
ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

1

Lecture Summary – Module 4
Arithmetic and Computer Logic Circuits

Learning Outcome: an ability to analyze and design computer logic circuits

Learning Objectives:
4-1. compare and contrast three different signed number notations: sign and magnitude, diminished

radix, and radix
4-2. convert a number from one signed notation to another
4-3. describe how to perform sign extension of a number represented using any of the three notation

schemes
4-4. perform radix addition and subtraction
4-5. describe the various conditions of interest following an arithmetic operation: overflow,

carry/borrow, negative, zero
4-6. describe the operation of a half-adder and write equations for its sum (S) and carry (C) outputs
4-7. describe the operation of a full adder and write equations for its sum (S) and carry (C) outputs
4-8. design a “population counting” or “vote counting” circuit using an array of half-adders and/or full-

adders
4-9. design an N-digit radix adder/subtractor circuit with condition codes
4-10. design a (signed or unsigned) magnitude comparator circuit that determines if A=B, A<B, or A>B
4-11. describe the operation of a carry look-ahead (CLA) adder circuit, and compare its performance to

that of a ripple adder circuit
4-12. define the CLA propagate (P) and generate (G) functions, and show how they can be realized using

a half-adder
4-13. write the equation for the carry out function of an arbitrary CLA bit position
4-14. draw a diagram depicting the overall organization of a CLA
4-15. determine the worst case propagation delay incurred by a practical (PLD-based) realization of a

CLA
4-16. describe how a “group ripple” adder can be constructed using N-bit CLA blocks
4-17. describe the operation of an unsigned multiplier array constructed using full adders
4-18. determine the full adder arrangement and organization (rows/diagonals) needed to construct an

NxM-bit unsigned multiplier array
4-19. determine the worst case propagation delay incurred by a practical (PLD-based) realization of an

NxM-bit unsigned multiplier array
4-20. describe the operation of a binary coded decimal (BCD) “correction circuit”
4-21. design a BCD full adder circuit
4-22. design a BCD N-digit radix (base 10) adder/subtractor circuit
4-23. define computer architecture, programming model, and instruction set
4-24. describe the top-down specification, bottom-up implementation strategy as it pertains to the design

of a computer
4-25. describe the characteristics of a “two address machine”
4-26. describe the contents of memory: program, operands, results of calculations
4-27. describe the format and fields of a basic machine instruction (opcode and address)
4-28. describe the purpose/function of each basic machine instruction (LDA, STA, ADD, SUB, AND,

HLT)
4-29. define what is meant by “assembly-level” instruction mnemonics
4-30. draw a diagram of a simple computer, showing the arrangement and interconnection of each

functional block

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

2

4-31. trace the execution of a computer program, identifying each step of an instruction’s microsequence

(fetch and execute cycles)
4-32. distinguish between synchronous and combinational system control signals
4-33. describe the operation of memory and the function of its control signals: MSL, MOE, and MWE
4-34. describe the operation of the program counter (PC) and the function of its control signals: ARS,

PCC, and POA
4-35. describe the operation of the instruction register (IR) and the function of its control signals: IRL and

IRA
4-36. describe the operation of the ALU and the function of its control signals: ALE, ALX, ALY, and

AOE
4-37. describe the operation of the instruction decoder/microsequencer and derive the system control table
4-38. describe the basic hardware-imposed system timing constraints: only one device can drive a bus

during a given machine cycle, and data cannot pass through more than one flip-flop (register) per
cycle

4-39. discuss how the instruction register can be loaded with the contents of the memory location pointed
to be the program counter and the program counter can be incremented on the same clock edge

4-40. modify a reference ALU design to perform different functions (e.g., shift and rotate)
4-41. describe how input/output instructions can be added to the base machine architecture
4-42. describe the operation of the I/O block and the function of its control signals: IOR and IOW
4-43. compare and contrast the operation of OUT instructions with and without a transparent latch as an

integral part of the I/O block
4-44. compare and contrast “jump” and “branch” transfer-of-control instructions along with the

architectural features needed to support them
4-45. distinguish conditional and unconditional branches
4-46. describe the basis for which a conditional branch is “taken” or “not taken”
4-47. describe the changes needed to the instruction decoder/microsequencer in order to dynamically

change the number of instruction execute cycles based on the opcode
4-48. compare and contrast the machine’s asynchronous reset (“START”) with the synchronous state

counter reset (“RST”)
4-49. describe the operation of a stack mechanism (LIFO queue)
4-50. describe the operation of the stack pointer (SP) register and the function of its control signals: ARS,

