Lab Quiz 13

The questions on this quiz pertain to the *Personal Simple Computer* featured in Lab 13. Signal names and descriptions are provided in the table below.

- 1. The following control signal(s) is/are <u>not</u> asserted on a fetch cycle:
 - (A) IRA
 - (B) PCC
 - (C) POA
 - (D) all of the above
 - (E) none of the above
- 2. The following control signal(s) is/are <u>not</u> asserted on a execute cycle:
 - (A) IRL
 - (B) PCC
 - (C) POA
 - (D) all of the above
 - (E) none of the above
- 3. The following ALU control signal <u>is</u> asserted on the execute cycle of an **OUA** instruction:
 - (A) ALE
 - (B) AOE
 - (C) ALX
 - (D) ALY
 - (E) none of the above

Name	Description			
START	Asynchronous Machine Reset			
MWE	Memory Write Enable			
PCC	Program Counter Count Enable			
POA	Program Counter Output on Address Bus Enable			
IRL	Instruction Register Load Enable			
IRA	Instruction Register Output on Address Bus Enable			
AOE	A-register Output on Data Bus Enable			
ALE	ALU Function Enable			
ALX	ALU Function Select Line "X"			
ALY	ALU Function Select Line "Y"			
IPE	Input port read enable			
OPE	Output port write enable			
RUN	Machine Run Enable			

Opcode	Mnemonic		Function Performed
000	HLT		halt execution
001	LDA	addr	$(A) \leftarrow (addr)$
010	ADD	addr	$(A) \leftarrow (A) + (addr)$
011	SUB	addr	$(A) \leftarrow (A) - (addr)$
100	AND	addr	$(A) \leftarrow (A) \cap (addr)$
101	STA	addr	$(addr) \leftarrow (A)$
110	INA	9	(A)←DIP[3:0]
111	OUA	-	DIS4 ←(A)

- 4. Assuming the **CF** condition code bit is **initially cleared**, a **SUB** followed by an **ADD** (using the same two operands) that could be performed on the **PSC** 716 to verify that **CF** was properly **being set and subsequently cleared** is:
 - (A) 1111 1110 followed by 1111 + 1110
 - (B) 0010 0011 followed by 0010 + 0011
 - (C) 0010 0001 followed by 0010 + 0001
 - (D) 0001 1110 followed by 0001 + 1110
 - (E) none of the above
- 5. Assuming the **VF** condition code bit is **initially cleared**, a **SUB** followed by an **ADD** (using the same two operands) that could be performed on the **PSC** 716 to verify that **VF** was properly **being set and subsequently cleared** is:
 - (A) 1111 1110 followed by 1111 + 1110
 - (B) 0111 1001 followed by 0111 + 1001
 - (C) 0010 0011 followed by 0010 + 0011
 - (D) 0001 1110 followed by 0001 + 1110
 - (E) none of the above

Signature:	E-mail:	@purdue.edu
.0.10001101		@paraac.caa