Practice Quiz 3

Closed Book and Notes - TI 30II XS Calculator Allowed

Table 1. DC Characteristics of a Hypothetical Logic Family.

V _{CC} = 5 V	V _{OH} = 3.50 V	V _{OL} = 0.50 V	V _{IH} = 2.50 V	V _{IL} = 1.00 V
$V_{TH} = (V_{OH} - V_{OL})/2$	$I_{OH} = -5.0 \text{ mA}$	I _{OL} = 10 mA	I _{IH} = 500 μA	$I_{IL} = -1.0 \text{ mA}$

- A microcontroller designed to operate over a power supply range of 2 V to 5 V and a clock frequency range of 0 to 100 MHz dissipates a maximum of 500 mW. If the supply voltage used is 2 V and the clock frequency is 100 MHz, the power dissipation of the microcontroller will be reduced to:
 - (A) 80 mW
- (B) 100 mW
- (C) 180 mW
- (D) 200 mW
- (E) none of these
- 2. A microcontroller designed to operate over a power supply range of 2 V to 5 V and a clock frequency range of 0 to 100 MHz dissipates a maximum of 500 mW. If the supply voltage used is 5 V and the clock frequency is 1 Hz, the power dissipation of the microcontroller will be reduced to:
 - (A) 80 mW
- (B) 100 mW
- (C) 180 mW
- (D) 200 mW
- (E) none of these
- 3. When interfacing an **LED** that has a **forward voltage of 1.5 V** to the logic family described in Table 1 using a *current sourcing* configuration, **maximum brightness** will be achieved (within the rated specifications) using a current limiting resistor of the value:
 - (A) 200Ω
- (B) 300Ω
- (C) 400 Ω
- (D) 500Ω
- (E) none of these
- 4. When interfacing an **LED** that has a **forward voltage of 1.5 V** to the logic family described in Table 1 using a *current sinking* configuration, **maximum brightness** will be achieved (within the rated specifications) using a current limiting resistor of the value:
 - (A) 200Ω
- (B) 300 Ω
- (C) 400Ω
- (D) 500Ω
- (E) none of these
- 5. The **complement** of the function $F(X,Y,Z) = X' \cdot Y + X \cdot (Y'+Z)$ can be expressed as:
 - (A) $F'(X,Y,Z) = X \cdot Y + X' \cdot Y' \cdot Z$
 - (B) $F'(X,Y,Z) = X' \cdot Y' + X \cdot Y \cdot Z'$
 - (C) $F'(X,Y,Z) = X \cdot Y' + X' \cdot (Y+Z')$
 - (D) $F'(X,Y,Z) = (X'+Y) \cdot (X+Y') \cdot (X+Z)$
 - (E) none of the above