SPI, SPD, SPA
4-51. compare and contrast the two possible stack conventions: SP pointing to the top stack item vs. SP

pointing to the top stack item
4-52. describe how stack manipulation instructions (PSH/POP) can be added to the base machine

architecture
4-53. discuss the consequences of having an unbalanced set of PSH and POP instructions in a given

program
4-54. discuss the reasons for using a stack as a subroutine linkage mechanism: arbitrary nesting of

subroutine calls, passing parameters to subroutines, recursion, and reentrancy
4-55. describe how subroutine linkage instructions (JSR/RTS) can be added to the base machine

architecture
4-56. analyze the effect of changing the stack convention utilized (SP points to top stack item vs. next

available location) on instruction cycle counts

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

3

Lecture Summary – Module 4-A
Signed Number Notation

Reference: Digital Design Principles and Practices (4th Ed.) pp. 39-43, (5th Ed.) pp. 44-48

 overview – signed number notations

o sign and magnitude (SM)
o diminished radix (DR)
o radix (R)
o only negative numbers are different – positive numbers are the same in all 3 notations

 sign and magnitude
o vacuum tube vintage
o left-most (“most significant”) digit is sign bit

 0 positive
 R-1 negative (where R is radix or base of number)

o positive-negative pairs are called sign and magnitude complements of each other
o negation method: replace sign digit (ns) with R-1-ns

 diminished radix
o most significant digit is still sign bit
o positive-negative pairs are called diminished radix complements of each other
o negation method: subtract each digit (including ns) from R-1, i.e. -(N)R = (Rn-1)R – (N)R

 radix
o most significant digit is still sign bit
o positive-negative pairs are called radix complements of each other
o negation method: add one to the DR complement of (N)R, i.e. -(N)R = (Rn)R – (N)R

 comparison (3-bit signed numbers, each notation):

 simplifications for binary (base 2)

o SM: complement sign position (0 1)
o DR (also called 1’s complement): complement each bit
o R (also called 2’s complement):

 add 1 to DR complement -or-
 scan number from right to left and complement each bit to the left of the first “1”

encountered

 sign extension: SM – pad magnitude with leading zeroes; R and DR – replicate the sign digit

Observations:
1. SM and DR have a balanced set

of positive and negative numbers
(as well as +0 and -0)

2. R notation has a single
representation for zero, which
results in an “extra negative
number” – this unbalanced set of
positive and negative numbers
can lead to round-off errors in
numeric computations

3. Virtually all computers in service
today use R notation

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

4

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

5

Lecture Summary – Module 4-B
Radix Addition and Subtraction

Reference: Digital Design Principles and Practices (4th Ed.) pp. 39-43, (5th Ed.) pp. 48-52

 radix addition

o method: add all digits, including the sign digits; ignore any carry out of the sign position
o note that overflow can occur, since we are working with numbers of fixed length

 overflow occurs if two numbers of like sign are added and a result with the opposite
sign is obtained

 overflow cannot occur when adding numbers of opposite sign
 another way to detect overflow: if the carry in to the sign position is different than

the carry out of the sign position, then overflow has occurred
 when overflow occurs, there is no valid numeric result

 radix subtraction
o method: form the radix complement of the subtrahend and ADD (the same rules for

overflow detection apply)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

6

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

7

Lecture Summary – Module 4-C
Adder, Subtractor, and Comparator Circuits

Reference: DDPP (4th Ed.) pp. 458-466, 474-478; (5th Ed.) pp. 331-339, 341-345, 372-375

 overview

o an adder circuit combines two operands based on rules described in 5-C
o same addition rules apply for both signed (2’s complement) and unsigned numbers
o subtraction performed by taking complement of subtrahend and performing add

 building blocks

o half adder

Xi Yi Ci Si
0 0
0 1
1 0
1 1

o full adder

o “vote counting” application

Xi Yi Ci-1 Ci Si
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

8

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

9

 multi-digit adder/subtractor

o ripple = iterative
o to subtract, take DR radix complement

of subtrahend and add 1
o conditions of interest (“condition codes”)

 overflow (V)
 negative (N)
 zero (Z)
 carry/borrow (C)

 magnitude comparator
o calculate AB and condition codes
o results (A=B, A<B, A>B) are functions of

the condition codes

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

10

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

11

Lecture Summary – Module 4-D
Carry Look-Ahead (CLA) Adder Circuits

Reference: DDPP (4th Ed.) pp. 478-482, 484-488; (5th Ed.) pp. 376-383, 384-386

 introduction

o previously considered iterative (“ripple”) adder circuit
o problem: propagation delay increases with number of bits
o solution: determine carries in parallel rather than iteratively significant speedup
o “look-ahead” “anticipated”

