n) * x_1(n) \]

2. Associativity:
 \[
 (x_1(n) * x_2(n)) * x_3(n) = x_1(n) * (x_2(n) * x_3(n))
 \]

3. Distributive Property:
 \[
 x_1(n) * (x_2(n) + x_3(n)) = x_1(n) * x_2(n) + x_1(n) * x_3(n)
 \]