ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4
Arithmetic and Computer Logic Circuits

Learning Outcome: an ability to analyze and design computer logic circuits

Learning Objectives:

4-1.

4-2.
4-3.

4-4.
4-5.

4-6.
4-7.
4-8.

4-9.
4-10.
4-11.

4-12.

4-13.
4-14.
4-15.

4-16.
4-17.
4-18.

4-19.

4-20.
4-21.
4-22.
4-23.
4-24.

4-25.
4-26.
4-27.
4-28.

4-29.
4-30.

compare and contrast three different signed number notations: sign and magnitude, diminished
radix, and radix

convert a number from one signed notation to another

describe how to perform sign extension of a number represented using any of the three notation
schemes

perform radix addition and subtraction

describe the various conditions of interest following an arithmetic operation: overflow,
carry/borrow, negative, zero

describe the operation of a half-adder and write equations for its sum (S) and carry (C) outputs
describe the operation of a full adder and write equations for its sum (S) and carry (C) outputs
design a “population counting” or *“vote counting” circuit using an array of half-adders and/or full-
adders

design an N-digit radix adder/subtractor circuit with condition codes

design a (signed or unsigned) magnitude comparator circuit that determines if A=B, A<B, or A>B
describe the operation of a carry look-ahead (CLA) adder circuit, and compare its performance to
that of a ripple adder circuit

define the CLA propagate (P) and generate (G) functions, and show how they can be realized using
a half-adder

write the equation for the carry out function of an arbitrary CLA bit position

draw a diagram depicting the overall organization of a CLA

determine the worst case propagation delay incurred by a practical (PLD-based) realization of a
CLA

describe how a “group ripple” adder can be constructed using N-bit CLA blocks

describe the operation of an unsigned multiplier array constructed using full adders

determine the full adder arrangement and organization (rows/diagonals) needed to construct an
NxM-bit unsigned multiplier array

determine the worst case propagation delay incurred by a practical (PLD-based) realization of an
NxM-bit unsigned multiplier array

describe the operation of a binary coded decimal (BCD) “correction circuit”

design a BCD full adder circuit

design a BCD N-digit radix (base 10) adder/subtractor circuit

define computer architecture, programming model, and instruction set

describe the top-down specification, bottom-up implementation strategy as it pertains to the design
of a computer

describe the characteristics of a “two address machine”

describe the contents of memory: program, operands, results of calculations

describe the format and fields of a basic machine instruction (opcode and address)

describe the purpose/function of each basic machine instruction (LDA, STA, ADD, SUB, AND,
HLT)

define what is meant by “assembly-level” instruction mnemonics

draw a diagram of a simple computer, showing the arrangement and interconnection of each
functional block

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

4-31.
4-32.
4-33.
4-34.
4-35.
4-36.
4-37.
4-38.
4-39.
4-40.
4-41.
4-42.
4-43.
4-44.
4-45.
4-46.
4-47.
4-48.

4-49.
4-50.

4-51.

4-52.

4-53.

4-54.

4-55.

4-56.

trace the execution of a computer program, identifying each step of an instruction’s microsequence
(fetch and execute cycles)

distinguish between synchronous and combinational system control signals

describe the operation of memory and the function of its control signals: MSL, MOE, and MWE
describe the operation of the program counter (PC) and the function of its control signals: ARS,
PCC, and POA

describe the operation of the instruction register (IR) and the function of its control signals: IRL and
IRA

describe the operation of the ALU and the function of its control signals: ALE, ALX, ALY, and
AOE

describe the operation of the instruction decoder/microsequencer and derive the system control table
describe the basic hardware-imposed system timing constraints: only one device can drive a bus
during a given machine cycle, and data cannot pass through more than one flip-flop (register) per
cycle

discuss how the instruction register can be loaded with the contents of the memory location pointed
to be the program counter and the program counter can be incremented on the same clock edge
modify a reference ALU design to perform different functions (e.g., shift and rotate)

describe how input/output instructions can be added to the base machine architecture

describe the operation of the 1/O block and the function of its control signals: IOR and IOW
compare and contrast the operation of OUT instructions with and without a transparent latch as an
integral part of the 1/0 block

compare and contrast “jump” and “branch” transfer-of-control instructions along with the
architectural features needed to support them

distinguish conditional and unconditional branches

describe the basis for which a conditional branch is “taken” or “not taken”

describe the changes needed to the instruction decoder/microsequencer in order to dynamically
change the number of instruction execute cycles based on the opcode

compare and contrast the machine’s asynchronous reset (“START”) with the synchronous state
counter reset (“RST”)

describe the operation of a stack mechanism (LIFO queue)

describe the operation of the stack pointer (SP) register and the function of its control signals: ARS,
SPI1, SPD, SPA

compare and contrast the two possible stack conventions: SP pointing to the top stack item vs. SP
pointing to the top stack item

describe how stack manipulation instructions (PSH/POP) can be added to the base machine
architecture

discuss the consequences of having an unbalanced set of PSH and POP instructions in a given
program

discuss the reasons for using a stack as a subroutine linkage mechanism: arbitrary nesting of
subroutine calls, passing parameters to subroutines, recursion, and reentrancy

describe how subroutine linkage instructions (JSR/RTS) can be added to the base machine
architecture

analyze the effect of changing the stack convention utilized (SP points to top stack item vs. next
available location) on instruction cycle counts