 definitions and derivations

o generate function (carry guaranteed) Gi = Xi•Yi
o propagate function (carry in propagated out) Pi = Xi Yi
o note that a “PG box” is just a half-adder (HA)
o can rewrite sum bit equation as Si = Pi Ci-1 (C-1 is Cin)
o can rewrite carry out equation as Ci = Gi + Ci-1•Pi

 rewriting carry equations for 4-bit

adder in terms of P’s and G’s
o C-1 = Cin

o C0 = G0 + Cin•P0

o C1 = G1 + C0•P1

o C2 = G2 + C1•P2

o C3 = Cout = G3 + C2•P3

 rewriting carry equations for 4-

bit adder in terms of available
inputs (successive expansion)

o C-1 = Cin

o C0 = G0 + Cin•P0

o C1 = G1 + C0•P1 = G1 + (G0 + Cin•P0)•P1 = G1 + G0 •P1 + Cin•P0•P1

o know what these equations are “saying”

o C2 = __

o C3 = __

 observations

o regardless of adder length (number of operand bits), the time required to produce any
sum digit is the same (i.e. they are all produced in parallel)

o large CLA adders are difficult to build in practice because of “product term explosion”
o reasonable compromise is to make a group ripple adder (cascading m-bit CLA blocks

together to get desired operand length)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

12

 4-bit CLA realized in Verilog

 alternate version using “+” (addition) operator

 identical timing analysis for both versions “+” operator synthesizes CLA equations

module cla4(X, Y, CIN, S);

 input wire [3:0] X, Y; // Operands
 input wire CIN; // Carry in
 output wire [3:0] S; // Sum outputs

 wire [3:0] C; // Carry equations (C[3] is Cout)
 wire [3:0] P, G;

assign G = X & Y; // Generate functions G[0] = X[0]&Y[0];

 G[1] = .. so on
 assign P = X ^ Y; // Propagate functions P[0] = X[0]^Y[0];

 P[1] = .. so on

 // Carry function definitions
 assign C[0] = G[0] | CIN & P[0];
 assign C[1] = G[1] | G[0] & P[1] | CIN & P[0] & P[1];
 assign C[2] = G[2] | G[1] & P[2] | G[0] & P[1] & P[2]
 | CIN & P[0] & P[1] & P[2];
 assign C[3] = G[3] | G[2] & P[3] | G[1] & P[2] & P[3]
 | G[0] & P[1] & P[2] & P[3]
 | CIN & P[0] & P[1] & P[2] & P[3];

 assign S[0] = CIN ^ P[0];
 assign S[3:1] = C[2:0] ^ P[3:1];

endmodule

module cla4p(X, Y, CIN, S);

 input wire [3:0] X, Y; // Operands
 input wire CIN; // Carry in
 output wire [3:0] S; // Sum outputs

 assign S = X + Y + {3'b000,CIN};

endmodule

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD

 Delay Level Source Destination
 ===== ===== ====== ===========
 6.40 1 CIN S3
 6.40 1 X0 S3
 6.40 1 Y0 S3
 6.35 1 X1 S3
 6.35 1 Y1 S3
 6.30 1 X2 S3
 6.30 1 Y2 S3
 6.25 1 Y3 S3

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

13

Lecture Summary – Module 4-E
Multiplier Circuits

Reference: DDPP (4th Ed.) pp. 45-47, 494-497; (5th Ed.) pp. 54-56, 416-419

 overview

o consider 3x3 unsigned binary multiplication:

o based on “shift and add” algorithm
o each row is called a product component
o each xi•yj term represents a product component bit (logical AND)
o the product P is obtained by adding together the product components

 generalizations for an NxM multiplier array circuit

o N = number of bits in multiplicand
o M = number of bits in multiplier
o produces an N+M digit result
o requires NxM AND gates to generate the product components
o requires N-1 “diagonals” of full adders
o requires M rows of full adders

 exercise: 4x2 multiplier array circuit

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

14

 exercise: 2x4 multiplier array circuit

 generalizations for an NxM multiplier

o N = number of bits in multiplicand (top)
o M = number of bits in multiplier (bottom)
o produces an N+M digit result
o requires NxM AND gates to generate the product components
o requires N–1 diagonals of full adders
o requires M rows of full adders

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

15

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

16

 realizations in Verilog

o use expressions to define product components
o use addition operator (+) to form unsigned sum of product components
o example: 4x4 multiplier array circuit

