
School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 1

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4

Arithmetic and Computer Logic Circuits

 RADIX – a commonly-used signed number notation
(also called 2’s complement)

 OPERAND – a binary number involved in an arithmetic
or logical operation

 HALF ADDER – logic circuit that adds two binary bits
to produce carry and sum outputs

 FULL ADDER – logic circuit that adds three binary bits
to produce carry and sum outputs

 ADDER/SUBTRACTOR – logic circuit that adds and
subtracts pairs of binary operands

 MAGNITUDE COMPARATOR – logic circuit that
determines which binary operand is greater/less than
a second binary operand

Glossary of Common Terms

2

 CARRY LOOK-AHEAD – a means of generating the carry
functions needed for addition in parallel

 MULTIPLIER – logic circuit that multiplies pairs of binary
operands

 COMPUTER – device that sequentially executes a stored
program

 PROGRAM – a series of instructions that direct the
processing activity of a computer

 INSTRUCTION – a unit of processing activity (“line of
code”) executed by a computer

 OPCODE – the “operation code” field of an instruction

Glossary of Common Terms

3

 MEMORY – array of D latches used to store
instructions, operands, and results

 PROGRAM COUNTER – register that points to the next
instruction to execute

 INSTRUCTION REGISTER – register used to “stage”
the instruction fetched from memory

 ALU – arithmetic logic unit, performs arithmetic and
logic operations on binary operands

 INSTRUCTION DECODER & MICROSEQUENCER –
state machine that orchestrates the activities of a
computer’s functional blocks

Glossary of Common Terms

4

 MICROSEQUENCE – the “minute” phases of instruction
processing by a computer

 TRANSFER OF CONTROL – continue execution of
program at a location different than the next consecutive
instruction

 I/O – data input and output operations performed by a
computer

 STACK – last in, first out data structure used to support
expression evaluation and subroutine linkage

 STACK POINTER – register used to point to the top stack
item (or next available location)

Glossary of Common Terms

5

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-A

Signed Number Notation

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 2

Reading Assignment:
DDPP 4th Ed. pp. 34-39, 5th Ed. pp. 44-48

Learning Objectives:
 Compare and contrast three different signed number

notations: sign and magnitude, diminished radix, and
radix

 Convert a number from one signed notation to another

 Describe how to perform sign extension of a number
represented using any of the three notation schemes

7

 Overview
 Signed number notation

– Sign and magnitude
– Diminished radix
– Radix
– Comparison chart

 Simplifications for binary numbers
 Sign extension

8

Outline

Overview
 In order to represent positive and negative numbers

as a series of digits without “+” and “–” signs,
various signed number notations have been devised

 We will discuss the three most commonly used
signed number notations:
– sign and magnitude (SM)
– diminished radix (DR)
– radix (R)

9

Sign and Magnitude
 The original signed number convention employed by

“vacuum tube vintage digijocks” was sign and
magnitude notation

 Here the left-most digit (or “sign bit”) indicates whether
the number is positive or negative:
– “0” positive
– “R–1” negative (where R is the radix or base of

the number)

10

Sign and Magnitude
 Examples:

(+123)10 = SM(0123)10

(–123)10 = SM(9123)10

(+144)5 = SM(0144)5

(–144)5 = SM(4144)5

SM(0123)10 and SM(9123)10 are referred to as the
sign and magnitude complements of one another

11

Sign and Magnitude
 Negation Method: If N is a number in base R with

sign digit nS, such that

(N)R = nSn3n2n1n0

then

–(N)R = (R–1–nS)n3n2n1n0

 Examples:

(+1101)2 = SM(01101)2

(–1101)2 = SM(11101)2

12

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 3

Diminished Radix
 The negation (or complement) of a number represented

in diminished radix (DR) notation can be found by
subtracting each digit (including the sign digit) from
(R–1), i.e., the “radix minus one” or the “radix
diminished by one”

 Examples:

(+123)10 = DR(0123)10

(–123)10 = (9999 – 0123)10 = DR(9876)10

DR(0123)10 and DR(9876)10 are referred to as the
diminished radix complements of one another.

13

Diminished Radix
 Negation Method: If N is a number in base R,

–(N)R = (Rn – 1)R – (N)R

 Examples:

(+1101)2 = DR(01101)2

(–1101)2 = DR(10010)2

Note that positive DR numbers have the same representation
as positive SM numbers; negative DR and SM numbers,
however, have different representations

14

Radix
 The negation (or complement) of a number represented

in radix (R) notation can be found by adding one to the
least significant position of the diminished radix
negation of that number

 Examples:

(+123)10 = R(0123)10

(–123)10 = (9999 – 0123 + 1)10 = R(9877)10

R(0123)10 and R(9877)10 are referred to as the
radix complements of one another

15

Radix
 Negation Method: If N is a number in base R,

–(N)R = (Rn)R – (N)R

 Examples:

(+1101)2 = R(01101)2

(–1101)2 = R(10011)2

Note that positive R, DR, and SM numbers all have the
same representation; negative R, DR, and SM numbers,
however, all have different representations

16

Comparison of Signed Number Notations
N10 SM DR R
+3 011 011
+2 010 010
+1 001 001
+0 000 000
–0 100 111
–1 101 110
–2 110 101
–3 111 100
–4 — —

17

Comparison of Signed Number Notations

N10 SM DR R
+3 011 011
+2 010 010
+1 001 001
+0 000 000 000
–0 100 111 —
–1 101 110
–2 110 101
–3 111 100
–4 — —

 18

Radix has no
“negative zero”

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 4

Comparison of Signed Number Notations

N10 SM DR R
+3 011 011 011
+2 010 010 010
+1 001 001 001
+0 000 000 000
–0 100 111 —
–1 101 110
–2 110 101
–3 111 100
–4 — —

Radix has no
“negative zero”

19

All positive number
representations are
identical

Comparison of Signed Number Notations

N10 SM DR R
+3 011 011 011
+2 010 010 010
+1 001 001 001
+0 000 000 000
–0 100 111 —
–1 101 110 111
–2 110 101 110
–3 111 100 101
–4 — — 100

Radix has no
“negative zero”

All positive number
representations are
identical

All negative number
representations are
different

20

Comparison of Signed Number Notations

N10 SM DR R
+3 011 011 011
+2 010 010 010
+1 001 001 001
+0 000 000 000
–0 100 111 —
–1 101 110 111
–2 110 101 110
–3 111 100 101
–4 — — 100

Radix has an extra
negative number 21

Radix has no
“negative zero”

All positive number
representations are
identical

All negative number
representations are
different

Simplifications for Binary
 When finding the negations (complements) of binary

(base 2) numbers, the methods simplify as follows:

– SM: complement the sign position

– DR (also called 1’s complement): complement each
position

– R (also called 2’s complement):

• add 1 to the DR complement -or-

• scan number from right to left; complement each
position to the left of the first “1” encountered

22

Practice
 If (N)2 = SM(01100)2, find –(N)2

 If (N)2 = DR(01100)2, find –(N)2

 If (N)2 = R(01100)2, find –(N)2

SM(11100)2

DR(10011)2

R(10100)2

23

Sign Extension
 Sometimes signed numbers of different length (number

of bits) need to be added together – here, the “shorter”
number needs to be “padded” with leading digits to make
it the two numbers the same length

 The rules for padding signed numbers with leading digits
are as follows:

– SM: insert as many zeroes as needed to the right of the
sign position

– DR & R: replicate the sign digit as many times as
needed

24

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 5

Practice
 Extend SM(09345)10 to 8 digits

 Extend DR(76500)8 to 8 digits

 Extend R(01100)2 to 8 digits

 Extend R(11100)2 to 8 digits

SM(00009345)10

DR(77776500)8

R(00001100)2

R(11111100)2

25

Comparison/Observations
 SM and DR notation have a balanced set of positive

and negative numbers, and have two representations
for zero

 R notation has an unbalanced set of positive and
negative numbers (there is an “extra negative
number”), and has a single representation for zero

 99% of all computers use radix notation; our
discussion on addition and subtraction will therefore
focus on radix arithmetic (we will assume a prefix of
“R” on all numbers subsequently used)

26

27

Clicker
Quiz

1. The five-bit radix number, R(10101)2,
converted to sign and magnitude
notation, is:
A. SM (10101)2

B. SM (01010)2

C. SM (11010)2

D. SM (11011)2

E. none of the above

28

2. The five-bit diminished radix number,
DR(10101)2, converted to sign and
magnitude notation, is:
A. SM (10101)2

B. SM (01010)2

C. SM (11010)2

D. SM (11011)2

E. none of the above

29

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-B

Radix Addition and Subtraction

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 6

Reading Assignment:
DDPP 4th Ed. pp. 39-43, 5th Ed. pp. 48-52

Learning Objectives:
 perform radix addition and subtraction

 describe the various conditions of interest following an
arithmetic operation: overflow, carry, negative, zero

31

 Radix Addition
 Overflow Detection
 Radix Subtraction

32

Outline

Radix Arithmetic – Addition
 Method: Add all digits, including the sign digits; ignore

any carry out of the sign position

 Problem: Since we are working with numbers of fixed
length, the result of an addition can yield a number which
is too large to represent in the same number of digits –
this error condition is called overflow

 Important: When overflow occurs, there is no valid
numeric result

33

Overflow Detection
 Summarization: Overflow occurs if two positive numbers

are added and a negative result is obtained, or if two
negative numbers are added and a positive result is
obtained (or, if numbers of like sign are added and a result
with the opposite sign is obtained)

 Overflow cannot occur when adding numbers of the
opposite sign

 Another way to detect overflow: If the carry in to the sign
position is different than the carry out of the sign position,
then overflow has occurred

34

Radix Arithmetic – Addition
 Examples: (all numbers are binary)

0 0 1 1 0 0 0 0 1 0
+ 0 1 0 1 0 + 0 1 0 1 0

1 0 0 0 0

Here, added two
positive numbers,
but got a negative
result OVERFLOW

+6

+10

35

Radix Arithmetic – Addition
 Examples: (all numbers are binary)

0 0 1 1 0 0 0 0 1 0
+ 0 1 0 1 0 + 0 1 0 1 0

1 0 0 0 0 0 1 1 0 0

Here, added two
positive numbers,
but got a negative
result OVERFLOW

+6

+10

Here, added two
positive numbers,
and got a positive
result (+12) OK!

+2

+10

36

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 7

Radix Arithmetic – Addition
 Examples: (all numbers are binary)

1 1 1 0 0 1 0 0 1 1
+ 1 0 1 1 0 + 1 0 0 0 1
1 1 0 0 1 0

- 4

- 10

Here, added two
negative numbers,
and got a negative
result (-14) OK!

ignore

37

Radix Arithmetic – Addition
 Examples: (all numbers are binary)

1 1 1 0 0 1 0 0 1 1
+ 1 0 1 1 0 + 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 0 0

- 4

- 10

Here, added two
negative numbers,
and got a negative
result (-14) OK!

ignore

- 13

- 15

ignore

Here, added two
negative numbers,
but got a positive
result OVERFLOW

38

Radix Arithmetic – Addition
 Examples: (all numbers are binary)

1 0 0 1 1 0 1 1 1 1
+ 0 1 1 1 1 + 1 0 0 0 0
1 0 0 0 1 0

-13

+15

ignore

Here, added numbers
of opposite sign
overflow cannot occur
(result is +2)

39

Radix Arithmetic – Addition
 Examples: (all numbers are binary)

1 0 0 1 1 0 1 1 1 1
+ 0 1 1 1 1 + 1 0 0 0 0
1 0 0 0 1 0 1 1 1 1 1

-13

+15

ignore

Here, added numbers
of opposite sign
overflow cannot occur
(result is +2)

+15

-16

Again, added numbers
of opposite sign
overflow cannot occur
(result is -1)

40

Radix Arithmetic – Subtraction
 Method: Take the radix complement of the

subtrahend and ADD; the same rules for
overflow apply

 Examples:

0 1 0 1 1
– 0 1 1 0 0

Why does this work?

Examples: 5 − (+3) = 5 + (−3) = 2

9 – (−13) = 9 + (+13) = 22
41

Radix Arithmetic – Subtraction
 Method: Take the radix complement of the

subtrahend and ADD; the same rules for
overflow apply

 Examples:

0 1 0 1 1 0 1 0 1 1
– 0 1 1 0 0 1 0 0 1 1

+ 1
1 1 1 1 1

+11

+12
Radix complement
of subtrahend

minuend

Here, added numbers
of opposite sign
overflow cannot occur
(result is -1)

42

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 8

Radix Arithmetic – Subtraction
 Examples:

0 1 0 1 1 0 1 0 1 1
– 1 0 0 0 0 0 1 1 1 1

+ 1
1 1 0 1 1 Overflow

+11

-16

43

Radix Arithmetic – Subtraction
 Examples:

0 1 0 1 1 0 1 0 1 1
– 1 0 0 0 0 0 1 1 1 1

+ 1
1 1 0 1 1 Overflow

1 0 0 0 1 1 0 0 0 1
– 0 0 0 1 0 1 1 1 0 1

+ 1
1 0 1 1 1 1 Overflow

+11

-16

-15

+2

ignore
44

Radix Arithmetic – Subtraction
 Examples:

0 1 0 1 1 0 1 0 1 1
– 0 0 0 0 0 1 1 1 1 1

+ 1
1 0 1 0 1 1

+11

0

ignore +11

45

Radix Arithmetic – Subtraction
 Examples:

0 1 0 1 1 0 1 0 1 1
– 0 0 0 0 0 1 1 1 1 1

+ 1
1 0 1 0 1 1

1 0 0 0 1 1 0 0 0 1
– 1 1 1 1 1 0 0 0 0 0

+ 1
1 0 0 1 0

+11

0

ignore

-15

-1

+11

-14

46

47

Clicker
Quiz

1. When adding the five-bit signed
numbers (10111)2 + (11001)2 using
radix arithmetic, the result obtained is:
A. (10000)2

B. (110000)2

C. (11000)2

D. overflow (invalid result)

E. none of the above

48

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 9

2. When subtracting the five-bit signed
numbers (10111)2 - (11001)2 using
radix arithmetic, the result obtained is:
A. (10000)2

B. (11000)2

C. (11110)2

D. overflow (invalid result)

E. none of the above

49

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-C

Adder, Subtractor, and Comparator Circuits

Reading Assignment:
DDPP 4th Ed. pp. 458-466, 469-478; 5th Ed. pp. 331-339, 341-345, 372-375

Learning Objectives:
 Describe the operation of a half-adder and write equations for its

sum (S) and carry (C) outputs

 Describe the operation of a full adder and write equations for its
sum (S) and carry (C) outputs

 Design a “population counting” or “vote counting” circuit using
an array of half-adders and/or full-adders

 Design an N-digit radix adder/subtractor circuit with condition
codes

 Design a (signed or unsigned) magnitude comparator circuit that
determines if A=B, A<B, or A>B

51

Outline
 Overview
 Half Adders
 Full Adders
 Radix Adder/Subtractors
 Comparators

52

Overview
 Addition is the most commonly performed arithmetic

operation in digital systems

 An adder combines two arithmetic operands using the
addition rules described previously

 The same addition rules (and circuits) are used for both
signed (two’s complement) and unsigned numbers

 Subtraction can be performed by taking the complement
of the subtrahend and adding it to the minuend

53

Half Adders
 A half adder is used to add two binary digits, Xi and Yi,

to form a sum digit, Si, and a carry digit, Ci

Xi Yi Ci Si

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Si = Xi Yi

Ci = Xi • Yi

54

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 10

Full Adders
 A full adder is used to add three binary digits, Xi, Yi, Ci-1

(where Ci-1 is usually the carry in from a previous stage),
to form a sum digit, Si, and a carry out digit, Ci

55

Full Adders
Xi Yi Ci-1 Ci Si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Si = Xi Yi Ci-1

Ci = Xi•Yi + Xi•Ci-1 + Yi•Ci-1 56

Example – Vote Counting Circuit
 Using only half adders and full adders, design a circuit

that finds the (unsigned) sum of five binary digits

Xi Yi

Ci Si

HA
Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

V W

X

Y Z

S0S1S2

V
W
X
Y
Z

––––
S2S1S0Also called a “population” counter

57 58

Clicker
Quiz

The Digi-Vota-Matic is a three-judge score
tabulation system that allows each judge to
enter a score ranging from “0” (002) to “3” (112)
on a pair of DIP switches, and displays the sum
of the three scores (ranging from “0” to “9”) on
a 7-segment LED.

