Practice Ouiz 4 Closed Book and Notes - TI 30II XS Calculator Allowed

- 1. Assuming that F(A,B,C,D) = 1 corresponds to the LED being illuminated (note active low current sinking configuration), the function realized by this circuit is:

- (A) $F = A \bullet B \bullet C \bullet D$ (B) $F = (A \bullet B \bullet C \bullet D)'$ (C) F = A + B + C + D (D) F = (A + B + C + D)' (E) none of these
- Based on a specified I_{OL} of 4 mA @ V_{OL} of 0.33 V, the **ON resistance** of a 74HC03 open-drain output relative to ground is approximately:
 - (A) 83Ω
- (B) 1000Ω
- (C) 1168 Ω
- (D) $30 \text{ K}\Omega$
- (E) none of these
- 3. Based on a specified I_{OLmax} of 4 mA @ V_{OL} of 0.33 V, the minimum value of pull-up resistor used (R_{min}) should be approximately:
 - (A) 83Ω
- (B) 1000Ω
- (C) 1168Ω
- (D) $30 \text{ K}\Omega$
- (E) none of these
- 4. Based on a desired V_{IHmin} of 4.37 V @ I_{IH} of 1 μ A at the input to the 74HC04 inverter, the **maximum** value of pull-up resistor used (R_{max}) should be approximately:
 - (A) 83Ω
- (B) 1000Ω
- (C) 1168Ω
- (D) $30 \text{ K}\Omega$
- (E) none of these
- 5. When A=L, B=L, C=L, and D=H, the current sunk by the active open-drain gate in the circuit as shown (with a 1000 Ω pull-up resistor) will be approximately:
 - (A) 0 mA
- (B) 1.6 mA
- (C) 4.0 mA
- (D) 4.6 mA
- (E) none of these