/* 4x4 Combinational Multiplier */
module mul4x4(X, Y, P);

 input wire [3:0] X, Y; // Multiplicand, multiplier
 output wire [7:0] P; // Product bits

 wire [7:0] PC[3:0]; // Four 8-bit variables

 assign PC[0] = {8{Y[0]}} & {4'b0, X}; // 0000X3X2X1X0
 assign PC[1] = {8{Y[1]}} & {3'b0, X, 1'b0}; // 000X3X2X1X00
 assign PC[2] = {8{Y[2]}} & {2'b0, X, 2'b0}; // 00X3X2X1X000
 assign PC[3] = {8{Y[3]}} & {1'b0, X, 3'b0}; // 0X3X2X1X0000

 assign P = PC[0] + PC[1] + PC[2] + PC[3];

endmodule

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD

 Delay Level Source Destination
 ===== ===== ====== ===========
 6.50 1 X0 P4
 6.50 1 X0 P5
 6.50 1 X1 P4
 6.50 1 X1 P5
 6.50 1 X2 P4
 6.50 1 X2 P5
 6.50 1 Y0 P4
 6.50 1 Y0 P5
 6.50 1 Y1 P4
 6.50 1 Y1 P5
 6.50 1 Y2 P4
 6.50 1 Y2 P5
 6.45 1 X3 P4
 6.45 1 X3 P5
 6.45 1 Y3 P4
 6.45 1 Y3 P5
 6.05 1 X0 P0
 6.05 1 X0 P1
 6.05 1 X0 P2
 6.05 1 X0 P3

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

17

N10 Z4 Z3 Z2 Z1 Z0 Cout S3 S2 S1 S0 Correction
0 0 0 0 0 0 0 0 0 0 0 <none>
1 0 0 0 0 1 0 0 0 0 1 <none>
2 0 0 0 1 0 0 0 0 1 0 <none>
3 0 0 0 1 1 0 0 0 1 1 <none>
4 0 0 1 0 0 0 0 1 0 0 <none>
5 0 0 1 0 1 0 0 1 0 1 <none>
6 0 0 1 1 0 0 0 1 1 0 <none>
7 0 0 1 1 1 0 0 1 1 1 <none>
8 0 1 0 0 0 0 1 0 0 0 <none>
9 0 1 0 0 1 0 1 0 0 1 <none>
10 0 1 0 1 0 1 0 0 0 0 <add 6>
11 0 1 0 1 1 1 0 0 0 1 <add 6>
12 0 1 1 0 0 1 0 0 1 0 <add 6>
13 0 1 1 0 1 1 0 0 1 1 <add 6>
14 0 1 1 1 0 1 0 1 0 0 <add 6>
15 0 1 1 1 1 1 0 1 0 1 <add 6>
16 1 0 0 0 0 1 0 1 1 0 <add 6>
17 1 0 0 0 1 1 0 1 1 1 <add 6>
18 1 0 0 1 0 1 1 0 0 0 <add 6>
19 1 0 0 1 1 1 1 0 0 1 <add 6>

Lecture Summary – Module 4-F
BCD Adder Circuits

Reference: Digital Design Principles and Practices (4th Ed.) pp. 48-51; (5th Ed.) pp. 58-60

 overview

o external computer interfaces may need to read or display decimal digits (examples)
o need to perform arithmetic operations on decimal numbers directly
o most commonly used code in binary-coded decimal (BCD)
o object is to design circuit that adds two BCD digit codes plus carry in, to produce a sum

digit plus a carry out
o want to use standard 4-bit binary adder modules as “building blocks”
o note that there are six “unused combinations” in BCD, so potential exists for needed to

perform a “correction”
 general circuit model

 examples of decimal addition and correction
 summary of rules

o if the sum of two BCD digits is 9
(i.e. 1001), no correction is needed

o if the sum of two BCD digits is > 9,
the result must be corrected by
adding six (0110)

 “correction function” derivation

X3 X2 X1 X0 Y3 Y2 Y1 Y0

CinCout

S3 S2 S1 S0

4-bit Adder

Correction Circuit

Z4 Z3 Z2 Z1 Z0

S3 S2 S1 S0CoutZ4Z3Z2Z1Z0
is the direct
sum obtained

BCD sum digit

Cin

BCD
operand

BCD
operand

Cout

Fcorrection = Cout =

Z4 + Z3•Z2 + Z3•Z1

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

18

 BCD “full adder” circuit

 example: maximum value that can be generated by a BCD full adder cell (9+9+Cin)

 example: circuit that produces the diminished radix complement of a BCD digit

 module ninescmp(X, Y);
 input wire [3:0] X; // Input code
 output reg [3:0] Y; // Output code
 always @ (X) begin
 case (X)
 4'b0000: Y = 4'b1001;
 4'b0001: Y = 4'b1000;
 4'b0010: Y = 4'b0111;
 4'b0011: Y = 4'b0110;
 4'b0100: Y = 4'b0101;
 4'b0101: Y = 4'b0100;
 4'b0110: Y = 4'b0011;
 4'b0111: Y = 4'b0010;
 4'b1000: Y = 4'b0001;
 4'b1001: Y = 4'b0000;
 default: Y = 4'b0000; // used for inputs > 9
 endcase
 end
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