59

1. Implemented using a CASE statement in Verilog,
a circuit that finds the sum of three 2-bit unsigned
numbers would require ___ assignments.
A. 16

B. 32

C. 64

D. 128

E. none of the above

60

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 11

2. Implemented using a 22V10 PLD, a circuit that
finds the sum of three 2-bit unsigned numbers
would require no more than ___ macrocells.
A. 2

B. 4

C. 8

D. 16

E. none of the above

61

Multi-Digit Adder/Subtractor Circuits
 Two binary words, each with n bits, can be added using

a ripple adder – a cascade of n full-adder stages, each
of which handles one bit (also called an iterative circuit)

 The word ripple describes the flow of the carries from
one full adder cell to the next

 Subtraction is performed by taking the diminished radix
complement of the subtrahend (using XOR gates) and
setting the least significant bit carry-in (LSB Cin) to “1”
(effectively forming the radix complement of the
subtrahend)

62

Review of Radix Addition
 Method: Add all digits, including the sign digits; ignore

any carry out of the sign position

 Problem: Since we are working with numbers of fixed
length, the result of an addition can yield a number
which is too large to represent in the same number of
digits – this error condition is called overflow

 Important: When overflow occurs, there is no valid
numeric result

63

Overflow Detection
 Summarization: Overflow occurs if two positive numbers

are added and a negative result is obtained, or if two
negative numbers are added and a positive result is
obtained (or, if numbers of like sign are added and a
result with the opposite sign is obtained)

 Overflow cannot occur when adding numbers of the
opposite sign

 Another way to detect overflow: If the carry in to the sign
position is different than the carry out of the sign
position, then overflow has occurred

64

Example – 4-bit Ripple Adder/Subtractor

65

A3 A2 A1 A0

B3 B2 B1 B0

S3 S2 S1 S0

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1 LSB
Cin

66

Example – 4-bit Ripple Adder/Subtractor
A3 A2 A1 A0

B3 B2 B1 B0

S3 S2 S1 S0

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 12

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1 LSB
Cin

A0A1A2A3

S0S1S2S3

67

Example – 4-bit Ripple Adder/Subtractor
A3 A2 A1 A0

B3 B2 B1 B0

S3 S2 S1 S0

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1 LSB
Cin

A0A1A2A3

S0S1S2S3

B3 B2 B1 B0

M

0 add
1 subtract

M =

68

Example – 4-bit Ripple Adder/Subtractor
A3 A2 A1 A0

B3 B2 B1 B0

S3 S2 S1 S0

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1 LSB
Cin

A0A1A2A3

S0S1S2S3

B3 B2 B1 B0

V (overflow)
69

M

0 add
1 subtract

M =

Example – 4-bit Ripple Adder/Subtractor
A3 A2 A1 A0

B3 B2 B1 B0

S3 S2 S1 S0

Other Conditions of Interest
 In addition to overflow, other conditions of interest

following an arithmetic operation include the
following:
– ZERO – the result of the computation was 00…0
– NEGATIVE – the result of the computation was a

negative number
– CARRY – the computation produced a carry out of

the sign position
 These conditions are sometimes referred to as

“condition codes” or “flags”

70

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1 LSB
Cin

A0A1A2A3

S0S1S2S3

B3 B2 B1 B0

V (overflow)
71

M

0 add
1 subtract

M =

Example – 4-bit Ripple Adder/Subtractor
A3 A2 A1 A0

B3 B2 B1 B0

S3 S2 S1 S0

ZC
N

Looking Ahead…
• The “C” (carry) flag serves multiple purposes

 Extended precision add/subtract (“extended” integer multiples of 32
bits, if using a 32-bit processor)
 Add – “C” bit (being set) represents the presence of a carry propagated forward

(from least significant word to most significant word of extended number)

 Subtract – “C” bit (being set) represents the absence of a borrow propagated
forward (i.e., the complement of a borrow propagated forward, which means that
C=1 indicates that no borrow is propagated forward)

 So…regardless of whether an add or subtract is performed, the “C” bit is simply
set to the carry out of the sign position

 Conditional execution (change of flow)
 Flags set based on subtract of operands being compared (e.g. CMP instruction)

72

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 13

Looking Ahead…
• ARM extended precision 64-bit addition using (iterative) ADCS

73

(R1)(R1)+(R3)+(CF)

Looking Ahead…
• ARM extended precision 64-bit subtraction using (iterative) SBCS

74

(R1)(R1)-(R3)-(CF)
which is equivalent to…
(R1)(R1)-(R3)+(CF)

(CF) is the borrow
propagated forward

75

Clicker
Quiz

1. When performing radix addition, the XOR
of the carry in to the sign position with the
carry out of the sign position provides a
means to:
A. generate a carry that is propagated forward

B. generate a borrow that is propagated
forward

C. check for a negative result

D. check for an invalid result

E. none of the above

76

2. Following a subtract operation, the carry
flag (C) can be used to:
A. generate the complement of a borrow that is

propagated forward

B. generate a borrow that is propagated forward

C. check for a negative result

D. check for an invalid result

E. none of the above

77

3. Following an add operation, the negative
flag (N) can be used to:
A. generate a carry that is propagated forward

B. generate a borrow that is propagated
forward

C. check for a negative result

D. check for an invalid result

E. none of the above

78

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 14

Comparators
 Comparing two binary words for equality is a

commonly used operation in computer systems –
a circuit that does this is called a comparator

 XOR and XNOR gates may be viewed as one-bit
comparators (from which larger comparators can
be built)

 Circuits that determine an arithmetic relationship
between two operands (greater or less than) are
called magnitude comparators

79

Example – 4-bit Magnitude Comparator
 Design a 4-bit (signed) magnitude comparator that

determines if A=B, A<B, or A>B

 Solution: Calculate (A–B) and examine the condition codes
produced for each case

– ZERO (“Z” for zero flag)

– NEGATIVE (“N” for negative flag)

– CARRY (“C” for carry/borrow flag)

– OVERFLOW (“V” for overflow flag)

Need to know how the condition codes are affected
for all possible results generated

80

81

Example – 4-bit Magnitude Comparator
Step 1: Determine condition codes produced for all possible (2-bit) cases of A–B

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0

0 0 0 0 1 +1
0 0 0 1 0 -2

0 0 0 1 1 -1
0 1 +1 0 0 0

0 1 +1 0 1 +1
0 1 +1 1 0 -2

0 1 +1 1 1 -1
1 0 -2 0 0 0

1 0 -2 0 1 +1
1 0 -2 1 0 -2

1 0 -2 1 1 -1
1 1 -1 0 0 0

1 1 -1 0 1 +1
1 1 -1 1 0 -2

1 1 -1 1 1 -1
82

Example – 4-bit Magnitude Comparator
Step 1: Determine condition codes produced for all possible (2-bit) cases of A–B

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 +1 0 0 1 0

0 0 0 1 0 -2 0 0 1 1
0 0 0 1 1 -1 0 0 0 0

0 1 +1 0 0 0 1 0 0 0
0 1 +1 0 1 +1 1 1 0 0

0 1 +1 1 0 -2 0 0 1 1
0 1 +1 1 1 -1 0 0 1 1

1 0 -2 0 0 0 1 0 1 0
1 0 -2 0 1 +1 1 0 0 1

1 0 -2 1 0 -2 1 1 0 0
1 0 -2 1 1 -1 0 0 1 0

1 1 -1 0 0 0 1 0 1 0
1 1 -1 0 1 +1 1 0 1 0

1 1 -1 1 0 -2 1 0 0 0

1 1 -1 1 1 -1 1 1 0 0

83

Example – 4-bit Magnitude Comparator
Step 1: Determine condition codes produced for all possible (2-bit) cases of A–B

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0 (A) = (B) 1 1 0 0
0 0 0 0 1 +1 (A) < (B) 0 0 1 0

0 0 0 1 0 -2 (A) > (B) 0 0 1 1
0 0 0 1 1 -1 (A) > (B) 0 0 0 0

0 1 +1 0 0 0 (A) > (B) 1 0 0 0
0 1 +1 0 1 +1 (A) = (B) 1 1 0 0

0 1 +1 1 0 -2 (A) > (B) 0 0 1 1
0 1 +1 1 1 -1 (A) > (B) 0 0 1 1

1 0 -2 0 0 0 (A) < (B) 1 0 1 0
1 0 -2 0 1 +1 (A) < (B) 1 0 0 1

1 0 -2 1 0 -2 (A) = (B) 1 1 0 0
1 0 -2 1 1 -1 (A) < (B) 0 0 1 0

1 1 -1 0 0 0 (A) < (B) 1 0 1 0
1 1 -1 0 1 +1 (A) < (B) 1 0 1 0

1 1 -1 1 0 -2 (A) > (B) 1 0 0 0

1 1 -1 1 1 -1 (A) = (B) 1 1 0 0
84

Example – 4-bit Magnitude Comparator
Step 2: Make note of the condition code combinations corresponding to the
functions A=B, A<B, and A>B

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0 (A) = (B) 1 1 0 0

0 0 0 0 1 +1 (A) < (B) 0 0 1 0
0 0 0 1 0 -2 (A) > (B) 0 0 1 1

0 0 0 1 1 -1 (A) > (B) 0 0 0 0
0 1 +1 0 0 0 (A) > (B) 1 0 0 0

0 1 +1 0 1 +1 (A) = (B) 1 1 0 0
0 1 +1 1 0 -2 (A) > (B) 0 0 1 1

0 1 +1 1 1 -1 (A) > (B) 0 0 1 1
1 0 -2 0 0 0 (A) < (B) 1 0 1 0

1 0 -2 0 1 +1 (A) < (B) 1 0 0 1
1 0 -2 1 0 -2 (A) = (B) 1 1 0 0

1 0 -2 1 1 -1 (A) < (B) 0 0 1 0
1 1 -1 0 0 0 (A) < (B) 1 0 1 0

1 1 -1 0 1 +1 (A) < (B) 1 0 1 0
1 1 -1 1 0 -2 (A) > (B) 1 0 0 0

1 1 -1 1 1 -1 (A) = (B) 1 1 0 0

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 15

85

Example – 4-bit Magnitude Comparator
Step 2: Make note of the condition code combinations corresponding to the
functions A=B, A<B, and A>B

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0 (A) = (B) 1 1 0 0

0 0 0 0 1 +1 (A) < (B) 0 0 1 0
0 0 0 1 0 -2 (A) > (B) 0 0 1 1

0 0 0 1 1 -1 (A) > (B) 0 0 0 0
0 1 +1 0 0 0 (A) > (B) 1 0 0 0

0 1 +1 0 1 +1 (A) = (B) 1 1 0 0
0 1 +1 1 0 -2 (A) > (B) 0 0 1 1

0 1 +1 1 1 -1 (A) > (B) 0 0 1 1
1 0 -2 0 0 0 (A) < (B) 1 0 1 0

1 0 -2 0 1 +1 (A) < (B) 1 0 0 1
1 0 -2 1 0 -2 (A) = (B) 1 1 0 0

1 0 -2 1 1 -1 (A) < (B) 0 0 1 0
1 1 -1 0 0 0 (A) < (B) 1 0 1 0

1 1 -1 0 1 +1 (A) < (B) 1 0 1 0
1 1 -1 1 0 -2 (A) > (B) 1 0 0 0

1 1 -1 1 1 -1 (A) = (B) 1 1 0 0
86

Example – 4-bit Magnitude Comparator
Step 2: Make note of the condition code combinations corresponding to the
functions A=B, A<B, and A>B

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0 (A) = (B) 1 1 0 0

0 0 0 0 1 +1 (A) < (B) 0 0 1 0
0 0 0 1 0 -2 (A) > (B) 0 0 1 1

0 0 0 1 1 -1 (A) > (B) 0 0 0 0
0 1 +1 0 0 0 (A) > (B) 1 0 0 0

0 1 +1 0 1 +1 (A) = (B) 1 1 0 0
0 1 +1 1 0 -2 (A) > (B) 0 0 1 1

0 1 +1 1 1 -1 (A) > (B) 0 0 1 1
1 0 -2 0 0 0 (A) < (B) 1 0 1 0

1 0 -2 0 1 +1 (A) < (B) 1 0 0 1
1 0 -2 1 0 -2 (A) = (B) 1 1 0 0

1 0 -2 1 1 -1 (A) < (B) 0 0 1 0
1 1 -1 0 0 0 (A) < (B) 1 0 1 0

1 1 -1 0 1 +1 (A) < (B) 1 0 1 0
1 1 -1 1 0 -2 (A) > (B) 1 0 0 0

1 1 -1 1 1 -1 (A) = (B) 1 1 0 0

87

Example – 4-bit Magnitude Comparator
Step 3: Observe that FA=B = Z

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0 (A) = (B) 1 1 0 0

0 0 0 0 1 +1 (A) < (B) 0 0 1 0
0 0 0 1 0 -2 (A) > (B) 0 0 1 1

0 0 0 1 1 -1 (A) > (B) 0 0 0 0
0 1 +1 0 0 0 (A) > (B) 1 0 0 0

0 1 +1 0 1 +1 (A) = (B) 1 1 0 0
0 1 +1 1 0 -2 (A) > (B) 0 0 1 1

0 1 +1 1 1 -1 (A) > (B) 0 0 1 1
1 0 -2 0 0 0 (A) < (B) 1 0 1 0

1 0 -2 0 1 +1 (A) < (B) 1 0 0 1
1 0 -2 1 0 -2 (A) = (B) 1 1 0 0

1 0 -2 1 1 -1 (A) < (B) 0 0 1 0
1 1 -1 0 0 0 (A) < (B) 1 0 1 0

1 1 -1 0 1 +1 (A) < (B) 1 0 1 0
1 1 -1 1 0 -2 (A) > (B) 1 0 0 0

1 1 -1 1 1 -1 (A) = (B) 1 1 0 0

 C C
0 4 12 8

V
 N

1 5 13 9

3 7 15 11
V

N
2 6 14 10

V

 Z Z Z

0 d 0 0

d d d 1

0 d d d

1 d d 1

88

Example – 4-bit Magnitude Comparator
Step 4: Map and minimize the function for FA<B

FA<B = N V

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0 (A) = (B) 1 1 0 0
0 0 0 0 1 +1 (A) < (B) 0 0 1 0
0 0 0 1 0 -2 (A) > (B) 0 0 1 1
0 0 0 1 1 -1 (A) > (B) 0 0 0 0
0 1 +1 0 0 0 (A) > (B) 1 0 0 0
0 1 +1 0 1 +1 (A) = (B) 1 1 0 0
0 1 +1 1 0 -2 (A) > (B) 0 0 1 1
0 1 +1 1 1 -1 (A) > (B) 0 0 1 1
1 0 -2 0 0 0 (A) < (B) 1 0 1 0
1 0 -2 0 1 +1 (A) < (B) 1 0 0 1
1 0 -2 1 0 -2 (A) = (B) 1 1 0 0
1 0 -2 1 1 -1 (A) < (B) 0 0 1 0
1 1 -1 0 0 0 (A) < (B) 1 0 1 0
1 1 -1 0 1 +1 (A) < (B) 1 0 1 0
1 1 -1 1 0 -2 (A) > (B) 1 0 0 0
1 1 -1 1 1 -1 (A) = (B) 1 1 0 0

 C C
0 4 12 8

V
 N

1 5 13 9

3 7 15 11
V

N
2 6 14 10

V

 Z Z Z

1 d 0 1

d d d 0

1 d d d

0 d d 0

89

Example – 4-bit Magnitude Comparator
Step 5: Map and minimize the function for FA>B

FA>B = V•N + V•N•Z

A1 A0 (A) B1 B0 (B) ? C Z N V

0 0 0 0 0 0 (A) = (B) 1 1 0 0
0 0 0 0 1 +1 (A) < (B) 0 0 1 0
0 0 0 1 0 -2 (A) > (B) 0 0 1 1
0 0 0 1 1 -1 (A) > (B) 0 0 0 0
0 1 +1 0 0 0 (A) > (B) 1 0 0 0
0 1 +1 0 1 +1 (A) = (B) 1 1 0 0
0 1 +1 1 0 -2 (A) > (B) 0 0 1 1
0 1 +1 1 1 -1 (A) > (B) 0 0 1 1
1 0 -2 0 0 0 (A) < (B) 1 0 1 0
1 0 -2 0 1 +1 (A) < (B) 1 0 0 1
1 0 -2 1 0 -2 (A) = (B) 1 1 0 0
1 0 -2 1 1 -1 (A) < (B) 0 0 1 0
1 1 -1 0 0 0 (A) < (B) 1 0 1 0
1 1 -1 0 1 +1 (A) < (B) 1 0 1 0
1 1 -1 1 0 -2 (A) > (B) 1 0 0 0
1 1 -1 1 1 -1 (A) = (B) 1 1 0 0

