Lab Quiz 1 Closed Book and Notes – TI 30II XS Calculator Allowed

1.	A single payment of \$2.41 (tax included) will get you a plain cup of coffee at Stealbucks. Expressed as an unsigned binary (base 2) number, the number of pennies your piggy bank would have to part with to purchase a small cup o' joe at Stealbucks is: (A) 1000 11112 (B) 1111 00012 (C) 010 100 0012 (D) 0010 0100 00012 (E) none of the above
2.	For only \$0.50 (tax included) you can buy a "reasonably good" cup of coffee from the Nice Guys at the local Eta Kappa Nu Lounge. But just to make it more interesting, the Nice Guys have decided to post their prices as hexadecimal numbers to make everything look like an even better buy than it already is! So expressed as an unsigned hexadecimal (base 16) number, the number of pennies a cup of Eta Kappa Nu coffee costs is: (A) 16 ₁₆ (B) 23 ₁₆ (C) 32 ₁₆ (D) 50 ₁₆ (E) none of the above
3.	The expression $(X + Y)' = X' \cdot Y'$ is an example of:
	(A) Law of Complements
	(B) Duality (C) Distributivity (B) Duality (B) Notes
((D) DeMorgan's Law (E) none of the above
4.	The dual of the expression X·Y·Z is:
	(A) X'·Y'·Z' (B) X·Y + Y·Z
	(C) X+Y+Z)
	(D) X' + Y' + Z' (E) none of the above
5.	The complement of the expression X·Y·Z is:
	(A) X'·Y'·Z'
	(B) X·Y + Y·Z
	$(C) X+Y+Z$ $(D) X'+Y'+Z'$ $F^{D}=X',Y',Z'$
	(E) none of the above $F' = \chi' + \gamma' + Z'$

Signature: _____ E-mail: ____ _ _ _ @purdue.edu