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-A
Signed Number Notation

Reference: Digital Design Principles and Practices (4" Ed.) pp. 39-43, (5" Ed.) pp. 44-48

e overview - signed number notations
0 sign and magnitude (SM)
diminished radix (DR)
radix (R)
only negative numbers are different — positive numbers are the same in all 3 notations

O OO

e sign and magnitude
0 vacuum tube vintage
o left-most (“most significant™) digit is sign bit
= 0 - positive
= R-1 - negative (where R is radix or base of number)
O positive-negative pairs are called sign and magnitude complements of each other
0 negation method: replace sign digit (ns) with R-1-ns

e diminished radix
o0 most significant digit is still sign bit
O positive-negative pairs are called diminished radix complements of each other
0 negation method: subtract each digit (including ns) from R-1, i.e. -(N)r = (R"™1)r — (N)r

e radix
o0 most significant digit is still sign bit
0 positive-negative pairs are called radix complements of each other
0 negation method: add one to the DR complement of (N)g, i.e. -(N)r = (R")r — (N)r

e comparison (3-bit signed numbers, each notation):

Observations:

Nio |SM|DR | R 1. SM and DR have a balanced set
+3 1011]011 {011 All positive number of positive and negative numbers
+2 0101 010 | 010 representations are (as well as +0 and -0)
+1] 0011001001 identical 2. R notation has a single
+0 000] 000 | 000 Radix has no representation for zero, which
-0 11001111 | — “negative 2ero” results in an “extra negative
-1 101 1 110 | 111 All negative number numper — this un_balanced set of
—> 1101101 1110 representations are positive and negative numbers
-3 11111100 | 101 different can lead to round-off errors in
—4 | — | — [q00| [edihesanexa numeric computations

9 3. Virtually all computers in service

e simplifications for binary (base 2) today use R notation

0 SM: complement sign position (0 & 1)
0 DR (also called 1’s complement): complement each bit
0 R (also called 2’s complement):
= add1to DR complement -or-
= scan number from right to left and complement each bit to the left of the first “1”
encountered

e sign extension: SM — pad magnitude with leading zeroes; R and DR - replicate the sign digit

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

1. The five-bit radix number, R(10101),,
converted to sign and magnitude
notation, is:

SM(10101),

SM(01010),

SM(11010),

SM(11011),

none of the above

moowp»

2. The five-bit diminished radix number,
DR(10101),, converted to sign and
magnitude notation, is:

SM(10101),

SM(01010),

SM (11010),

SM(11011),

none of the above

moowp

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-B
Radix Addition and Subtraction

Reference: Digital Design Principles and Practices (4" Ed.) pp. 39-43, (5" Ed.) pp. 48-52

e radix addition
o method: add all digits, including the sign digits; ignore any carry out of the sign position
0 note that overflow can occur, since we are working with numbers of fixed length
= overflow occurs if two numbers of like sign are added and a result with the opposite
sign is obtained
= overflow cannot occur when adding numbers of opposite sign
= another way to detect overflow: if the carry in to the sign position is different than
the carry out of the sign position, then overflow has occurred
= when overflow occurs, there is no valid numeric result

+6
00110 00010 ~ I*2 4 11100 10011 < =13
+10 +01010 +01010 +10 10 +10110 +10001 15
10000 01100 _/110010 ,100100
Here, added two Here, added two
positive numbers, positive numbers, Here, added two Here, added two
but got a negative and got a positive negative numbers, negative numbers,
result - OVERFLOW result (+12) — OK! and got a negative but got a positive

result (-14) — OK! result - OVERFLOW

e radix subtraction
0 method: form the radix complement of the subtrahend and ADD (the same rules for
overflow detection apply)

1 /\ minuend

+42 01011 01011
-01100 10011 Radix complement
- + 1 of subtrahend

Here, added numbers 11111

of opposite sign —

overflow cannot occur

(resultis -1)

+11

16 01011 01011

: -10000 01111
+ 1

11011 Overflow
15 /‘\
+2 10001 10001
- 00010 11101
1

+
--» 01111 Overflow

ECE 270 IM:PACT

Introduction to Digital System Design

1. When adding the five-bit signed
numbers (10111), + (11001), using
radix arithmetic, the result obtained is:

2.