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

Xi Yi

Ci Si

FA Ci-1

A0A1A2A3

S0S1S2S3

B3 B2 B1 B0

V (overflow)
90

Example – 4-bit Ripple Adder/Subtractor
A3 A2 A1 A0

B3 B2 B1 B0

S3 S2 S1 S0

FA=B = ZC
N

1

C
N
V
Z

– FA<B = N V
FA>B = V•N + V•N•Z

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 16

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-D

Carry Look-Ahead Adder Circuits

Reading Assignment:
DDPP 4th Ed. pp. 478-482, 484-487, 490-491; 5th Ed. pp. 376-383, 384-386

Instructional Objectives:
 Describe the operation of a carry look-ahead (CLA) adder circuit, and

compare its performance to that of a ripple adder circuit

 Define the CLA propagate (P) and generate (G) functions, and show
how they can be realized using a half-adder

 Write the equation for the carry out function of an arbitrary CLA bit
position

 Draw a diagram depicting the overall organization of a CLA

 Determine the worst case propagation delay incurred by a practical
(PLD-based) realization of a CLA

 Describe how a “group ripple” adder can be constructed using N-bit
CLA blocks

92

Outline
 Overview
 CLA derivation
 CLA organization
 Sample CLA realization in Verilog
 Observations

93

Overview
 Previously we looked at one method of constructing an

n-digit binary adder from n full adders: connecting the
carry out from one stage to the carry in of the next in a
ripple fashion

 For large values of n, the propagation delay of a ripple
adder can be excessive

 A significant speed-up could be obtained by calculating
the carries in parallel, rather than iteratively – a design
that accomplishes this goal is the carry look-ahead
(CLA) adder circuit (look-ahead anticipated)

94

CLA Derivation
Consider the 4-bit binary adder:

Stage: 3 2 1 0

Augend: X3 X2 X1 X0

Addend: Y3 Y2 Y1 Y0

Sum: S3 S2 S1 S0

95

CLA Derivation
 Definition: The generate function Gi = 1 if there is a

carry out of stage i regardless of whether or not there
is a carry in to stage i (i.e., both Xi and Yi are 1)

Gi = Xi • Yi

 Definition: The propagate function Pi = 1 if a carry in to
stage i will cause a carry out of stage i (i.e., either Xi = 0
and Yi = 1 or Xi = 1 and Yi = 0)

Pi = Xi Yi

NOTE: Another valid definition of Pi is Xi+Yi – the “XOR”
definition leads to some CLA circuit simplifications, however

96

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 17

CLA Derivation
 Illustration of propagate and generate

x 1 1 x

+ x 0 1 x

Generate from
stage 1

Propagated by
stage 2

11

97

CLA Derivation
 Note that the Pi and Gi functions can be generated

using a half adder

Xi Yi Ci Si

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Pi = Si = Xi Yi

Gi = Ci = Xi • Yi

98

CLA Derivation
 Next we would like to write our basic full adder

equations in terms of propagate and generate
functions

 To do this, we will need to reexamine the K-maps
for the sum and carry equations of the full adder

99

Full Adder – Review

Xi Yi Ci-1 Ci Si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

100

Full Adder – Review
 Map of sum function:

0 2 6 4

1 3 7 5

X X

Y Y

Ci-1

Ci-1

Y

0

1 0 1

01 1

0

Si = Xi Yi Ci-1 = Pi Ci-1

101

Full Adder – Review
 Map of carry function:

0 2 6 4

1 3 7 5

X X

Y Y

Ci-1

Ci-1

Y

0

0 1 1

10 0

1

Ci = Xi•Yi + Ci-1•(Xi Yi) = Gi + Ci-1•Pi

102

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 18

CLA Derivation
 Rewriting the equations for our 4-bit binary adder,

we obtain the following:

C-1 = Cin

C0 = G0 + Cin•P0

C1 = G1 + C0•P1

C2 = G2 + C1•P2

C3 = Cout = G3 + C2•P3

103

CLA Derivation
 We would like to write these equations in terms of

available inputs (P’s, G’s, and Cin) rather than the
intermediate carries (C0, C1, etc.) – the key to doing
this is successive expansion of the previous equations
in terms of the equation for C0:

C1 = G1 + C0•P1

= G1 + (G0 + Cin•P0)• P1

104

CLA Derivation
C1 = G1 + C0•P1

= G1 + (G0 + Cin•P0)•P1

= G1 + G0•P1 + Cin•P0•P1

What is this
equation
“saying”?

 Each term represents one possibility for obtaining
a carry out of stage 1:
– there is a generate in stage 1 (G1 = 1)
– there is a generate in stage 0 (G0 = 1) which is

propagated by stage 1 (P1 = 1)
– there is a carry in (Cin = 1) which is propagated

by stages 0 (P0=1) and 1 (P1=1)
105

CLA Derivation – Exercise
 Write the remaining 4-bit CLA adder carry

equations:

C2 =

C3 =

106

CLA Derivation – Exercise
 Write the remaining 4-bit CLA adder carry equations:

C2 = G2 + G1•P2 + G0•P1•P2 + CIN•P0•P1•P2

C3 =

107

CLA Derivation – Exercise
 Write the remaining 4-bit CLA adder carry equations:

C2 = G2 + G1•P2 + G0•P1•P2 + CIN•P0•P1•P2

C3 = G3 + G2•P3 + G1•P2•P3 + G0•P1•P2•P3

+ CIN•P0•P1•P2•P3

108

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 19

CLA Organization

Xi Yi

Ci Si

HA

A0 B0

G0 P0

Xi Yi

Ci Si

HA

A1 B1

G1 P1

Xi Yi

Ci Si

HA

A2 B2

G2 P2

Xi Yi

Ci Si

HA

A3 B3

G3 P3

Carry and Sum Equations Cin

S0S1S2S3

Cout

Si = Pi Ci-1

Ci = Gi + Gi-1•Pi + Gi-2•Pi-1•Pi + … + Cin•P0•P1•••Pi

where Gj = Aj•Bj and Pj = AjBj 109

Example – Sample 4-bit CLA Realization (the “hard” way…)
/* 4-bit Carry Look-Ahead Adder */

module cla4(X, Y, CIN, S);

input wire [3:0] X, Y; // Operands

input wire CIN; // Carry in

output wire [3:0] S; // Sum outputs

wire [3:0] C; // Carry equations (C[3] is Cout)

wire [3:0] P, G;

assign G = X & Y; // Generate functions G[0] = X[0]&Y[0]; G[1] = .. so on
assign P = X ^ Y; // Propagate functions P[0] = X[0]^Y[0]; P[1] = .. so on

// Carry function definitions

assign C[0] = G[0] | CIN & P[0];

assign C[1] = G[1] | G[0] & P[1] | CIN & P[0] & P[1];

assign C[2] = G[2] | G[1] & P[2] | G[0] & P[1] & P[2] | CIN & P[0] & P[1] & P[2];

assign C[3] = G[3] | G[2] & P[3] | G[1] & P[2] & P[3] | G[0] & P[1] & P[2] & P[3]

| CIN & P[0] & P[1] & P[2] & P[3];

assign S[0] = CIN ^ P[0];

assign S[3:1] = C[2:0] ^ P[3:1];

endmodule 110

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD

Delay Level Source Destination
===== ===== ====== ===========
6.40 1 CIN S3
6.40 1 X0 S3
6.40 1 Y0 S3
6.35 1 X1 S3
6.35 1 Y1 S3
6.30 1 X2 S3
6.30 1 Y2 S3
6.25 1 Y3 S3
5.95 1 CIN S0
5.95 1 CIN S1
5.95 1 CIN S2
5.95 1 X0 S0
5.95 1 X0 S1
5.95 1 X0 S2
5.95 1 Y0 S0
5.95 1 Y0 S1
5.95 1 Y0 S2

111

Example – Sample 4-bit CLA Realization
Example – CLA Realization Using + Operator

/* 4-bit Carry Look-Ahead Adder Using + Operator */

module cla4p(X, Y, CIN, S);

input wire [3:0] X, Y; // operands
input wire CIN; // LSB carry-in
output wire [3:0] S; // sum outputs

assign S = X + Y + {3'b000,CIN};

endmodule

112

Note: The “+” operator in Verilog synthesizes most suitable adder
realization based on optimization constraints (area, fmax, etc.)

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD

Delay Level Source Destination
===== ===== ====== ===========
6.40 1 CIN S3
6.40 1 X0 S3
6.40 1 Y0 S3
6.35 1 X1 S3
6.35 1 Y1 S3
6.30 1 X2 S3
6.30 1 Y2 S3
6.25 1 Y3 S3
5.95 1 CIN S0
5.95 1 CIN S1
5.95 1 CIN S2
5.95 1 X0 S0
5.95 1 X0 S1
5.95 1 X0 S2
5.95 1 Y0 S0
5.95 1 Y0 S1
5.95 1 Y0 S2

113

Example – CLA Realization Using + Operator

Obtain same timing results as
“hand coded” CLA equations!

Observations
 Note that regardless of the adder length (n), the time required

to produce any sum digit is the same – i.e., all sum digits are
produced in parallel

 Large CLA adders are difficult to build in practice because of
the “product term explosion” that occurs as the carry
equations are expanded

 A reasonable compromise is to make a group ripple adder by
cascading m-bit CLA blocks together to make a kxm-bit adder
(where k is the number of CLA blocks)

 The “+” operator in Verilog synthesizes most suitable adder
realization based on optimization constraints (area, fmax, etc.)

114

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 20

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-E

Multiplier Circuits

Reading Assignment:
DDPP 4th Ed. pp. 45-47, 494-496, 503; 5th Ed. pp. 54-56, 416-419

Learning Objectives:

 Describe the operation of an unsigned multiplier array
constructed using full adders

 Determine the full adder arrangement and organization
(rows/diagonals) needed to construct an NxM-bit unsigned
multiplier array

 Determine the worst case propagation delay incurred by a
practical (PLD-based) realization of an NxM-bit unsigned
multiplier array

116

Outline
 Overview
 Product components
 Example circuit
 Critical path analysis
 Generalizations
 Realizations in Verilog

117

Overview
Consider a 3x3 unsigned binary multiplication:

Multiplicand: X2 X1 X0

Multiplier: × Y2 Y1 Y0

X2Y0 X1Y0 X0Y0

X2Y1 X1Y1 X0Y1

X2Y2 X1Y2 X0Y2

P5 P4 P3 P2 P1 P0

Product
118

Product Components
 Most approaches to (unsigned) combinational binary

multiplication are based on the “paper-and-pencil”
shift and add algorithm

 Each row is called a product component – a shifted
multiplicand that is multiplied by 0 or 1 depending on
the corresponding multiplier bit

 Each xiyj term represents a product component bit (the
logical AND of multiplicand bit xi with multiplier bit yj)

 The product P = p5p4p3p2p1p0 is obtained by adding
together all the product components

119 120

C S

X
Y
Z C S

X
Y
Z

C S

X
Y
Z C S

X
Y
Z

C S

X
Y
Z C S

X
Y
Z

3x3 Multiplier Circuit (2 diagonals, 3 rows)

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 21

121

C S

X
Y
Z C S

X
Y
Z

C S

X
Y
Z C S

X
Y
Z

C S

X
Y
Z C S

X
Y
Z

X0 Y0

P0

X1 Y0

0

P1

X2 Y0

0

X0

Y2

P2

X1

Y2

X2 Y1

0

P3

X2 Y2

P5 P4

3x3 Multiplier Circuit

122

C S

X
Y
Z C S

X
Y
Z

C S

X
Y
Z C S

X
Y
Z

C S

X
Y
Z C S

X
Y
Z

X0 Y0

P0

X1 Y0

0

P1

X2 Y0

0

X0

Y2

P2

X1

Y2

X2 Y1

0

P3

X2 Y2

P5 P4

3x3 Multiplier Circuit

Critical Path
Analysis

Generalizations
 Generalizations for an NxM multiplier

– N = number of bits in multiplicand (top)
– M = number of bits in multiplier (bottom)
– produces an N+M digit result
– requires NxM AND gates to generate the product components
– requires N–1 diagonals of full adders
– requires M rows of full adders

123

Exercise
 Design a 4x2 multiplier array

X3 X2 X1 X0
Y1 Y0

X3Y0 X2Y0 X1Y0 X0Y0
X3Y1 X2Y1 X1Y1 X0Y1

P5 P4 P3 P2 P1 P0

124

125

C S

X
Y
Z C S

X
Y
Z

C S

X
Y
Z C S

X
Y
Z

C S

X
Y
Z

C S

X
Y
Z

X0 Y0

P5 P4 P3 P2 P1 P0

X1 Y0X2 Y0X3 Y0

X3 Y1 0 0 0

0

4x2 Multiplier Circuit (3 diagonals, 2 rows)

Exercise
 Design a 2x4 multiplier array

Y1 Y0
X3 X2 X1 X0

X0Y1 X0Y0
X1Y1 X1Y0

X2Y1 X2Y0
X3Y1 X3Y0

P5 P4 P3 P2 P1 P0

126

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 22

127

2x4 Circuit (1 diagonal, 4 rows)

C S

X
Y
Z

C S

X
Y
Z

C S

X
Y
Z

X0 Y0

P5 P4 P3 P2 P1 P0

X3 Y1

C S

X
Y
Z

X1 Y0

0

X1 Y1

X2
Y0

X2 Y1

X3
Y0

0

2x4 Circuit – Implemented Using 4-bit Adder

128

X3 X2 X1 X0 Y3 Y2 Y1 Y0

CinCout

S3 S2 S1 S0

4-bit Adder 0

0

P0P4 P3 P2 P1P5

X0 Y0X1 Y0X2 Y0X3 Y0X0 Y1X1 Y1X2 Y1X3 Y1

129

Clicker
Quiz

Generalizations – Review
 Generalizations for an NxM multiplier

– N = number of bits in multiplicand (top)
– M = number of bits in multiplier (bottom)
– produces an N+M digit result
– requires NxM AND gates to generate the product components
– requires N–1 diagonals of full adders
– requires M rows of full adders

130

1. A 6x4 unsigned binary multiplier array
would require ___ rows of full adder cells
A. 3

B. 4

C. 5

D. 6

E. none of the above

131

2. A 6x4 unsigned binary multiplier array would
require ___ “diagonals” of full adder cells
A. 3

B. 4

C. 5

D. 6

E. none of the above

132

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 23

3. A 6x4 unsigned binary multiplier array
would require ___ full adder cells
A. 10

B. 18

C. 20

D. 24

E. none of the above

133

4. A 6x4 unsigned binary multiplier array
would require ___ AND gates to generate
the product component bits
A. 10

B. 18

C. 20

D. 24

E. none of the above

134

5. Assuming a large 10 ns PLD was used to
generate each product component bit and
implement each full adder cell, the worst
case propagation delay of a 6x4 unsigned
binary multiplier array would be ___ ns
A. 80
B. 90
C. 100
D. 110
E. none of the above

135

6. A 4x6 unsigned binary multiplier array would
require ___ rows of full adder cells
A. 3

B. 4

C. 5

D. 6

E. none of the above

136

7. A 4x6 unsigned binary multiplier array would
require ___ “diagonals” of full adder cells
A. 3

B. 4

C. 5

D. 6

E. none of the above

137

8. A 4x6 unsigned binary multiplier array
would require ___ full adder cells
A. 10

B. 18

C. 20

D. 24

E. none of the above

138

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 24

9. A 4x6 unsigned binary multiplier array
would require ___ AND gates to generate
the product component bits
A. 10

B. 18

C. 20

D. 24

E. none of the above

139

10.Assuming a large 10 ns PLD was used to
generate each product component bit and
implement each full adder cell, the worst case
propagation delay of a 4x6 unsigned binary
multiplier array would be ___ ns
A. 80
B. 90
C. 100
D. 110
E. none of the above

140

Realizations in Verilog
 Keys

– use expressions to define product components
– use the addition operator (+) to form unsigned

sum of product components (generates CLA
adder equations)

 Example: 4x4 multiplier realization

141

/* 4x4 Combinational Multiplier */

module mul4x4(X, Y, P);

input wire [3:0] X, Y; // multiplicand, multiplier
output wire [7:0] P; // product bits

wire [7:0] PC[3:0]; // four 8-bit variables

assign PC[0] = {8{Y[0]}} & {4'b0, X}; // 0000X3X2X1X0
assign PC[1] = {8{Y[1]}} & {3'b0, X, 1'b0}; // 000X3X2X1X00
assign PC[2] = {8{Y[2]}} & {2'b0, X, 2'b0}; // 00X3X2X1X000
assign PC[3] = {8{Y[3]}} & {1'b0, X, 3'b0}; // 0X3X2X1X0000

assign P = PC[0] + PC[1] + PC[2] + PC[3];

endmodule

142

{8{Y[0]}}will extend the 1-bit signal Y[0]to an 8-bit vector

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD

Delay Level Source Destination
===== ===== ====== ===========
6.50 1 X0 P4
6.50 1 X0 P5
6.50 1 X1 P4
6.50 1 X1 P5
6.50 1 X2 P4
6.50 1 X2 P5
6.50 1 Y0 P4
6.50 1 Y0 P5
6.50 1 Y1 P4
6.50 1 Y1 P5
6.50 1 Y2 P4
6.50 1 Y2 P5
6.45 1 X3 P4
6.45 1 X3 P5
6.45 1 Y3 P4
6.45 1 Y3 P5
6.05 1 X0 P0
6.05 1 X0 P1
6.05 1 X0 P2
6.05 1 X0 P3 143

Device Resource Summary for ispMACH 4256ZE 5.8 ns CPLD

Total Used Not Used Utilization

Dedicated Pins

Clock/Input Pins 4 4 0 --> 100
Input-Only Pins 6 4 2 --> 66
I/O / Enable Pins 2 0 2 --> 0

I/O Pins 62 8 54 --> 12
Logic Functions 256 8 248 --> 3

Input Registers 64 0 64 --> 0

GLB Inputs 576 46 530 --> 7
Logical Product Terms 1280 124 1156 --> 9
Occupied GLBs 16 6 10 --> 37
Macrocells 256 8 248 --> 3

Control Product Terms:
GLB Clock/Clock Enables 16 0 16 --> 0
GLB Reset/Presets 16 0 16 --> 0
Macrocell Clocks 256 0 256 --> 0
Macrocell Clock Enables 256 0 256 --> 0
Macrocell Enables 256 0 256 --> 0
Macrocell Resets 256 0 256 --> 0
Macrocell Presets 256 0 256 --> 0

Global Routing Pool 324 8 316 --> 2
GRP from IFB .. 4 .. --> ..
(from input signals) .. 4 .. --> ..
(from output signals) .. 0 .. --> ..
(from bidir signals) .. 0 .. --> ..

