StreamBox-HBM: Stream Analytics on High Bandwidth Hybrid Memory

The first stream analytics engine optimized for 3D Memory + DRAM on real hardware

Hongyu Miao, Purdue ECE; Myeongjae Jeon, UNIST; Gennady Pekhimenko, UToronto; Kathryn S. McKinley, Google; Felix Xiaozhu Lin, Purdue ECE

1. Motivation
- Performance demands of Stream analytics
 - High throughput: hundreds MRec/s
 - Low latency: sub second delay

- Hybrid Memory: 3D memory + DRAM
 - 3D memory: high bandwidth, small capacity; no latency benefit (unlike: SRAM+DRAM); same as DRAM w/o high parallelism / sequential access

• How can stream analytics use hybrid memory?

2. Parallel Sort for Grouping
- Grouping performs poorly on 3D memory
- Known duals of Grouping: Hash vs. Sort
 - DRAM: Hash is the best
 - 3D mem: Sort outperforms Hash with
 - Abundant bandwidth
 - High task parallelism
 - Wide SIMD (AVX-512)
 - Sequential access

3. Only use 3D mem for in-mem index
- 3D mem is capacity limited
- Minimize the use of precious capacity while exploiting the high bandwidth

4. Balance two limited resources
- 3D mem capacity and DRAM bandwidth
- Dynamically place data based on pressures

5. Key results
- Comparing to Flink
 - YSB
 - 5-10x

6. Lessons
- If you want to use 3D memory to speed up applications, consider all of the following:
 - Apps
 - High task parallelism
 - Wide SIMD (avx512)
 - Sequential mem access
 - Packed data structure
 - Runtime
 - Thread pool + custom task scheduler
 - Custom mem allocator
 - OS kernel
 - Cheap VM (hugs pages)
 - RDMA networks bypass kernel, free CPU
 - Hybrid Memory
 - DRAM

Acknowledgement: The authors affiliated with Purdue ECE were supported in part by NSF Award 1718720, NSF Award 1619075, and a Google Faculty Award