19

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

20

Calculation of ADD, AND, and SUB results:

Lecture Summary – Module 4-G
Simple Computer – Top-Down Specification

Reference: Meyer Supplemental Text, pp. 1-18

 overview

o the “ultimate application” of what we have learned
o computer defn – sequential execution of stored program
o architecture defn – arrangement and interconnection of functional blocks
o house analogy

 big picture
o input/output
o start (reset)
o clock

 floor plan
o programming model
o instruction set
o registers
o instruction format

 opcode
 address

o two-address machine
 programming example
 memory snapshot

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

21

 block diagram

o memory
o program counter
o instruction register
o arithmetic logic unit
o instruction decoder and

micro-sequencer

 notes

o each functional block is “self-contained” (can be independently tested)
o can add more instructions by increasing number of opcode bits
o can add more memory by increasing the number of address bits
o can increase numeric range by increasing the number of data bits

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

22

Lecture Summary – Module 4-H
Simple Computer – Instruction Tracing

Reference: Meyer Supplemental Text, pp. 18-24

 overview

o two basic steps in “processing” an instruction
 fetch
 execute

o will trace the processing of several instructions to better understand this
 program segment to trace

 worksheet

 step 1 (after START pushbutton pressed)

Addr Instruction Comments
00000 LDA 01011 Load A with contents of location 01011
00001 ADD 01100 Add contents of location 01100 to A
00010 STA 01101 Store contents of A at location 01101

Notes:
1. The clock edges drive the

synchronous functions of the
computer (e.g., increment
program counter)

2. The decoded states (here,
fetch and execute) enable the
combinational functions of
the computer (e.g., turn on
tri-state buffers)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

23

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

24

Lecture Summary – Module 4-I
Simple Computer – Bottom-Up Implementation

Reference: Meyer Supplemental Text, pp. 24-42

 overview

o finished top-down specification of design
o ready for bottom-up implementation
o all system control signals active high
o some control signals mutually exclusive
o all blocks use the same clock signal

 memory
o key definitions/terms

 read/write
 “random access” (wrt prop delay)
 static (does not need “refresh”)
 volatile (loses data when “off”)
 size NxM (here 32x8)

o 3 control signals
 MSL – memory select
 MOE – memory output enable
 MWE – memory write enable

o notes
 read operation is combinational
 write operation involves open/closing latch setup and hold timing matters

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

25

 program counter
o basically a binary “up” counter with tri-state outputs and an asynchronous reset
o 3 control signals

 ARS – asynchronous reset
 PCC – program counter count enable
 POA – program counter output on address bus tri-state buffer enable

 instruction register
o basically an 8-bit data register, with tri-state outputs on the lower 5 (address) bits
o upper 3 bits (opcode) output directly to instruction decoder and micro-sequencer
o two control signals

 IRL – instruction register load enable
 IRA – instruction register address field tri-state output enable

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

26

 ALU
o a multi-function register that performs arithmetic and logical operations
o four control signals

 ALE – overall ALU enable
 ALX – function select
 ALY – function select
 AOE – A register tri-state output enable

o block diagram of one bit

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

27

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

28

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

29

 instruction decoder and microsequencer

o state machine that tells all the other state machines what to do (“orchestra director”)

o micro-sequence consists of two steps (states)

 fetching instruction from memory
 executing instruction
 fetch/execute state represented by single flip-flop (SQ)

o fetch cycle

 POA (output location of instruction on address bus)
 MSL (select memory, i.e., enable memory to participate)
 MOE (turn on memory tri-state buffers, so that selected location can be read)
 IRL (enable IR to load instruction fetched from memory)
 PCC (enable PC to increment)

o execute cycle – ALU functions (ADD, SUB, LDA, AND)