GRP from MFB .. 4 .. --> .. 144

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 25

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-F

BCD Adder Circuits

Reading Assignment:
DDPP 4th Ed. pp. 48-51; 5th Ed. pp. 58-60

Learning Objectives:
 Describe the operation of a binary coded decimal

(BCD) “correction circuit”

 Design a BCD full adder circuit

 Design a BCD N-digit radix (base 10)
adder/subtractor circuit

146

Outline
 Overview
 General BCD adder circuit model
 Decimal addition and correction
 Decimal adder circuits
 Nine’s complement circuit

147

Overview
 Even though binary numbers are the most appropriate

for the internal computations of a digital system, most
people still prefer to deal with decimal numbers

 External interfaces of a digital system may need to read
or display decimal numbers, and therefore need to
perform arithmetic on decimal numbers directly

 The most commonly used decimal code is binary-coded
decimal (BCD)

 Some computers place two BCD digits in an 8-bit byte
(“packed-BCD format”)

148

Overview
 Consider the problem of adding a pair of BCD digits –

the objective is to design a circuit that adds the two 4-
bit codes along with a carry in to produce a 4-bit coded
sum digit plus a carry out

 We would like to use standard 4-bit binary adder
modules (with which we are already familiar) as basic
building blocks

 Note that because there are six “unused combinations”
in BCD, a correction must be performed if the direct
sum of the two 4-bit codes exceeds 1001

149

General BCD Adder Circuit Model

Z4Z3Z2Z1Z0 is
the direct sum
obtained from
the 4-bit adder

Conventional
4-bit binary
adder

150

X3 X2 X1 X0 Y3 Y2 Y1 Y0

CinCout

S3 S2 S1 S0

4-bit Adder

Correction Circuit

Z4 Z3 Z2 Z1 Z0

S3 S2 S1 S0Cout

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 26

Decimal Addition and Correction

3 0011

+ 4 + 0100

-- ------

7 0111

Here, direct addition of the 4-bit BCD codes
yields the correct 4-bit BCD code for the
sum digit

Result of ADD

151

Decimal Addition and Correction

7 0111

+ 8 + 1000

-- ------

15 1111

+ 0110

1 0101

Since result > 9,
add 6 to adjust

Result of ADD

Carry out = ten’s position
152

Decimal Addition and Correction

7 0111

+ 9 + 1001

-- ------

16 10000

+ 0110

1 0110

Since result > 9,
add 6 to adjust

Result of ADD

Carry out = ten’s position
153

Decimal Adder Circuits
 Summary of rules

– If the sum of the two BCD digits is less than or
equal to nine (1001), no correction is needed

– If the sum is greater than nine, the result obtained
directly from the 4-bit adder must be corrected in
order to represent the proper BCD digit

 Some microprocessors include a “decimal adjust”
(DAA) instruction for performing this correction
following the addition of BCD operands

154

N10 Z4 Z3 Z2 Z1 Z0 Cout S3 S2 S1 S0 Correction
0 0 0 0 0 0 0 0 0 0 0 <none>
1 0 0 0 0 1 0 0 0 0 1 <none>
2 0 0 0 1 0 0 0 0 1 0 <none>
3 0 0 0 1 1 0 0 0 1 1 <none>
4 0 0 1 0 0 0 0 1 0 0 <none>
5 0 0 1 0 1 0 0 1 0 1 <none>
6 0 0 1 1 0 0 0 1 1 0 <none>
7 0 0 1 1 1 0 0 1 1 1 <none>
8 0 1 0 0 0 0 1 0 0 0 <none>
9 0 1 0 0 1 0 1 0 0 1 <none>
10 0 1 0 1 0 1 0 0 0 0 <add 6>
11 0 1 0 1 1 1 0 0 0 1 <add 6>
12 0 1 1 0 0 1 0 0 1 0 <add 6>
13 0 1 1 0 1 1 0 0 1 1 <add 6>
14 0 1 1 1 0 1 0 1 0 0 <add 6>
15 0 1 1 1 1 1 0 1 0 1 <add 6>
16 1 0 0 0 0 1 0 1 1 0 <add 6>
17 1 0 0 0 1 1 0 1 1 1 <add 6>
18 1 0 0 1 0 1 1 0 0 0 <add 6>
19 1 0 0 1 1 1 1 0 0 1 <add 6>

155

Decimal Adder “Correction Function”
N10 Z4 Z3 Z2 Z1 Z0 Cout S3 S2 S1 S0 Correction
0 0 0 0 0 0 0 0 0 0 0 <none>
1 0 0 0 0 1 0 0 0 0 1 <none>
2 0 0 0 1 0 0 0 0 1 0 <none>
3 0 0 0 1 1 0 0 0 1 1 <none>
4 0 0 1 0 0 0 0 1 0 0 <none>
5 0 0 1 0 1 0 0 1 0 1 <none>
6 0 0 1 1 0 0 0 1 1 0 <none>
7 0 0 1 1 1 0 0 1 1 1 <none>
8 0 1 0 0 0 0 1 0 0 0 <none>
9 0 1 0 0 1 0 1 0 0 1 <none>
10 0 1 0 1 0 1 0 0 0 0 <add 6>
11 0 1 0 1 1 1 0 0 0 1 <add 6>
12 0 1 1 0 0 1 0 0 1 0 <add 6>
13 0 1 1 0 1 1 0 0 1 1 <add 6>
14 0 1 1 1 0 1 0 1 0 0 <add 6>
15 0 1 1 1 1 1 0 1 0 1 <add 6>
16 1 0 0 0 0 1 0 1 1 0 <add 6>
17 1 0 0 0 1 1 0 1 1 1 <add 6>
18 1 0 0 1 0 1 1 0 0 0 <add 6>
19 1 0 0 1 1 1 1 0 0 1 <add 6>

156

Decimal Adder “Correction Function”

X3 X2 X1 X0 Y3 Y2 Y1 Y0

CinCout

S3 S2 S1 S0

4-bit Adder

Correction Circuit

Z4 Z3 Z2 Z1 Z0

S3 S2 S1 S0Cout

Fcorrection = Cout = Z4 + Z3•Z2 + Z3•Z1

Z4 Z3 Z3

Z1

0 4

12 8

Z0

1 5 13 9

Z0

Z1

3 7 15 11

2 6 14 10

Z0

 Z2 Z2 Z2

Z4 Z3 Z3

Z1

16 20 28 24

Z0

17 21 29 25

Z0

Z1

19 23 31 27

18 22 30 26

Z0

 Z2 Z2 Z2

0 0 1 0

0 0 1 0

0 0 1 1

0 0 1 1

1 d d d

1 d d d

1 d d d

1 d d d

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 27

157

BCD operands

Cin

BCD sumCout

Fcorrection = Cout

= Z4 + Z3•Z2 + Z3•Z1

BCD “Full Adder” Circuit

Add 0110 (6) to
direct sum when
Fcorrection = 1

Example: The maximum value that can be generated by a BCD
full adder cell is 1910. Write the binary values (bit patterns) that
depict this case.

X3 X2 X1 X0 Y3 Y2 Y1 Y0

CinCout

S3 S2 S1 S0

4-bit Adder

Correction Circuit

Z4 Z3 Z2 Z1 Z0

S3 S2 S1 S0Cout

1 0 0 1 1 0 0 1

1 1 0 0 1

1

1 0 0 1 1

158

159

Clicker
Quiz

1. If the BCD codes for 8 and 5 were added
using a decimal full adder cell, with CIN = 1,
the resulting 5-bit output (Cout S3 S2 S1 S0)
would be:
A. 0 1 1 0 1
B. 0 1 1 1 0
C. 1 0 0 1 1
D. 1 0 1 0 0
E. none of the above

160

2. If the BCD codes for 4 and 5 were added
using a decimal full adder cell, with CIN = 1,
the resulting 5-bit output (Cout S3 S2 S1 S0)
would be:
A. 0 1 0 0 1
B. 0 1 0 1 0
C. 1 0 0 0 0
D. 1 0 0 0 1
E. none of the above

161

Decimal Adder Circuits
 Thought questions:

– How could an n-digit BCD adder be constructed
using the “decimal full adder” circuit just designed?

– How could this n-digit BCD adder be made into an
n-digit BCD adder/subtractor?

Hint: How could the radix complement of a BCD
digit (where the radix or base is 10) be generated?

162

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 28

Example: Verilog program that generates the diminished radix
(or 9’s) complement of a BCD digit

module ninescmp(X, Y); // Nine’s Complement Box

input wire [3:0] X; // input code
output reg [3:0] Y; // output code

always @ (X) begin
case (X)

4'b0000: Y = 4'b1001;
4'b0001: Y = 4'b1000;
4'b0010: Y = 4'b0111;
4'b0011: Y = 4'b0110;
4'b0100: Y = 4'b0101;
4'b0101: Y = 4'b0100;
4'b0110: Y = 4'b0011;
4'b0111: Y = 4'b0010;
4'b1000: Y = 4'b0001;
4'b1001: Y = 4'b0000;
default: Y = 4'b0000; // used for inputs > 9

endcase
end

endmodule 163

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-G

Simple Computer Top-Down Specification

Reading Assignment:
Meyer Supplemental Text, pp. 1-18

Learning Objectives:
 Define computer architecture, programming model, and instruction set
 Describe the top-down specification, bottom-up implementation

strategy as it pertains to the design of a computer
 Describe the characteristics of a “two address machine”
 Describe the contents of memory: program, operands, results of

calculations
 Describe the format and fields of a basic machine instruction (opcode

and address)
 Describe the purpose/function of each basic machine instruction (LDA,

STA, ADD, SUB, AND, HLT)
 Define what is meant by “assembly-level” instruction mnemonics
 Draw a diagram of a simple computer, showing the arrangement and

interconnection of each functional block 165

Outline
 Introduction
 Top-Down, Bottom-Up Design Methodology
 Simple Computer “Big Picture”
 A Simple Instruction Set
 A Simple Programming Example
 System Block Diagram

166

Introduction
 The focus thus far has been on a number of digital

system “building blocks”
– state machines
– latches and flip-flops
– arithmetic logic circuits
– decoders, encoders, multiplexers
– basic gates (NAND, NOR, XOR, etc.)

 Question: What is the primary utility of these building
blocks?

Building a computer or interfacing to an existing one

167

Introduction
 Question: What is a computer?

A device that sequentially executes a stored program
(or, a device that stores and manipulates state)

 Question: What is a microprocessor?

A single-chip embodiment of the major functional blocks of
a computer

 Question: What is a microcontroller?

A microprocessor with a number of integrated peripherals
typically used in control-oriented applications

168

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 29

Introduction
 Question: How can we apply what we know about various

digital system building blocks to design a simple computer?

We need a structured approach that enables us to
transform a “word” description of what a computer
does into a block diagram

 Definition: The architecture of a computer is the
arrangement and interconnection of its functional blocks

169

Introduction
 Analogy: Designing and building a house - 1

– start with the “big picture”...

170

Introduction
 Analogy: Designing and building a house - 2

– then develop a “floor plan”...

171

Introduction
 Analogy: Designing and building a house - 3

– then embellish the floor plan with details
(outlets, lights, plumbing, HVAC, etc.)

172

Introduction
 Analogy: Designing and building a house - 4

– When you’re ready to build, how do you proceed?

From the ground-up – start with the foundation,
create basic structure, embellish with finishing details

 Question: What would you call the basic procedure we
have just described?

Top-down specification of functionality,

173

bottom-up implementation of basic blocks

Simple Computer “Big Picture”
 We wish to apply this “top-down, bottom-up” methodology to

the design of a simple 8-bit computer (or, microprocessor”)
 First step: Draw the big picture

174

LED Output Port

Switch Input Port

Start Clock

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 30

Simple Computer “Floor Plan”
 Question: In the design of a computer, what is analogous

to the floor plan of a house?

The computer’s programming model and instruction set

 Definition: The programming model of a computer is the set
of “user” registers available to the programmer

 Definition: A collection of two or more flip-flops with a
common clock (and generally a common purpose) is called
a register
In the simple computer designed here, the programming model
will contain a single data register “where the result accumulates”
(the accumulator, or “A register” for short), plus condition codes
or flags (C, V, N, Z)

175

Simple Computer “Floor Plan”
 Definition: The instruction set of a computer is the set of

operations the computer can be programmed to perform on
data

 Instructions typically consist of several fields that indicate
the operation to be performed (“operation code”, or opcode)
and the data on which the operation is to be performed
(specified using an addressing mode)

 Our 8-bit computer will utilize a 3-bit opcode field (thus
allowing 8 different kinds of instructions to be implemented)
and a 5-bit address field (thus allowing 32 locations)

176

Simple Computer “Floor Plan”
 Instruction format:

X X X Y Y Y Y Y

XXX – indicates operation to perform (“opcode”)

YYYYY – indicates location of operand (“address”)

Called a “two address machine” since one operand will
be the accumulator (“A”) register and the other operand
will be obtained from the specified location in memory

177

Simple Computer “Floor Plan”
 Instruction set:

Note: We will use parentheses to denote the contents
of a register or memory location, e.g., “(A)” is read as
“the contents of A”

178

Opcode Mnemonic Function Performed
0 0 0 HLT Halt – stop, discontinue execution
0 0 1 LDA addr Load A with contents of location addr
0 1 0 ADD addr Add contents of addr to contents of A
0 1 1 SUB addr Subtract contents of addr from contents of A
1 0 0 AND addr AND contents of addr with contents of A
1 0 1 STA addr Store contents of A at location addr

Addr Instruction Comments
00000 LDA 01011 Load A with contents of location 01011
00001 ADD 01100 Add contents of location 01100 to A
00010 STA 01101 Store contents of A at location 01101
00011 LDA 01011 Load A with contents of location 01011
00100 AND 01100 AND contents of 01100 with contents of A
00101 STA 01110 Store contents of A at location 01110
00110 LDA 01011 Load A with contents of location 01011
00111 SUB 01100 Subtract contents of location 01100 from A
01000 STA 01111 Store contents of A at location 01111
01001 HLT Stop – discontinue execution

Simple Programming Example

179

Location Contents
00000 001 01011
00001 010 01100
00010 101 01101
00011 001 01011
00100 100 01100
00101 101 01110
00110 001 01011
00111 011 01100
01000 101 01111
01001 000 00000
01010
01011 10101010
01100 01010101
01101
01110
01111

Memory “Snapshot”

180

Program

Operands

Results

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 31

Add:

10101010

+01010101

11111111

ADD

CF = 0
NF = 1
VF = 0
ZF = 0

181

Location Contents
00000 001 01011
00001 010 01100
00010 101 01101
00011 001 01011
00100 100 01100
00101 101 01110
00110 001 01011
00111 011 01100
01000 101 01111
01001 000 00000
01010
01011 10101010
01100 01010101
01101 11111111
01110
01111

AND:

10101010

01010101

00000000

AND

CF = <unaffected>
NF = 0
VF = <unaffected>
ZF = 1

182

Location Contents
00000 001 01011
00001 010 01100
00010 101 01101
00011 001 01011
00100 100 01100
00101 101 01110
00110 001 01011
00111 011 01100
01000 101 01111
01001 000 00000
01010
01011 10101010
01100 01010101
01101 11111111
01110 00000000
01111

Sub:

10101010

-01010101

SUB

10101010

10101010

+ 1

1)01010101

Overflow!

CF = 1
NF = 0
VF = 1
ZF = 0

183

Location Contents
00000 001 01011
00001 010 01100
00010 101 01101
00011 001 01011
00100 100 01100
00101 101 01110
00110 001 01011
00111 011 01100
01000 101 01111
01001 000 00000
01010
01011 10101010
01100 01010101
01101 11111111
01110 00000000
01111 01010101

Simple Computer Block Diagram
 Question: What functional blocks are necessary to

implement a computer that executes a stored program
consisting of the instructions we have just defined?

Two basic steps are required to perform an
instruction: (1) it must be fetched from memory,
and (2) it must be decoded and executed

184

Simple Computer Block Diagram
 Functional blocks required:

– a place to store the program, operands, and computation
results – memory

– a way to keep track of which instruction is to be executed
next – program counter (PC)

– a place to temporarily “stage” an instruction while it is
being executed – instruction register (IR)

– a way to perform arithmetic and logic operations –
arithmetic logic unit (ALU)

– a way to coordinate and sequence the functions of the
machine – instruction decoder and micro-sequencer
(IDMS)

185

Memory

A
d

d
re

ss

186

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 32

Memory

A
d

d
re

s
s

187

Memory

A
d

d
re

s
s

188

Memory

A
d

d
re

ss

189

Memory

A
d

d
re

ss

190

Notes About Block Diagram

 Each functional block is “self-contained” (which means
each block can be designed and tested independently)

 Additional instructions can be added by increasing the
number of opcode bits

 Additional memory can be added by increasing the
number of address bits

 The numeric range can be expanded by increasing the
number of data bits

191 192

Clicker
Quiz

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 33

A. accumulator
B. program counter
C. instruction register
D. microsequencer
E. none of the above

Q1. The next instruction to fetch from memory is
pointed to by the:

193

A. accumulator
B. program counter
C. instruction register
D. microsequencer
E. none of the above

Q2. The place where an instruction fetched from
memory is “staged” while it is being decoded
and executed is the:

194

A. by two locations
B. by four locations
C. by two times the original number of locations
D. by four times the original number of locations
E. none of the above

Q3. If two additional address bits were added to the
Simple Computer, the number of memory locations
the machine could access would increase:

195

A. replace the contents of the accumulator with the sum of its
current contents plus the contents of memory location 10110

B. replace the contents of the accumulator with the sum of its
current contents plus the constant 10110

C. replace the contents of memory location 10110 with the sum of
its current contents plus the contents of the accumulator

D. add the constant 10110 to the contents of the accumulator and
store the result in memory location 10110

E. none of the above

Q4. The expression (10110) (A) + (10110) means:

196

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-H

Simple Computer Instruction Execution Tracing

Reading Assignment:
Meyer Supplemental Text, pp. 18-24

Learning Objectives:
 Trace the execution of a computer program, identifying

each step of an instruction’s microsequence (fetch and
execute cycles)

 Distinguish between synchronous and combinational
system control signals

198

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 34

Outline
 Review of top-down specification phase of design process

– Big picture
– Floor plan (instruction set)
– Block diagram

 Instruction execution tracing

199

Simple Computer “Floor Plan”
 Instruction set:

200

Opcode Mnemonic Function Performed
0 0 0 HLT Halt – stop, discontinue execution
0 0 1 LDA addr Load A with contents of location addr
0 1 0 ADD addr Add contents of addr to contents of A
0 1 1 SUB addr Subtract contents of addr from contents of A
1 0 0 AND addr AND contents of addr with contents of A
1 0 1 STA addr Store contents of A at location addr

Simple Computer Block Diagram
 Functional blocks required:

– a place to store the program, operands, and computation
results – memory

– a way to keep track of which instruction is to be executed
next – program counter (PC)

– a place to temporarily “stage” an instruction while it is
being executed – instruction register (IR)

– a way to perform arithmetic and logic operations –
arithmetic logic unit (ALU)

– a way to coordinate and sequence the functions of the
machine – instruction decoder and micro-sequencer
(IDMS)

201

Memory

A
d

d
re

ss

202

Addr Instruction Comments
00000 LDA 01011 Load A with contents of location 01011
00001 ADD 01100 Add contents of location 01100 to A
00010 STA 01101 Store contents of A at location 01101
00011 LDA 01011 Load A with contents of location 01011
00100 AND 01100 AND contents of 01100 with contents of A
00101 STA 01110 Store contents of A at location 01110
00110 LDA 01011 Load A with contents of location 01011
00111 SUB 01100 Subtract contents of location 01100 from A
01000 STA 01111 Store contents of A at location 01111
01001 HLT Stop – discontinue execution

Simple Programming Example

203

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 35

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 36

Notes About Instruction Tracing

 The clock edges drive the synchronous functions of the
computer (e.g., increment program counter, load
instruction register)

 The decoded states (here, fetch and execute) enable the
combinational functions of the computer (e.g., turn on tri-
state buffers)

212

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-I

Simple Computer Bottom-Up Realization

Reading Assignment:
Meyer Supplemental Text, pp. 24-42

Learning Objectives:
 Describe the operation of memory and the function of its control signals: MSL, MOE,

and MWE

 Describe the operation of the program counter (PC) and the function of its control
signals: ARS, PCC, and POA

 Describe the operation of the instruction register (IR) and the function of its control
signals: IRL and IRA

 Describe the operation of the ALU and the function of its control signals: ALE, ALX,
ALY, and AOE

 Describe the operation of the instruction decoder/microsequencer and derive the
system control table

 Describe the basic hardware-imposed system timing constraints

 Discuss how the instruction register can be loaded with the contents of the memory
location pointed to be the program counter and the program counter can be
incremented on the same clock edge

214

Outline
 Bottom-up Realization Phase of Design Process

– Memory

– Program Counter

– Instruction Register

– Arithmetic Logic Unit

– Instruction Decoder and Microsequencer

 System Data Flow and Timing Analysis

215

Bottom-Up Implementation
 Having finished the “top-down” specification phase of the

design process, we are now ready to implement each block
identified from the “bottom-up”

 Note that, in practice, an important aspect of this process
is to independently test (and debug) each block (or
module) of the system as it is implemented

 If each module is independently tested and verified as it is
implemented, then – when the modules are assembled
together into a system – there is a much higher probability
that it will “work the first time”!

216

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 37

Simple Computer Block Diagram
 Functional blocks required:

– a place to store the program, operands, and computation
results – memory

– a way to keep track of which instruction is to be executed
next – program counter (PC)

– a place to temporarily “stage” an instruction while it is
being executed – instruction register (IR)

– a way to perform arithmetic and logic operations –
arithmetic logic unit (ALU)

– a way to coordinate and sequence the functions of the
machine – instruction decoder and micro-sequencer
(IDMS)

217

Memory

A
d

d
re

s
s

218

Read/Write Memory (RWM)

 The name read/write memory (RWM) is given to memory
arrays in which we can store and retrieve information at
any time

 Most of the RWMs used in digital systems are random-
access memories (RAMs), which means that the time it
takes to read or write a bit of memory is independent of
the bit’s location in the RAM

 In a static RAM (SRAM), once data is written to a given
location, it remains stored as long as power is applied to
the chip

 If power is removed, data is lost – this is referred to as a
volatile memory

Read/Write Memory (RWM)

219

 An SRAM has three (typically active low) control inputs:
– a chip select (CS) signal that serves as the overall

enable for the memory chip
– an output enable (OE) signal that tells the memory chip

to drive the data output lines with the contents of the
memory location specified on its address lines

– a write enable (WE) signal that tells the memory chip to
write the data supplied on its data input lines at the
memory location specified on its address lines

Read/Write Memory (RWM)

220

 SRAM normally has two access operations:

– READ: An address is placed on the address lines
while CS and OE are asserted; the latch outputs for
the selected location are output on the data lines

– WRITE: An address is placed on the address lines,
data is placed on the data lines, then CS and WE are
asserted; the latches of the selected location open,
and the data is stored

Read/Write Memory (RWM)

221

 Each bit of memory (or SRAM cell) in a static RAM
behaves as the circuit depicted below

Read/Write Memory (RWM)

 When the SEL input is asserted, the stored data is
placed on the cell’s output

 When both SEL and WR are asserted, the latch is
open and a new data bit is stored

 SRAM cells are combined in an array with additional
control logic to form a complete static RAM

222

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 38

Internal
Structure of
8x4 SRAM

223

 Some things to note:
– during read operations, the output data is a

combinational function of the address inputs, so no
“harm” is done by changing the address while CS
and OE are asserted

– during write operations, data is stored in latches –
this means that data must meet certain setup and
hold times with respect to the negation of the WE
signal

– also during write operations, the address lines must
be stable for a certain setup time before WR is
asserted internally and for a hold time after WR is
negated

Read/Write Memory (RWM)

224

 Most SRAMs utilize a bi-directional data bus (i.e., the
same data pins are used for reading and writing data)

Read/Write Memory (RWM)

225

Simple Computer Memory
 The memory for our simple computer will contain 32 locations

(5-bit address), each 8 bits wide (i.e., a “32x8” memory)
 The memory subsystem will have three control signals:

– MSL: Memory SeLect
– MOE: Memory Output Enable
– MWE: Memory Write Enable

NOTE: For simplicity (and clarity) all system control signals
as well as address and data bus signals will be assumed to
be ACTIVE HIGH

226

Clicker
Quiz

227

A. all the control signals may be asserted
simultaneously

B. only one control signal may be asserted at a
given instant

C. each control signal is dependent on the
others

D. any combination of control signals may be
asserted at a given instant

E. none of the above

Q1. When a set of control signals are said to be
mutually exclusive, it means that:

228

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 39

A. MSL and MOE

B. MSL and MWE

C. MOE and MWE

D. MSL, MOE, and MWE

E. none of the above

Q2. For the memory subsystem, the set of signals
that are mutually exclusive is:

229

Simple Computer Block Diagram
 Functional blocks required:

– a place to store the program, operands, and computation
results – memory

– a way to keep track of which instruction is to be executed
next – program counter (PC)

– a place to temporarily “stage” an instruction while it is
being executed – instruction register (IR)

– a way to perform arithmetic and logic operations –
arithmetic logic unit (ALU)

– a way to coordinate and sequence the functions of the
machine – instruction decoder and micro-sequencer
(IDMS)

230

Memory

A
d

d
re

ss

231

Program Counter
 The program counter (PC) is basically a binary “up”

counter with tri-state outputs
 The functions and corresponding control signals required

are as follows:
– ARS: Asynchronous ReSet
– PCC: Program Counter Count enable
– POA: Program counter Output on Address bus tri-state

buffer enable

232

233

/* Program Counter Module */

module pc(CLK, PCC, POA, RST, ADRBUS_z);

input wire CLK;
input wire PCC; // PC count enable
input wire POA; // PC output on address bus tri-state enable
input wire RST; // asynchronous reset (connected to START)
output wire [4:0] ADRBUS_z;

wire [4:0] next_PC;
reg [4:0] PC;

assign ADRBUS_z = POA ? PC : 5'bZZZZZ;

always @ (posedge CLK, posedge RST) begin
if (RST == 1'b1)

PC <= 5'b00000;
else

PC <= next_PC;
end

// (PCC) ? count up : retain value;
assign next_PC = (PCC) ? (PC+1) : PC;

endmodule

Simple Computer Block Diagram
 Functional blocks required:

– a place to store the program, operands, and computation
results – memory

– a way to keep track of which instruction is to be executed
next – program counter (PC)

– a place to temporarily “stage” an instruction while it is
being executed – instruction register (IR)

– a way to perform arithmetic and logic operations –
arithmetic logic unit (ALU)

– a way to coordinate and sequence the functions of the
machine – instruction decoder and micro-sequencer
(IDMS)

234

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 40

235

Instruction Register
 The instruction register (IR) is basically an 8-bit data

register, with tri-state outputs on the lower 5 bits

 Note that the upper 3 bits (opcode field) are output
directly to the instruction decoder and micro-
sequencer

 The functions and corresponding control signals
required are as follows:

– IRL: Instruction Register Load enable

– IRA: Instruction Register Address field tri-state
output enable

236

237

/* Instruction Register Module */

module ir(CLK, IR_z, DB_z, IRL, IRA);

input wire CLK;
input wire IRL; // IR load enable
input wire IRA; // IR output on address bus enable
input wire [7:0] DB_z; // data bus
output wire [7:0] IR_z; // IR_z[4]..IR_z[0] connected to address bus

// IR_z[7]..IR_z[5] supply opcode to IDMS

reg [7:0] IR;
wire [7:0] next_IR;

assign IR_z[4:0] = IRA ? IR[4:0] : 5'bZZZZZ;
assign IR_z[7:5] = IR[7:5];

always @ (posedge CLK) begin
IR <= next_IR;

end

// (IRL) ? load : retain state (select load or retain state based on IRL)
assign next_IR = (IRL) ? DB_z : IR;

endmodule

Simple Computer Block Diagram
 Functional blocks required:

– a place to store the program, operands, and computation
results – memory

– a way to keep track of which instruction is to be executed
next – program counter (PC)

– a place to temporarily “stage” an instruction while it is
being executed – instruction register (IR)

– a way to perform arithmetic and logic operations –
arithmetic logic unit (ALU)

– a way to coordinate and sequence the functions of the
machine – instruction decoder and micro-sequencer
(IDMS)

238

239

Arithmetic Logic Unit
 The arithmetic logic unit (ALU) is a multi-function

register that performs all the arithmetic and logical
(Boolean) operations necessary to implement the
instruction set

 The functions and corresponding control signals
required are as follows:
– ALE: ALU Enable
– ALX: ALU “X” function select
– ALY: ALU “Y” function select
– AOE: A register tri-state Output Enable

240

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 41

/* ALU Module */

module alu(CLK, ALE, AOE, ALX, ALY, DB_z, CF, VF, NF, ZF);

/* 8-bit, 4-function ALU with bi-directional data bus
Accumulator register is AQ, tri-state data bus is DB_z

ADD: (AQ[7:0]) <- (AQ[7:0]) + DB_z[7:0]
SUB: (AQ[7:0]) <- (AQ[7:0]) – DB_z[7:0]
LDA: (AQ[7:0]) <- DB_z[7:0]
AND: (AQ[7:0]) <- (AQ[7:0]) & DB_z[7:0]
OUT: Value in AQ[7:0] output on data bus DB_z[7:0]

AOE ALE ALX ALY Function CF ZF NF VF
=== === === === ======== == == == ==
0 1 0 0 ADD X X X X
0 1 0 1 SUB X X X X
0 1 1 0 LDA • X X •
0 1 1 1 AND • X X •
1 0 d d OUT • • • •
0 0 d d <none> • • • •

X -> flag affected • -> flag not affected

Note: If ALE = 0, the state of all register bits should be retained */
241

A1 A0

i0 2:1 mux

F

A1 A0

i0 2:1 mux

F

A1 A0

i0 2:1 mux

F

X Y

Full Adder Cin

Cout S

Q

D

CLOCK

ALE

DBi

AOE

Ci-1

Ci

ALY

ALX

ALY

ALU Multiplexer Block Diagram (Bit i)

242

DB_z[i]
AQ[i]

ALE controls A register retaining
state (ALE=0) or taking on new
state (ALE=1)

ALU[i]

ALX selects ADD/SUB (ALX=0)
or LDA/AND (ALX=1)

If ALX=1, then ALY selects LDA
(ALY=0) or AND (ALY=1)

If ALX=0, then ALY selects ADD
(ALY=0) or SUB (ALY=1)

The LSB Cin CY[i-1] is connected
to ALY: 0 for ADD, 1 for SUB (to
obtain the radix complement of the
subtrahend)

ALU[i] is the next state of AQ[i] (the A register)

S[i]L[i] CY[i]

CY[i-1]

input wire CLK;

// ALU control lines
input wire ALE; // overall ALU enable
input wire AOE; // data bus tri-state output enable
input wire ALX, ALY; // function select

inout wire [7:0] DB_z; // bidirectional 8-bit tri-state data bus

output reg CF, VF, NF, ZF; // condition code register bits (flags)
// Carry, Overflow, Negative, Zero

// Carry equations
wire [7:0] CY;
wire CIN;
// Combinational ALU outputs
wire [7:0] ALU;
wire [7:0] S; // Adder/subtractor sum
wire [7:0] L; // LDA/AND multiplexer output
reg [7:0] AQ; // A register flip-flops