 IRA (output operand location on address bus)
 MSL (select memory)
 MOE (enable memory to be read)
 ALE (enable ALU to perform the selected function)

o execute cycle – STA instruction

 IRA (output location at which to store result)
 MSL (select memory)
 MWE (enable write to memory)
 AOE (output data in A register via data bus to memory)

o to stop execution (“halt”), need a “run/stop” flip-flop

 when START pressed, asynchronously set RUN flip-flip
 when HLT instruction executed, asynchronously clear RUN flip-flop
 AND the RUN signal with each synchronous enable signal effectively disables

all functional blocks

The synchronous fetch
functions (IRL and PCC)
will take place on the
clock edge that causes
the state counter to
transition from the fetch
state to the execute state

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

30

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

31

 system data flow analysis – procedure

o understand operation of functional units
o understand what each instruction does
o identify address & data source/destination
o identify micro-operations required
o identify control signals that need to be asserted
o examine timing relationship

 system data flow analysis - constraints
o only one device can drive the bus during a machine cycle
o data cannot pass through more than one flip-flop or latch per cycle

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

32

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

33

Lecture Summary – Module 4-J
Simple Computer – Basic Extensions

Reference: Meyer Supplemental Text, pp. 42-50

 overview

o will use “spare” opcodes (110 and 111) to add new instructions
o will add rows and columns to original system control table as needed

 shift instructions (extension to ALU)
o translation of bits to the left or right
o end off: discard bit shifted out
o preserving: retain bit shifted out
o logical: zero fill (zero shifted in)
o arithmetic: sign preserving

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

34

 input wire CLK;
 // ALU control lines
 input wire ALE; // Overall ALU enable
 input wire AOE; // Data bus tri-state output enable
 input wire ALX, ALY; // Function select
 inout wire [7:0] DB_z; // Bidirectional 8-bit data bus
 output reg CF, VF, NF, ZF; // Condition code bits (flags)
 // Carry, Overflow, Negative, Zero
 // Combinational ALU outputs
 wire [7:0] ALU;
 // Accumulator (A) register
 reg [7:0] AQ;
 // Next state variables
 reg next_CF, next_VF, next_NF, next_ZF;
 reg [7:0] next_AQ;

 // Combinational ALU outputs
 always @ (ALX, ALY, DB_z) begin
 case ({ALX,ALY})
 2'b00: ALU = DB_z; // LDA
 2'b01: ALU = {1'b0,AQ[7:1]}; // LSR
 2'b10: ALU = {AQ[6:0],1'b0}; // ASL
 2'b11: ALU = {AQ[7],AQ[7:1]}; // ASR
 endcase
 end
 // Register bit and data bus control equations
 always @(posedge CLK) begin
 AQ <= next_AQ;
 end
 always @ (ALE, ALU, AQ) begin
 next_AQ = ALE ? ALU : AQ;
 end
 assign DB_z = AOE ? AQ : 8'bZZZZZZZZ;
 // Flag register state equations
 always @ (posedge CLK) begin
 CF <= next_CF;
 ZF <= next_ZF;
 NF <= next_NF;
 VF <= next_VF;
 end
 always @ (ALE, ALX, ALY, CF, ZF, NF, VF, ALU, AQ) begin
 casez ({ALE,ALX,ALY})
 3'b0??: next_CF = 1'b0;
 3'b100: next_CF = CF; // LDA (not affected)
 3'b101: next_CF = AQ[0]; // LSR
 3'b110: next_CF = AQ[7]; // ASL
 3'b111: next_CF = AQ[0]; // ASR
 endcase
 next_ZF = ALE ? (ALU == 0) : ZF;
 next_NF = ALE ? ALU[7] : NF;
 next_VF = VF; // NOTE: NOT AFFECTED
 end
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

35

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

36

 input/output (I/O) instructions
o new instructions

 IN addr – input data from port addr and load into A register
 OUT addr – output data in A register to port addr

o new control signals
 IOR – asserted when IN executed
 IOW – asserted when OUT executed

o modified block diagram, Verilog code for I/O module, modified system control table

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

37

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

38

 transfer of control instructions

o addressing mode
 absolute – operand field of instruction contains absolute address in memory
 relative - operand field contains signed offset that should be added to PC

o condition
 unconditional – always happen
 conditional – happen only if specific condition is true (else no-operation)

o illustrative examples
 JMP addr – unconditional jump (to absolute address)
 JZF addr – jump (to absolute address) iff ZF=1 (else no-op)

o modified block diagram

o Verilog code for modified PC (with “load from address bus” capability)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