// Next state variables
reg next_CF, next_VF, next_NF, next_ZF;
reg [7:0] next_AQ;

243

// Declaration of intermediate equations
// Least significant bit carry in (0 for ADD, 1 for SUB => ALY)
assign CIN = ALY;

// Intermediate equations for adder/subtractor SUM (S) selected when ALX = 0
assign S = AQ ^ (DB_z ^ ALY) ^ {CY[6:0],CIN};

// Ripple carry equations (CY[7] is COUT, DB_z is data from data bus)
assign CY = AQ & (ALY ^ DB_z) | AQ & {CY[6:0],CIN} | ALY & DB_z & {CY[6:0],CIN};

// Intermediate equations for LOAD and AND, selected when ALX = 1
// (ALY)? AND : LDA (select LDA or AND based on ALY)
assign L = ALY ? AQ & DB_z : DB_z ;

// Combinational ALU outputs
// (ALX)? L : S (select LDA/AND or ADD/SUB based on ALX)
assign ALU = ALX ? L : S;

244

// Register bit and data bus control equations
always @(posedge CLK) begin
AQ <= next_AQ;

end

always @ (AQ, ALE, ALU) begin
next_AQ = ALE ? ALU : AQ;

end

assign DB_z = AOE ? AQ : 8'bZZZZZZZZ;

// Condition code register state equations
always @ (posedge CLK) begin

CF <= next_CF;
ZF <= next_ZF;
NF <= next_NF;
VF <= next_VF;

end

always @ (CF, NF, ZF, VF, ALE, ALX, ALY, CY) begin
next_CF = ALE ? (ALX ? CF : (CY[7]) : CF;
next_ZF = ALE ? (ALU == 0) : ZF;
next_NF = ALE ? ALU[7] : NF;
next_VF = ALE ? (ALX ? VF : (CY[7] ^ CY[6])) : VF;

end
endmodule 245

Clicker
Quiz

246

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 42

A1 A0

i0 2:1 mux

F

A1 A0

i0 2:1 mux

F

A1 A0

i0 2:1 mux

F

X Y

Full Adder Cin

Cout S

Q

D

CLOCK

ALE

ALX

ALY

C3

C2

DB3

ALY

AOE

Qi-
Q0

Q2
Q1
Q0

Q3

Block Diagram for Bit 3 of a Simple Computer ALU

247

Assume
LSB Cin is
connected

to ALY′

A. ADD

B. SUBTRACT

C. LOAD

D. NEGATE

E. none of the above

Q1. If the input control combination AOE=0, ALE=1, ALX=0, ALY=0
is applied to this circuit, the function performed will be:

248

A. ADD

B. SUBTRACT

C. LOAD

D. NEGATE

E. none of the above

Q2. If the input control combination AOE=0, ALE=1, ALX=1, ALY=0
is applied to this circuit, the function performed will be:

249

Simple Computer Block Diagram
 Functional blocks required:

– a place to store the program, operands, and computation
results – memory

– a way to keep track of which instruction is to be executed
next – program counter (PC)

– a place to temporarily “stage” an instruction while it is
being executed – instruction register (IR)

– a way to perform arithmetic and logic operations –
arithmetic logic unit (ALU)

– a way to coordinate and sequence the functions of the
machine – instruction decoder and micro-sequencer
(IDMS)

250

Memory

A
d

d
re

ss

251

Instruction Decoder and Microsequencer
 The instruction decoder and microsequencer (IDMS) is a

state machine that orchestrates the activity of all the other
functional blocks

 There are two basic steps involved in “processing” each
instruction of a program (called a micro-sequence):
– fetching the instruction from memory (at the location

pointed to by the PC), loading it into the IR, and
incrementing the PC

– executing the instruction staged in the IR based on the
opcode field and the operand address field

252

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 43

Instruction Decoder and Microsequencer
 Since there are only two states (fetch and execute), a single

flip-flop can be used to implement the state counter (“SQ”)
 The control signals that need to be asserted during the

fetch cycle include:
– POA: turn on PC output buffers
– MSL: select memory
– MOE: turn on memory output buffers
– IRL: enable IR load
– PCC: enable PC count

NOTE: The synchronous functions (IRL and PCC) will take
place on the clock edge that causes the state counter to
transition from the FETCH state to the EXECUTE state

253

Instruction Decoder and Microsequencer
 The control signals that need to be asserted during an

execute cycle for the synchronous ALU functions (ADD,
SUB, LDA, AND) are:
– IRA: turn on operand address output buffers
– MSL: select memory
– MOE: turn on memory data output buffers
– ALE: enable ALU operation
– ALX, ALY: select ALU function

 The control signals that need to be asserted during an
execute cycle for STA are:
– IRA: turn on operand address output buffers
– MSL: select memory
– MWE: enable memory write
– AOE: turn on A register output buffers 254

System Control Signals

255

Decoded
State

Instruction
Mnemonic M

SL

M
O
E

M
W
E

P
C
C

P
O
A

IR
L

IR
A

A
O
E

A
LE

A
LX

A
LY

S0 – H H H H H

S1 HLT L L L L

S1 LDA addr H H H H H

S1 ADD addr H H H H

S1 SUB addr H H H H H

S1 AND addr H H H H H H

S1 STA addr H H H H

Instruction Decoder and Microsequencer
 In order to stop execution (i.e., disable all the functional

blocks) when a HLT instruction is executed, an additional
flip-flop will be used (called “RUN”) , as follows:

– when the START pushbutton is pressed, the RUN flip-
flop will be asynchronously set

– when a HLT instruction is executed, the RUN flip-flop
will be asynchronously cleared

– the RUN signal will be ANDed with the synchronous
system enable signals, thus effectively halting
execution when a HLT instruction is executed

256

/* Instruction Decoder and Microsequencer */

module idms(CLK, START, OP, MSL, MOE, MWE, PCC, POA, ARS, IRL, IRA, ALE, ALX, ALY, AOE);

input wire CLK;
input wire START; // Asynchronous START pushbutton
input wire [2:0] OP; // opcode bits (input from IR5..IR7)
output wire MSL, MOE, MWE; // Memory control signals
output wire PCC, POA, ARS; // PC control signals
output wire IRL, IRA; // IR control signals
output wire ALE, ALX, ALY, AOE; // ALU control signals (without flags)

reg SQ, next_SQ; // State counter
reg RUN, next_RUN; // RUN/HLT state

wire LDA, STA, ADD, SUB, AND, HLT; // Opcode names
wire [1:0] S; // State variables

wire RUN_ar; // Asynchronous reset for RUN

257

assign HLT = ~OP[2] & ~OP[1] & ~OP[0]; // HLT opcode = 000
assign LDA = ~OP[2] & ~OP[1] & OP[0]; // LDA opcode = 001
assign ADD = ~OP[2] & OP[1] & ~OP[0]; // ADD opcode = 010
assign SUB = ~OP[2] & OP[1] & OP[0]; // SUB opcode = 011
assign AND = OP[2] & ~OP[1] & ~OP[0]; // AND opcode = 100
assign STA = OP[2] & ~OP[1] & OP[0]; // STA opcode = 101

// Decoded state definitions
assign S[0] = ~SQ; // fetch
assign S[1] = SQ; // execute

// State counter
always @ (posedge CLK, posedge START) begin
if(START == 1'b1) // start in fetch state
SQ <= 1'b0;

else // if RUN negated, resets SQ
SQ <= next_SQ;

end

always @ (SQ, RUN) begin
next_SQ = RUN & ~SQ;

end

// Run/stop
assign RUN_ar = S[1] & HLT;
always @ (posedge CLK, posedge RUN_ar, posedge START) begin
if(START == 1'b1) // RUN set to 1 when START asserted
RUN <= 1'b1;

else if(RUN_ar == 1'b1) // RUN is cleared when HLT is executed
RUN <= 1'b0;

end 258

A D flip‐flop synthesized
by an always block will
retain its value by default
unless otherwise specified

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 44

// System control equations
assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND));
assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND);
assign MWE = S[1] & STA;
assign ARS = START;
assign PCC = RUN & S[0];
assign POA = S[0];
assign IRL = RUN & S[0];
assign IRA = S[1] & (LDA | STA | ADD | SUB | AND);
assign AOE = S[1] & STA;
assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);
assign ALX = S[1] & (LDA | AND);
assign ALY = S[1] & (SUB | AND);

endmodule

259

System Data Flow and Timing Analysis
 General procedure

– Understand operation of individual functional units

• Memory

• Program counter

• Instruction register

• Arithmetic logic unit

• Instruction decoder and microsequencer

• (New functional blocks to be added)

260

System Data Flow and Timing Analysis
 General procedure

– Understand function (“data processing”) performed
by each instruction

– Identify address and data flow required to execute
each instruction

– Identify micro-operations required to execute each
instruction

– Identify control signals that need to be asserted to
generate the required sequence of micro-operations
for each instruction

– Examine timing relationship of control signals
261

System Data Flow and Timing Analysis
 Basic hardware-imposed constraints

– Only one device is allowed to drive a bus during any
machine cycle (i.e., “bus fighting” must be avoided)

– Data cannot pass through more than one (edge-triggered)
flip-flop or latch per cycle

262

Memory

A
d

d
re

ss

263

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 45

Clicker
Quiz

265

A. if it occurred on the “execute” cycle, the new value might
not be stable in time for the subsequent “fetch” cycle

B. if it occurred on the “execute” cycle, it would not be
possible to execute an “STA” instruction

C. if it occurred on the “execute” cycle, it would not be
possible to read an operand from memory

D. if it occurred on the “execute” cycle, it would not be
possible to read an instruction from memory

E. none of the above

Q1. The increment of the program counter (PC)
needs to occur as part of the “fetch” cycle because:

266

A. the synchronous actions associated with the IRL and PCC
control signals occur on different fetch cycle phases

B. the IRL and PCC control signals are not asserted
simultaneously by the IDMS

C. the load of the instruction register is based on the data bus
value prior to the system CLOCK edge, while the increment
of the PC occurs after the CLOCK edge

D. the load of the instruction register occurs on the negative
CLOCK edge, while the increment of the PC occurs on the
positive CLOCK edge

E. none of the above

Q2. The program counter (PC) can be incremented on the
same cycle that its value is used to fetch an instruction from
memory because:

267

A. the memory will ignore the new address the PC
places on the address bus

B. the output buffers in the PC will not allow the new PC
value to affect the address bus until the next fetch
cycle

C. the IR will be loaded with the value on the data bus
prior to the clock edge while the contents of the PC
will increment after the clock edge

D. the value in the PC will change in time for the correct
value to be output on the address bus (and fetch the
correct instruction), before the IR load occurs

E. none of the above

Q3. Incrementing the program counter (PC) on the
same clock edge that loads the instruction register (IR)
does not cause a problem because:

268

A. only a single entity can drive a bus on a given clock cycle
B. the system clock has limited driving capability
C. the flip-flops that comprise a register do not change state

simultaneously, so additional time must be provided before
the register’s output can be used

D. for a D flip-flop with clocking period , Q(t+)=D(t)
E. none of the above

Q4. The hardware constraint that “data cannot pass through
more than one edge-triggered flip-flop per clock cycle” is
based on the fact that:

269

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-J

Simple Computer Basic Extensions

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 46

Reading Assignment:
Meyer Supplemental Text, pp. 42-50

Learning Objectives:
 Modify a reference ALU design to perform different functions (e.g., shift and

rotate)

 Describe how input/output (IN/OUT) instructions can be added to the base
machine architecture

 Describe the operation of the I/O block and the function of its control
signals: IOR and IOW

 Compare and contrast the operation of OUT instructions with and without a
transparent latch as an integral part of the I/O block

 Compare and contrast “jump” and “branch” transfer-of-control instructions
along with the architectural features needed to support them

 Distinguish between conditional and unconditional branches

 Describe the basis for which a conditional branch is “taken” or “not taken”

271

Outline
 Overview
 Adding shift instructions
 Adding input/output (I/O) instructions
 Adding transfer of control instructions

272

Overview
 We will use the two available opcodes (110 and 111) to add

new instructions to the basic machine, a pair at a time

273

Opcode Mnemonic Function Performed
0 0 0 HLT Halt – stop, discontinue execution
0 0 1 LDA addr Load A with contents of location addr
0 1 0 ADD addr Add contents of addr to contents of A
0 1 1 SUB addr Subtract contents of addr from contents of A
1 0 0 AND addr AND contents of addr with contents of A
1 0 1 STA addr Store contents of A at location addr
1 1 0
1 1 1

Overview
 We will add rows to the system control table to add the new

instructions and add columns to add new control signals

274

Decoded
State

Instruction
Mnemonic M

SL

M
O
E

M
W
E

P
C
C

P
O
A

IR
L

IR
A

A
O
E

A
LE

A
LX

A
LY

S0 – H H H H H

S1 HLT L L L L

S1 LDA addr H H H H H

S1 ADD addr H H H H

S1 SUB addr H H H H H

S1 AND addr H H H H H H

S1 STA addr H H H H

S1

S1

Adding Shift Instructions
 Definition: A shift instruction translates the bits in a

register (here, the “A” register) one place to the left or
to the right

 Definition: An end off shift discards the bit that gets
shifted out

 Definition: A preserving shift retains the bit shifted out
(typically in the CF condition code bit)

 Definition: A logical shift is a “zero fill” shift

 Definition: An arithmetic shift is a “sign preserving”
shift (i.e., the sign bit gets replicated as the data is
shifted right)

275

Shift Instruction Examples
 Given: (A) = 10011010

 After logical shift left: 00110100 CF=1

 After logical shift right: 01001101 CF=0

 After arithmetic shift left: 00110100 CF=1

 After arithmetic shift right: 11001101 CF=0

Note: An arithmetic left shift is identical to a logical left shift

276

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 47

Adding Shift Instructions
 Modify the ALU to function as follows:

ALX ALY Function Performed
0 0 Load
0 1 Logical Shift Right
1 0 Arithmetic/Logical Shift Left
1 1 Arithmetic Shift Right

The CF condition code bit can be used to preserve
the bit that gets shifted out

277

Modified Instruction Set

278

Opcode Mnemonic Function Performed
0 0 0 HLT Halt – stop, discontinue execution
0 0 1 LDA addr Load A with contents of location addr
0 1 0 LSR Logically shift contents of A right
0 1 1 ASL Arithmetically/Logically shift contents of A left
1 0 0 ASR Arithmetically shift contents of A right
1 0 1 STA addr Store contents of A at location addr
1 1 0
1 1 1

Modified System Control Table

279

Decoded
State

Instruction
Mnemonic M

SL

M
O
E

M
W
E

P
C
C

P
O
A

IR
L

IR
A

A
O
E

A
LE

A
LX

A
LY

S0 – H H H H H

S1 HLT L L L L

S1 LDA addr H H H H

S1 LSR H H

S1 ASL H H

S1 ASR H H H

S1 STA addr H H H H

S1

S1

/* ALU Module Version 2 */

module alu(CLK, ALE, AOE, ALX, ALY, DB_z, CF, VF, NF, ZF);

/* 8-bit, 4-function ALU with bi-directional data bus

LDA: (AQ[7:0]) <- DB_z[7:0]
LSR: (AQ[7:0]) <- 0 AQ7 AQ6 AQ5 AQ4 AQ3 AQ2 AQ1, CF <- AQ0
ASL: (AQ[7:0]) <- AQ6 AQ5 AQ4 AQ3 AQ2 AQ1 AQ0 0 , CF <- AQ7
ASR: (AQ[7:0]) <- AQ7 AQ7 AQ6 AQ5 AQ4 AQ3 AQ2 AQ1, CF <- AQ0
OUT: Value in AQ[7:0] output on data bus DB_z[7:0]

AOE ALE ALX ALY Function CF ZF NF VF
=== === === === ======== == == == ==
0 1 0 0 LDA • X X •
0 1 0 1 LSR X X X •
0 1 1 0 ASL X X X •
0 1 1 1 ASR X X X •
1 0 d d OUT • • • •
0 0 d d <none> • • • •

X -> flag affected • -> flag not affected

Note: If ALE = 0, the state of all register bits should be retained */

280

input wire CLK;

// ALU control lines
input wire ALE; // Overall ALU enable
input wire AOE; // Data bus tri-state output enable
input wire ALX, ALY; // Function select

inout wire [7:0] DB_z; // Bidirectional 8-bit data bus

output reg CF, VF, NF, ZF; // Condition code bits (flags)
// Carry, Overflow, Negative, Zero

// Combinational ALU outputs
reg [7:0] ALU;

// Accumulator (A) register
reg [7:0] AQ;

// Next state variables
reg next_CF, next_VF, next_NF, next_ZF;
reg [7:0] next_AQ;

281

// Combinational ALU outputs
always @ (ALX, ALY, DB_z) begin

case ({ALX,ALY})
2'b00: ALU = DB_z; // LDA
2'b01: ALU = {1'b0,AQ[7:1]}; // LSR
2'b10: ALU = {AQ[6:0],1'b0}; // ASL
2'b11: ALU = {AQ[7],AQ[7:1]}; // ASR

endcase
end

// Register bit and data bus control equations
always @(posedge CLK) begin

AQ <= next_AQ;
end

always @ (ALE, ALU, AQ) begin
next_AQ = ALE ? ALU : AQ;

end

assign DB_z = AOE ? AQ : 8'bZZZZZZZZ;

282

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 48

// Flag register state equations
always @ (posedge CLK) begin

CF <= next_CF;
ZF <= next_ZF;
NF <= next_NF;
VF <= next_VF;

end

always @ (ALE, ALX, ALY, CF, ZF, NF, VF, ALU, AQ) begin
casez ({ALE,ALX,ALY})

3'b0??: next_CF = 1'b0;
3'b100: next_CF = CF; // LDA (not affected)
3'b101: next_CF = AQ[0]; // LSR
3'b110: next_CF = AQ[7]; // ASL
3'b111: next_CF = AQ[0]; // ASR

endcase
next_ZF = ALE ? (ALU == 0) : ZF;
next_NF = ALE ? ALU[7] : NF;
next_VF = VF; // NOTE: NOT AFFECTED

end

endmodule
283

Clicker
Quiz

284

A1 A0

i0 2:1 mux

F

A1 A0

i0 2:1 mux

F

A1 A0

i0 2:1 mux

F

X Y

Full Adder Cin

Cout S

Q

D

CLOCK

ALE

ALX

ALY

C3

C2

DB3

ALY

AOE

Qi-
Q0

Q2
Q1
Q0

Q3

Block Diagram for Bit 3 of a Simple Computer ALU

285

Assume
LSB Cin is
connected

to ALY′

A. logical left shift

B. logical right shift

C. rotate left

D. rotate right

E. none of the above

Q1. If the input control combination AOE=1, ALE=1, ALX=1, ALY=1
is applied to this circuit, the function (inadvertently) performed on
(A) will be equivalent to:

286

287

LED Output Port

Switch Input Port

Start Clock

Adding I/O Instructions
 When we first drew the “big picture” of our simple computer,

we included a switch “input port” and an LED “output port”

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 49

Adding I/O Instructions
 Need two new instructions:

– IN addr – input data from port addr and load into
the A register

– OUT addr – output data in A register to port addr

Here, the address field of the instruction is used to specify
a port address (or, I/O device ID)

 Also need two new control signals:
– IOR – asserted when IN (“I/O read”) occurs
– IOW – asserted when OUT (“I/O write”) occurs

289

/* Input/Output Port 00000 */

module io(ADRBUS_z, IN, OUT, IOR, IOW, DB_z);

input wire [4:0] ADRBUS_z; // address bus
input wire [7:0] IN; // input port
input wire IOR; // input port read
input wire IOW; // input port write
output wire [7:0] OUT; // output port
inout wire [7:0] DB_z; // bidirectional data bus

wire PS;

// Port select equation for port address 00000
assign PS = (ADRBUS_z == 5'b0000);

assign DB_z = IOR & PS ? IN : 8'bZZZZZZZZ;
assign OUT = IOW & PS ? DB_z : 8'bZZZZZZZZ;

endmodule

Issue: Output port bits
are valid only as long
as IOW&PS is asserted
(Hi-Z otherwise)

290

/* Input/Output Port 00000 - with Output Latch */

module io(ADRBUS_z, IN, OUT, IOR, IOW, DB_z);

input wire [4:0] ADRBUS_z; // address bus
input wire [7:0] IN; // input port
input wire IOR; // input port read
input wire IOW; // input port write
output reg [7:0] OUT; // output port
inout wire [7:0] DB_z; // bidirectional data bus
wire PS;

// Port select equation for port address 00000
assign PS = (ADRBUS_z == 5'b0000);

assign DB_z = IOR & PS ? IN : 8'bZZZZZZZZ;

// Transparent latch for output port
always @ (IOW, PS, DB_z) begin

if((IOW & PS) == 1'b1)
OUT = DB_z;

end

endmodule 291

The if construct without an else
creates an inferred latch

Adding I/O Instructions
 Modified system control table:

 Equations that need to be updated: IRA, AOE, ALE, ALX
 Equations that need to be added: IOR, IOW

292

Decoded
State

Instruction
Mnemonic M

SL

M
O
E

M
W
E

P
C
C

P
O
A

IR
L

IR
A

A
O
E

A
LE

A
LX

A
LY

IO
R

IO
W

S0 – H H H H H

S1 HLT L L L L

S1 LDA addr H H H H H

S1 ADD addr H H H H

S1 SUB addr H H H H H

S1 AND addr H H H H H H

S1 STA addr H H H H

S1 IN port H H H H

S1 OUT port H H H

293

// System control equations
assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND));
assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND);
assign MWE = S[1] & STA;
assign ARS = START;
assign PCC = RUN & S[0];
assign POA = S[0];
assign IRL = RUN & S[0];
assign IRA = S[1] & (LDA | STA | ADD | SUB | AND | IN | OUT);
assign AOE = S[1] & (STA | OUT);
assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND | IN);
assign ALX = S[1] & (LDA | AND);
assign ALY = S[1] & (SUB | AND);

assign IOR = S[1] & IN;
assign IOW = S[1] & OUT;

endmodule

Clicker
Quiz

294

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 50

A. only during the execute cycle of the OUT instruction

B. only when the clock signal is high

C. until another OUT instruction writes different data to
the port

D. until the next instruction is executed

E. none of the above

Q1. If the output port pins are latched, data written to
the port will remain on its pins:

295

A. only during the execute cycle of the OUT instruction

B. only when the clock signal is high

C. until another OUT instruction writes different data to the port

D. until the next instruction is executed

E. none of the above

Q2. If the output port pins are not latched, data written
to the port will remain on its pins:

296

Adding Transfer of Control Instructions
 There are two basic types of transfer-of-control instructions:

– absolute: the operand field contains the address in
memory at which execution should continue (“jump”)

– relative: the operand field contains the signed offset that
should be added to the PC to determine the location at
which execution should continue (“branch”)

 Jumps or branches can be unconditional (“always happen”)
or conditional (“happen only when a specified condition is
met” – which is usually a function of the condition codes)

297

Adding Transfer of Control Instructions
 For the purpose of illustration, we will add an unconditional

jump (“JMP”) instruction to our simple computer along with a
single conditional jump (“Jcond”)

 The conditional jump illustrated will be a jump if ZF set (“JZF”)
instruction

 To execute a jump instruction, the operand field (from the IR)
will be loaded into the PC via the address bus when PLA is
asserted

 Note that, for the conditional jump instruction, that if the
condition is not met, the execute cycle will be a “no-operation”
(or, “NOP”) cycle

298

299

/* Modified Program Counter with Load Capability */

module pc(CLK, PCC, POA, ADRBUS_z, PLA, RST);

input wire CLK;
input wire PCC; // PC count enable
input wire POA; // PC output on address bus tri-state enable
input wire PLA; // PC load from address bus enable
input wire RST; // Asynchronous reset (connected to START)

inout wire [4:0] ADRBUS_z; // address bus

// NOTE: Assume PCC and PLA are mutually exclusive

reg [4:0] PC, next_PC;

assign ADRBUS_z = POA ? PC : 5'bZZZZZ;

always @ (posedge CLK, posedge RST) begin
if (RST == 1'b1)

PC <= 5'b00000;
else

PC <= next_PC;
end

always @ (PCC, PC) begin
if (PLA == 1'b1) // load

next_PC = ADRBUS_z;
else if (PCC == 1'b1) // count up by 1

next_PC = PC + 1;
else // retain state

next_PC = PC;
end

endmodule
300

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 51

Adding Transfer of Control Instructions
 Modified system control table:

 Equation that needs to be updated: IRA
 Equation that needs to be added: PLA

301

Decoded
State

Instruction
Mnemonic M

SL

M
O
E

M
W
E

P
C
C

P
O
A

IR
L

IR
A

A
O
E

A
LE

A
LX

A
LY

P
LA

S0 – H H H H H

S1 HLT L L L L

S1 LDA addr H H H H H

S1 ADD addr H H H H

S1 SUB addr H H H H H

S1 AND addr H H H H H H

S1 STA addr H H H H

S1 JMP addr H H

S1 JZF addr ZF ZF

// System control equations
assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND));
assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND);
assign MWE = S[1] & STA;
assign ARS = START;
assign PCC = RUN & S[0];
assign POA = S[0];
assign IRL = RUN & S[0];
assign IRA = S[1] & (LDA | STA | ADD | SUB | AND | JMP | JZF&ZF);
assign AOE = S[1] & STA;
assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);
assign ALX = S[1] & (LDA | AND);
assign ALY = S[1] & (SUB | AND);

assign PLA = S[1] & (JMP | JZF & ZF);

endmodule

Clicker
Quiz

303

A. add a bi-directional path to the data bus

B. use the ALU to compute the address of the next
instruction

C. make it an up/down counter

D. add a two’s complement N-bit adder circuit
(where N is the address bus width)

E. none of the above

Q1. Implementation of “branch” instructions (that perform a
relative transfer of control) requires the following modification
to the program counter:

304

A. the value of the program counter

B. the state of the condition code bits

C. the cycle of the state counter

D. the value in the accumulator

E. none of the above

Q2. Whether or not a conditional branch is taken or not taken
depends on:

305

Thought Questions
 What would be required to add a jump if less than (“JLT”)

or a jump if greater than or equal to (“JGE”) instruction?

JLT condition
= N•V + N•V
= N V

JGE condition
= JLT

= (N V)

These jump conditions can be determined
based on the ALU flags (N, C, Z, V)

306

A1 A0 (A) B1 B0 (B) ? C Z N V
0 0 0 0 0 0 (A) = (B) 1 1 0 0
0 0 0 0 1 +1 (A) < (B) 0 0 1 0
0 0 0 1 0 -2 (A) > (B) 0 0 1 1
0 0 0 1 1 -1 (A) > (B) 0 0 0 0
0 1 +1 0 0 0 (A) > (B) 1 0 0 0
0 1 +1 0 1 +1 (A) = (B) 1 1 0 0
0 1 +1 1 0 -2 (A) > (B) 0 0 1 1
0 1 +1 1 1 -1 (A) > (B) 0 0 1 1
1 0 -2 0 0 0 (A) < (B) 1 0 1 0
1 0 -2 0 1 +1 (A) < (B) 1 0 0 1
1 0 -2 1 0 -2 (A) = (B) 1 1 0 0
1 0 -2 1 1 -1 (A) < (B) 0 0 1 0
1 1 -1 0 0 0 (A) < (B) 1 0 1 0
1 1 -1 0 1 +1 (A) < (B) 1 0 1 0
1 1 -1 1 0 -2 (A) > (B) 1 0 0 0
1 1 -1 1 1 -1 (A) = (B) 1 1 0 0

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 52

Thought Questions
 How could a compare (“CMP”) instruction be implemented?

How is this different than a subtract (“SUB”)?

A “CMP” works the same as “SUB” except that the
result of (A) – (addr) is not stored in the A register
(i.e., only the flags are affected)

307

Introduction to Digital System Design

Purdue IM:PACT* Spring 2018 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 4-K

Simple Computer Advanced Extensions

 describe the changes needed to the instruction decoder/microsequencer in order to
dynamically change the number of instruction execute cycles based on the opcode

 compare and contrast the machine’s asynchronous reset (“START”) with the
synchronous state counter reset (“RST”)

 describe the operation of a stack mechanism (LIFO queue)

 describe the operation of the stack pointer (SP) register and the function of its control
signals: ARS, SPI, SPD, SPA

 compare and contrast the two possible stack conventions: SP pointing to the top
stack item vs. SP pointing to the top stack item

 describe how stack manipulation instructions (PSH/POP) can be added to the base
machine architecture

 discuss the consequences of having an unbalanced set of PSH and POP instructions
in a given program

Reading Assignment:
Meyer Supplemental Text, pp. 50-64

Learning Objectives:

309

 discuss the reasons for using a stack as a subroutine linkage mechanism: arbitrary
nesting of subroutine calls, passing parameters to subroutines, recursion, and
reentrancy

 describe how subroutine linkage instructions (JSR/RTS) can be added to the base
machine architecture

 analyze the effect of changing the stack convention utilized (SP points to top stack
item vs. next available location) on instruction cycle counts

Reading Assignment:
Meyer Supplemental Text, pp. 50-64

Learning Objectives, continued:

310

Outline
 Modifications to state counter and instruction decoder to

accommodate instructions with multiple execute cycles

 Introduction of a stack mechanism

 Use of a stack to implement “push” (PSH) and “pop” (POP)
instructions

 Identification of micro-operations that can be overlapped

 Modifications to the system architecture necessary to
implement subroutine linkage instructions

 Implementation of subroutine “call” (JSR) and “return”
(RTS) instructions

311

State Counter Modifications
 All of the “simple computer” instructions discussed

thus far have required only two states: a fetch cycle
followed by a single execute cycle

 Many “real world” instructions require more than a
single execute state to achieve their desired
functionality

 We wish to extend the state counter (and the
instruction decoder) to accommodate instructions that
require multiple execute cycles (here, up to three)

312

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 53

State Counter Modifications
 In the process of adding this capability, we want to make

sure our original “shorter” instructions do not incur a
“penalty” (i.e., execute slower)

 To accomplish this, we need to design the state counter
so that the number of execute cycles can be dynamically
changed based on the opcode of the instruction being
executed

 To provide up to three execute cycles, we will replace the
state counter flip-flop with a two-bit binary counter that
has a synchronous reset input (in addition to an
asynchronous clear)

313

State Counter Modifications
 The “state names” will now be:

– S0 (fetch)

– S1 (first execute)

– S2 (second execute)

– S3 (third execute)

 We will also add a new system control signal “RST”
(connected to the synchronous reset of the binary counter)
that will be asserted on the last execute state of each
instruction, thereby synchronously resetting the state
counter to zero (so that the next cycle will be a “fetch”)

314

/* Instruction Decoder and Microsequencer with Multi-Execution States */

module idmsr(CLK, START, OP, MSL, MOE, MWE, PCC, POA, ARS, IRL, IRA, ALE, ALX, ALY, AOE);

input wire CLK;
input wire START; // Asynchronous START pushbutton
input wire [2:0] OP; // opcode bits (input from IR5..IR7)
output wire MSL, MOE, MWE; // Memory control signals
output wire PCC, POA, ARS; // PC control signals
output wire IRL, IRA; // IR control signals
output wire ALE, ALX, ALY, AOE; // ALU control signals

reg SQA, SQB; // State counter low bit, high bit
reg RUN; // RUN/HLT state
wire RST; // Synchronous state counter reset

wire LDA, STA, ADD, SUB, AND, HLT;
wire [3:0] S;

reg next_SQA, next_SQB;
wire RUN_ar; // Asynchronous reset for RUN

315

// Decoded opcode definitions
assign HLT = ~OP[2] & ~OP[1] & ~OP[0]; // HLT opcode = 000
assign LDA = ~OP[2] & ~OP[1] & OP[0]; // LDA opcode = 001
assign ADD = ~OP[2] & OP[1] & ~OP[0]; // ADD opcode = 010
assign SUB = ~OP[2] & OP[1] & OP[0]; // SUB opcode = 011
assign AND = OP[2] & ~OP[1] & ~OP[0]; // AND opcode = 100
assign STA = OP[2] & ~OP[1] & OP[0]; // STA opcode = 101

// Decoded state definitions
assign S[0] = ~SQB & ~SQA; // fetch state
assign S[1] = ~SQB & SQA; // first execute state
assign S[2] = SQB & ~SQA; // second execute state
assign S[3] = SQB & SQA; // third execute state

// State counter
always @ (posedge CLK, posedge START) begin
if(START == 1'b1) begin // start in fetch state
SQA <= 1'b0;
SQB <= 1'b0;

end else begin
SQA <= next_SQA;
SQB <= next_SQB;

end
end

always @ (RST, RUN, SQA, SQB) begin
next_SQA = ~RST & RUN & ~SQA; // if RUN negated or RST asserted,
next_SQB = ~RST & RUN & (SQA ^ SQB); // state counter is reset

end

316

assign RUN_ar = S[1] & HLT;