39

o modified system control table

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

40

Lecture Summary – Module 4-K
Simple Computer – Advanced Extensions

Reference: Meyer Supplemental Text, pp. 50-64

 overview

o advanced extensions include
 multi-cycle execution
 stack mechanism

 state counter modifications
o provide multiple execute cycles (here, up to 3)
o determine number of execute cycles based on opcode
o realize using 2-bit synchronously resettable state counter [SQB SQA]
o new state names

 S0 – fetch
 S1..S3 – execute (first, second, third)

o new control signal: RST (asserted on final execute state of each instruction)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

41

/* Instruction Decoder and Microsequencer with Multi-Execution States */
module idmsr(CLK, START, OP, MSL, MOE, MWE, PCC, POA, ARS, IRL, IRA, ALE, ALX, ALY, AOE);
 input wire CLK;
 input wire START; // Asynchronous START pushbutton
 input wire [2:0] OP; // opcode bits (input from IR5..IR7)
 output wire MSL, MOE, MWE; // Memory control signals
 output wire PCC, POA, ARS; // PC control signals
 output wire IRL, IRA; // IR control signals
 output wire ALE, ALX, ALY, AOE; // ALU control signals
 reg SQA, SQB; // State counter low bit, high bit
 reg RUN; // RUN/HLT state
 wire RST; // Synchronous state counter reset
 wire LDA, STA, ADD, SUB, AND, HLT;
 wire [3:0] S;
 reg next_SQA, next_SQB;
 wire RUN_ar; // Asynchronous reset for RUN
 // Decoded opcode definitions
 assign HLT = ~OP[2] & ~OP[1] & ~OP[0]; // HLT opcode = 000
 assign LDA = ~OP[2] & ~OP[1] & OP[0]; // LDA opcode = 001
 assign ADD = ~OP[2] & OP[1] & ~OP[0]; // ADD opcode = 010
 assign SUB = ~OP[2] & OP[1] & OP[0]; // SUB opcode = 011
 assign AND = OP[2] & ~OP[1] & ~OP[0]; // AND opcode = 100
 assign STA = OP[2] & ~OP[1] & OP[0]; // STA opcode = 101

 // Decoded state definitions
 assign S[0] = ~SQB & ~SQA; // fetch state
 assign S[1] = ~SQB & SQA; // first execute state
 assign S[2] = SQB & ~SQA; // second execute state
 assign S[3] = SQB & SQA; // third execute state
 // State counter
 always @ (posedge CLK, posedge START) begin
 if(START == 1'b1) begin // start in fetch state
 SQA <= 1'b0;
 SQB <= 1'b0;
 end else begin
 SQA <= next_SQA;
 SQB <= next_SQB;
 end
 end
 always @ (RST, RUN, SQA, SQB) begin
 next_SQA = ~RST & RUN & ~SQA; // if RUN negated or RST asserted,
 next_SQB = ~RST & RUN & (SQA ^ SQB); // state counter is reset
 end
 assign RUN_ar = S[1] & HLT;
 // Run/stop
 always @ (posedge CLK, posedge RUN_ar, posedge START) begin
 if(START == 1'b1) // start with RUN set to 1
 RUN <= 1'b1;
 else if(RUN_ar == 1'b1) // RUN is cleared when HLT is executed
 RUN <= 1'b0;
 end
 // System control equations
 assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND));
 assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND);
 assign MWE = S[1] & STA;
 assign ARS = START;
 assign PCC = RUN & S[0];
 assign POA = S[0];
 assign IRL = RUN & S[0];
 assign IRA = S[1] & (LDA | STA | ADD | SUB | AND);
 assign AOE = S[1] & STA;
 assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);
 assign ALX = S[1] & (LDA | AND);
 assign ALY = S[1] & (SUB | AND);
 assign RST = S[1] & (LDA | STA | ADD | SUB | AND);
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

42

 stack mechanism
o defn: last-in, first-out (LIFO) data structure
o primary uses of stacks in computers

 subroutine linkage
 saving/restoring machine context
 expression evaluation

o conventions
 stack area usually placed at “top” of memory (highest address range)
 stack pointer (SP) register used to indicate address of top stack item
 stack growth is toward decreasing addresses

o SP register control signals
 SPI – stack pointer increment
 SPD – stack pointer decrement
 SPA – stack pointer output on address bus
 ARS – asynchronous reset (“stack empty” (SP) = 00000)