// Run/stop
always @ (posedge CLK, posedge RUN_ar, posedge START) begin

if(START == 1'b1) // start with RUN set to 1
RUN <= 1'b1;

else if(RUN_ar == 1'b1) // RUN is cleared when HLT is executed
RUN <= 1'b0;

end

// System control equations
assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND));
assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND);
assign MWE = S[1] & STA;
assign ARS = START;
assign PCC = RUN & S[0];
assign POA = S[0];
assign IRL = RUN & S[0];
assign IRA = S[1] & (LDA | STA | ADD | SUB | AND);
assign AOE = S[1] & STA;
assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);
assign ALX = S[1] & (LDA | AND);
assign ALY = S[1] & (SUB | AND);
assign RST = S[1] & (LDA | STA | ADD | SUB | AND);

endmodule
317

Clicker
Quiz

318

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 54

A. we want to make sure the state counter gets reset

B. the ARS signal allows the state counter to be reset to the
“fetch” state when START is pressed, while the RST
allows the state counter to be reset when the last
execute cycle of an instruction is reached

C. the RST signal allows the state counter to be reset to the
“fetch” state when START is pressed, while ARS allows
the state counter to be reset when the last execute cycle
of an instruction is reached

D. the state counter is not always clocked

E. none of the above

Q1. The state counter in the “extended” machine’s instruction
decoder and micro-sequencer needs both a synchronous
reset (RST) and an asynchronous reset (ARS) because:

319

A. 3

B. 5

C. 7

D. 8

E. none of the above

Q2. Adding a third bit to the state counter would allow
up to ___ execute states:

320

Stack Mechanism
 Definition: A stack is a last-in, first-out (LIFO) data structure

 Primary uses of stacks in computers:

– subroutine linkage

• saving return address

• parameter passing

– saving machine context (or state) – especially when
processing interrupts or exceptions

– expression evaluation

321

Stack Mechanism
 Conventions:

– the stack area is generally placed at the “top” of memory
(i.e., starting at the highest address in memory)

– a stack pointer (SP) register is used to indicate the
address of the top stack item

– stack growth is toward decreasing addresses (note that
this is in contrast to program growth, which is toward
increasing addresses)

Note: An alternate convention for the stack could also
be used, namely, to have the SP register point to the
next available location

322

Illustration of Stack Growth

 Initial condition (stack empty):

11111

11110

11101

11100

00000
SP Register

“Top” of Memory

Addr

Illustration of Stack Growth

 After first item pushed onto stack:

<item #1> 11111

11110

11101

11100

11111
SP Register

“Top” of Memory

Addr

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 55

Illustration of Stack Growth

 After second item pushed onto stack:

<item #2>
<item #1> 11111

11110

11101

11100

11110
SP Register

“Top” of Memory

Addr

Illustration of Stack Growth

 After third item pushed onto stack:

<item #3>
<item #2>
<item #1> 11111

11110

11101

11100

11101
SP Register

“Top” of Memory

Addr

Illustration of Stack Growth

 After fourth item pushed onto stack:

<item #4>
<item #3>
<item #2>
<item #1> 11111

11110

11101

11100

11100
SP Register

“Top” of Memory

Addr

Illustration of Stack Growth

 After top item removed:

11111

11110

11101

11100

11101
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1>

Illustration of Stack Growth

 After top item removed:

11111

11110

11101

11100

11110
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1>

Illustration of Stack Growth

 After top item removed:

11111

11110

11101

11100

11111
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1>

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 56

Illustration of Stack Growth

 After top item removed (stack empty):

11111

11110

11101

11100

00000
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1>

Stack Mechanism
 To add a stack mechanism to our simple computer, we

need a Stack Pointer (SP) register connected to the
address bus that has the following control signals:

– SPI: Stack Pointer Increment

– SPD: Stack Pointer Decrement

– SPA: Stack Pointer output on Address bus

– ARS: Asynchronous ReSet

Note: The stack empty condition corresponds to
the SP register being cleared to “00000”

332

/* Stack Pointer */

module sp(CLK, SPI, SPD, SPA, ARS, ADRBUS_z);
// NOTE: Assume SPI and SPD are mutually exclusive
input wire CLK;
input wire SPI, SPD; // SP increment, decrement
input wire SPA; // SP output on address but tri-state enable
input wire ARS; // asynchronous reset (connected to START)
output wire [4:0] ADRBUS_z; // address bus
reg [4:0] SP, next_SP;

assign ADRBUS_z = SPA ? SP : 5'bZZZZZ;

always @ (posedge CLK, posedge ARS) begin
if (ARS == 1'b1)
SP <= 5'b00000;

else
SP <= next_SP;

end

always @ (SPI, SPD, SP) begin
if (SPI == 1'b1) // increment
next_SP = SP + 1;

else if (SPD == 1'b1) // decrement
next_SP = SP - 1;

else // retain state
next_SP = SP;

end

endmodule
333 334

Adding Stack Manipulation Instructions
 The most common stack operations are “push” and “pop” –

here, the value that will be pushed and popped is the A register
– PSH – save value in A register on stack

• Step 1: Decrement SP register
• Step 2: Store value in A register at the location pointed to

by SP register
– POP – load A with value on stack

• Step 1: Load A register from memory location pointed to
by SP register

• Step 2: Increment SP register

Note: The PSH and POP instructions can be used to
implement expression evaluation

335

Adding Stack Manipulation Instructions
 The opcodes that will be used for PSH and POP

are as follows:

336

Opcode Mnemonic Function Performed
0 0 0 HLT Halt – stop, discontinue execution
0 0 1 LDA addr Load A with contents of location addr
0 1 0 ADD addr Add contents of addr to contents of A
0 1 1 SUB addr Subtract contents of addr from contents of A
1 0 0 AND addr AND contents of addr with contents of A
1 0 1 STA addr Store contents of A at location addr
1 1 0 PSH Save (A) on stack
1 1 1 POP Restore (A) from stack

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 57

Adding Stack Manipulation Instructions
 At first glance, it would appear that two execute cycles

are required to implement both the PSH and POP
instructions

 As astute computer engineers, however, we always
need to be on the lookout for operations that can be
overlapped (subject, of course, to the “rules” we
learned earlier):
– Only one device is allowed to drive a bus during any

machine cycle (i.e., “bus fighting” must be avoided)
– Data cannot pass through more than one (edge-

triggered) flip-flop or latch per cycle

337

Adding Stack Manipulation Instructions
 Implementation of PSH requires two execute cycles:

– first execute cycle: decrement SP register* (SPD)
– second execute cycle: output “new” value of SP on

address bus (SPA), enable a memory write
operation (MSL and MWE), and tell the ALU to
output value in the A register on the data bus (AOE)

*Note: The “new” value of SP must be available (and stable)
before it can be used to address memory

340

341 342

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 58

Adding Stack Manipulation Instructions
 Implementation of POP requires only one execute cycle:

– first execute cycle: output value of SP on address bus
(SPA), enable a memory read operation (MSL and
MOE), tell the ALU to load the A register with the value
on the data bus (ALE and ALX), and tell the SP register
to increment* (SPI)

*Note: The SP register will be incremented after the
A register is loaded with the contents of the location
pointed to by the SP register, i.e., the SP increment
is overlapped with the fetch of the next instruction

343

Adding Stack Manipulation Instructions
 Modified system control table:

Note: Recall that the RST signal is used to synchronously reset
the state counter on the final execute cycle of each instruction 344

Decoded
State

Instruction
Mnemonic M

SL

M
O
E

M
W
E

P
C
C

P
O
A

IR
L

IR
A

A
O
E

A
LE

A
LX

A
LY

SP
I

SP
D

SP
A

R
ST

S0 – H H H H H

S1 HLT L L L L

S1 LDA addr H H H H H H

S1 ADD addr H H H H H

S1 SUB addr H H H H H H

S1 AND addr H H H H H H H

S1 STA addr H H H H H

S1 PSH H

S1 POP H H H H H H H

S2 PSH H H H H H

// System control equations
assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND | POP) | S[2] & PSH);
assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND);
assign MWE = S[1] & STA | S[2] & PSH;
assign ARS = START;
assign PCC = RUN & S[0];
assign POA = S[0];
assign IRL = RUN & S[0];
assign IRA = S[1] & (LDA | STA | ADD | SUB | AND);
assign AOE = S[1] & STA;
assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);
assign ALX = S[1] & (LDA | AND | POP);
assign ALY = S[1] & (SUB | AND);

assign SPI = S[1] & POP;
assign SPD = S[1] & PSH;
assign SPA = S[1] & POP | S[2] & PSH;

assign RST = S[1] & (LDA | STA | ADD | SUB | AND | POP) | S[2] & PSH;

345

Clicker
Quiz

346

A. stack overflow (stack collides with end of program space)

B. stack underflow (stack collides with beginning of program
space)

C. program counter overflow (program counter wraps to
beginning of program space)

D. program counter underflow (program counter wraps to
end of program space)

E. none of the above

Q1. If a program contains more POP instructions than PSH
instructions, the following is likely to occur:

347

A. stack overflow (stack collides with end of program space)

B. stack underflow (stack collides with beginning of program
space)

C. program counter overflow (program counter wraps to
beginning of program space)

D. program counter underflow (program counter wraps to
end of program space)

E. none of the above

Q2. If a program contains more PSH instructions than POP
instructions, the following is likely to occur:

348

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 59

Adding Subroutine Linkage Instructions
 Why use a stack as a subroutine linkage mechanism?

There are several important capabilities that a stack
affords:

– arbitrary nesting of subroutine calls

– passing parameters to subroutines

– recursion (the ability of a subroutine to call itself) –
made possible by passing parameters via the stack

– reentrancy (the ability of a code module to be shared
among quasi-simultaneously executing tasks) – made
possible by storing temporary local variables on the
stack

349

Adding Subroutine Linkage Instructions
 The opcodes that will be used for JSR (“jump to

subroutine”) and RTS (“return from subroutine”)
are as follows:

350

Opcode Mnemonic Function Performed
0 0 0 HLT Halt – stop, discontinue execution
0 0 1 LDA addr Load A with contents of location addr
0 1 0 ADD addr Add contents of addr to contents of A
0 1 1 SUB addr Subtract contents of addr from contents of A
1 0 0 AND addr AND contents of addr with contents of A
1 0 1 STA addr Store contents of A at location addr
1 1 0 JSR addr Jump to subroutine at location addr
1 1 1 RTS Return from subroutine

Subroutine Linkage in Action

351

MAIN start of main program

JSR SUBA
(next instruction)

HLT end of main program

SUBA start of subroutine A

JSR SUBB
(next instruction)

RTS end of subroutine A

SUBB start of subroutine B

RTS end of subroutine B

Adding Subroutine Linkage Instructions
 Subroutine “CALL” and “RETURN”

– JSR addr – jump to subroutine at memory location addr
• Step 1: Decrement SP register
• Step 2: Store return address* at location pointed to

by SP register
• Step 3: Load PC with value in IR address field

– RTS – return from subroutine
• Step 1: Load PC from memory location pointed to by

SP register
• Step 2: Increment SP register

*current value in PC, which was incremented during
the fetch cycle (points to next instruction) 352

Adding Subroutine Linkage Instructions
 The astute student will realize at this point that the

program counter needs to be modified – a way to save
its value on the stack, and subsequently restore it, must
be provided

 Two new PC control signals need to be implemented:
– POD: output value of PC on data bus
– PLD: load PC with value on data bus

353 354

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 60

355

/* Program Counter with Data Bus interface */

module pc(CLK, PCC, PLA, POA, RST, ADRBUS_z, DB_z, PLD, POD, PC);

input wire CLK;
input wire PCC; // PC count enable
input wire PLA; // PC load from address bus enable
input wire POA; // PC output on address bus tri-state enable
input wire RST; // Asynchronous reset (connected to START)
input wire PLD; // PC load from data bus enable
input wire POD; // PC output on data bus tri-state enable
inout wire [4:0] ADRBUS_z; // address bus (5-bits wide)
inout wire [7:0] DB_z; // data bus (8-bits wide)
output reg [4:0] PC;

reg [4:0] next_PC;

always @ (posedge CLK, posedge RST) begin
if (RST == 1'b1)

PC <= 5'b00000;
else

PC <= next_PC;
end

356

always @ (PLA, PLD, PCC, ADRBUS_z, DB_z, PC) begin
// synchronous control signals PLA, PLD, and PCC are mutually exclusive

if (PLA == 1'b1) // load PC from address bus
next_PC = ADRBUS_z;

else if (PLD == 1'b1) // load PC from data bus
next_PC = DB_z;

else if (PCC == 1'b1) // increment PC
next_PC = PC + 1;

else // retain state
next_PC = PC;

end

assign ADRBUS_z = POA ? PC[4:0] : 5'bZZZZZ;
assign DB_z = POD ? {3'b000, PC[4:0]} : 8'bZZZZZZZZ; // pad upper 3 bits of DB w/ 0

endmodule

357 358

359

Adding Subroutine Linkage Instructions
 Implementation of JSR requires three execute cycles:

– first execute cycle: decrement SP register (SPD)

– second execute cycle: output “new” value of SP on
address bus (SPA), enable a memory write operation
(MSL and MWE), and tell the PC register to output its
value on the data bus (POD)

– third execute cycle: tell IR register to output its
operand field on the address bus (IRA), and tell the PC
register to load the value on the address bus (PLA)

360

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 61

361 362

Adding Subroutine Linkage Instructions
 At first glance, it would appear that two execute cycles

are required to implement the RTS instruction

 As astute students, however, we always need to be on
the lookout for operations that can be overlapped
(subject, of course, to the “rules” we learned earlier):

– Only one device is allowed to drive a bus during any
machine cycle (i.e., “bus fighting” must be avoided)

– Data cannot pass through more than one (edge-
triggered) flip-flop or latch per cycle

363

Adding Subroutine Linkage Instructions
 Implementation of RTS requires only one execute cycle:

– first execute cycle: output value of SP on address bus
(SPA), enable a memory read operation (MSL and MOE),
tell the PC to load the value on the data bus (PLD), and
tell the SP register to increment* (SPI)

*Note: The SP register will be incremented after the
PC register is loaded with the contents of the location
pointed to by the SP register, i.e., the SP increment is
overlapped with the fetch of the next instruction

364

Adding Subroutine Linkage Instructions
 Modified system control table:

Note: Recall that the RST signal is used to synchronously reset the state counter on
the final execute cycle of each instruction 365

Decoded
State

Instruction
Mnemonic M

SL

M
O
E

M
W
E

P
C
C

P
O
A

P
LA

P
O
D

P
LD

IR
L

IR
A

A
O
E

A
LE

A
LX

A
LY

SP
I

SP
D

SP
A

R
ST

S0 – H H H H H

S1 HLT L L L L

S1 LDA addr H H H H H H

S1 ADD addr H H H H H

S1 SUB addr H H H H H H

S1 AND addr H H H H H H H

S1 STA addr H H H H H

S1 JSR addr H

S1 RTS H H H H H H

S2 JSR addr H H H H

S3 JSR addr H H H

// System control equations

assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND | RTS) | S[2] & JSR);
assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND | RTS);
assign MWE = S[1] & STA | S[2] & JSR;
assign ARS = START;
assign PCC = RUN & S[0];
assign POA = S[0];

assign PLA = S[3] & JSR;
assign POD = S[2] & JSR;
assign PLD = S[1] & RTS;

assign IRL = RUN & S[0];
assign IRA = S[1] & (LDA | STA | ADD | SUB | AND);
assign AOE = S[1] & STA;
assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);
assign ALX = S[1] & (LDA | AND);
assign ALY = S[1] & (SUB | AND);

assign SPI = S[1] & RTS;
assign SPD = S[1] & JSR;
assign SPA = S[1] & RTS | S[2] & JSR;

assign RST = S[1] & (LDA | STA | ADD | SUB | AND | RTS) | S[3] & JSR;

endmodule

366

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 4
Spring 2019 Edition

© 2019 by D. G. Meyer 62

Clicker
Quiz

367

A. stack overflow (stack collides with end of program space)

B. stack underflow (stack collides with beginning of program
space)

C. program counter overflow (program counter wraps to
beginning of program space)

D. program counter underflow (program counter wraps to
end of program space)

E. none of the above

Q1. If a program contains more JRS instructions than RTS
instructions, the following is likely to occur:

368

A. stack overflow (stack collides with end of program space)

B. stack underflow (stack collides with beginning of program
space)

C. program counter overflow (program counter wraps to
beginning of program space)

D. program counter underflow (program counter wraps to
end of program space)

E. none of the above

Q2. If a program contains more RTS instructions than JSR
instructions, the following is likely to occur:

369

Fun Things to Think About...
 What kinds of new instructions would be useful in

writing “real” programs?

 What new kinds of registers would be good to add to
the machine?

 What new kinds of addressing modes would be nice
to have?

 What would we have to change if we wanted “branch”
transfer-of-control instructions instead of “jump”
instructions?

These are all good reasons to “continue your ‘digital life’
beyond this course”!

370