/* Stack Pointer */

module sp(CLK, SPI, SPD, SPA, ARS, ADRBUS_z);
 // NOTE: Assume SPI and SPD are mutually exclusive
 input wire CLK;
 input wire SPI, SPD; // SP increment, decrement
 input wire SPA; // SP output on address but tri-state enable
 input wire ARS; // asynchronous reset (connected to START)
 output wire [4:0] ADRBUS_z; // address bus
 reg [4:0] SP, next_SP;
 assign ADRBUS_z = SPA ? SP : 5'bZZZZZ;
 always @ (posedge CLK, posedge ARS) begin
 if (ARS == 1'b1)
 SP <= 5'b00000;
 else
 SP <= next_SP;
 end
 always @ (SPI, SPD, SP) begin
 if (SPI == 1’b1) // increment
 next_SP = SP + 1;
 else if (SPD == 1’b1) // decrement
 next_SP = SP - 1;
 else // retain state
 next_SP = SP;
 end
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

43

 stack mechanism, continued…
o new instructions understand this notation

 PSH – save (A) on stack
 (SP) (SP) – 1 SPD
 ((SP)) (A) SPA, MSL, MWE, AOE

 POP – load A with value of top stack item
 (A) ((SP))
 (SP) (SP) + 1

o note the overlap of operations (single execute state) possible with “POP”

SPA, MSL, MOE, ALE, ALX, SPI

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

44

 subroutine linkage
o capabilities provided

 arbitrary nesting of subroutine calls
 passing parameters to subroutine
 recursion
 reentrancy

o new instructions understand this notation
 JSR addr – jump to subroutine at location addr

 (SP) (SP) – 1 SPD
 ((SP)) (PC) SPA, MSL, MWE, POD
 (PC) (IR5..0) IRA,PLA

 RTS – return from subroutine
 (PC) ((SP))
 (SP) (SP) + 1

 note the overlap of operations (single execute state) possible with “RTS”
o need PC with bi-directional data bus interface

SPA, MSL, MOE, PLD, SPI
note: value loaded into PC truncated to 5 bits

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

45

/* Program Counter with Data Bus interface */

module pc(CLK, PCC, PLA, POA, RST, ADRBUS_z, DB_z, PLD, POD, PC);
 input wire CLK;
 input wire PCC; // PC count enable
 input wire PLA; // PC load from address bus enable
 input wire POA; // PC output on address bus tri-state enable
 input wire RST; // Asynchronous reset (connected to START)
 input wire PLD; // PC load from data bus enable
 input wire POD; // PC output on data bus tri-state enable
 inout wire [4:0] ADRBUS_z; // address bus (5-bits wide)
 inout wire [7:0] DB_z; // data bus (8-bits wide)
 output reg [4:0] PC; // PC register
 reg [4:0] next_PC;

 always @ (posedge CLK, posedge RST) begin
 if (RST == 1'b1)
 PC <= 5'b00000;
 else
 PC <= next_PC;
 end

 always @ (PLA, PLD, PCC, ADRBUS_z, DB_z, PC) begin
 // synchronous control signals PLA, PLD, and PCC are mutually exclusive
 if (PLA == 1’b1) // load PC from address bus
 next_PC = ADRBUS_z;
 else if (PLD == 1’b1) // load PC from data bus
 next_PC = DB_z;
 else if (PCC == 1’b1) // increment PC
 next_PC = PC + 1;
 else // retain state
 next_PC = PC;
 end

 assign ADRBUS_z = POA ? PC[4:0] : 5'bZZZZZ;
 assign DB_z = POD ? {3'b000, PC[4:0]} : 8'bZZZZZZZZ; // pad upper 3 bits of DB w/ 0

endmodule

// System control equations

 assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND | RTS) | S[2] & JSR);
 assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND | RTS);
 assign MWE = S[1] & STA | S[2] & JSR;
 assign ARS = START;
 assign PCC = RUN & S[0];
 assign POA = S[0];
 assign PLA = S[3] & JSR;
 assign POD = S[2] & JSR;
 assign PLD = S[1] & RTS;
 assign IRL = RUN & S[0];
 assign IRA = S[1] & (LDA | STA | ADD | SUB | AND);
 assign AOE = S[1] & STA;
 assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);
 assign ALX = S[1] & (LDA | AND);
 assign ALY = S[1] & (SUB | AND);
 assign SPI = S[1] & RTS;
 assign SPD = S[1] & JSR;
 assign SPA = S[1] & RTS | S[2] & JSR;
 assign RST = S[1] & (LDA | STA | ADD | SUB | AND | RTS) | S[3] & JSR;
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

46

Fun things to think about…
 what kinds of new instructions would be useful in writing “real” programs?
 what new kinds of registers would be good to add to the machine?
 what new kinds of addressing modes would be nice to have?
 what would we have to change if we wanted “branch” transfer-of-control instructions

instead of “jump” instructions?