A.

moow

(10000),

(110000),

(11000),

overflow (invalid result)
none of the above

When subtracting the five-bit signed
numbers (10111), - (11001), using

radix arithmetic, the result obtained is:
A.

(10000),

B. (11000),

C. (11110),

D.

E. none of the above

overflow (invalid result)

© 2019 by D. G. Meyer

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-C
Adder, Subtractor, and Comparator Circuits

Reference: DDPP (4" Ed.) pp. 458-466, 474-478; (5" Ed.) pp. 331-339, 341-345, 372-375

e overview
O an adder circuit combines two operands based on rules described in 5-C
0 same addition rules apply for both signed (2’s complement) and unsigned numbers
0 subtraction performed by taking complement of subtrahend and performing add

e building blocks
o half adder

Xi
0

Ci | Si

Rlolk|lo|<

0
1
1

o full adder

Xi
0

Q
N

Ci| Si

N IRIEI==]=]
e lololk|kloloX
Rlolk|lolk|lo|lk|lo

o “vote counting” application

Y V W \Y

] || | | W

Xi Yi xi YI Xi Yi X

HA FA C;., FAC.X Y

Ci Si Ci SI Ci Si Z
| | 1 |

S, Sy So S,S,S,

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

The Digi-Vota-Matic is a three-judge score
tabulation system that allows each judge to
enter a score ranging from “0” (00,) to “3” (11,)
on a pair of DIP switches, and displays the sum
of the three scores (ranging from “0” to “9”) on
a 7-segment LED.

1. Implemented using a CASE statement in Verilog,
a circuit that finds the sum of three 2-bit unsigned
numbers would require ____ assignments.

16

32

64

128

none of the above

moowp»

2. Implemented using a 22V10 PLD, a circuit that
finds the sum of three 2-bit unsigned numbers
would require no more than ___ macrocells.

A. 2

B. 4

C.8

D. 16

E. none of the above

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e multi-digit adder/subtractor A A A A,
o ripple = iterative + B, B, B, B, 0 — add
0 to subtract, take DR radix complement S.S,S,S, 1 o subtract M
of subtrahend and add 1

o conditions of interest (“‘condition codes”) B,
= overflow (V)
= negative (N) Ay AO
= zero (2))I(i Y.
= carry/borrow (C) Facl | T c,_1 —‘ B c,_1 N C..1 i

Ci Sli Ci Sli Ci Sli | ci Sli (L:isnB
S, S

S, S, 0
e magnitude comparator c _.N_:D— V (overflow) Eig >z
o calculate A-B and condition codes %0
o results (A=B, A<B, A>B) are functions of
the condition codes

Fag=N®V
Faog= VeN + VeN'sZ'

B4 Bo
0 1 1 0 o 0 1 1 A1{(Ao#
0o 1 1 1 0 0 1 1 | |

1100 o lAB|l1]o0o][1]0 Yy XY, XY,
1ol o1 1. 1o o1 FAC,, FACi4 FAC 41

i S | C S | Ci S

0 [I

0 S, S,

S3
V (overflow) g;@ Frg=2Z
S0

C ¢ c C
0 4 12 8 U 4 12 8
0 d 0 0 v 1 d 0 1 Vv
N 1 5 13 9 N
1 5 13 9
d d d 1 v d d d 0
3 7 15 11 3 - — T Vv
0 d d d 1 d d d
N
2 6 14 10 v N > y ” m
(1| a | d | o |l da | a] o |V
Z‘l Z Z'I Zf Z Zl’
FA<B B N (D V FA:'B: V.N + V'.N'.z’

ECE 270 IM:PACT

Introduction to Digital System Design

1. When performing radix addition, the XOR
of the carry in to the sign position with the
carry out of the sign position provides a
means to:

A.
B.

generate a carry that is propagated forward

generate a borrow that is propagated
forward

check for a negative result
check for an invalid result
none of the above

© 2019 by D. G. Meyer

2. Following a subtract operation, the carry
flag (C) can be used to:

A.

moow

generate the complement of a borrowthat is
propagated forward

generate a borrowthat is propagated forward
check for a negative result
check for an invalid result

none of the above

3. Following an add operation, the negative
flag (N) can be used to:
A.
B.

C.

generate a carry that is propagated forward

generate a borrow that is propagated
forward

check for a negative result
check for an invalid result
none of the above

10

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-D
Carry Look-Ahead (CLA) Adder Circuits

Reference: DDPP (4" Ed.) pp. 478-482, 484-488; (5" Ed.) pp. 376-383, 384-386

e introduction
o previously considered iterative (“ripple”) adder circuit
0 problem: propagation delay increases with number of bits
0 solution: determine carries in parallel rather than iteratively — significant speedup
o]

“look-ahead” — “anticipated”
Generate from

o i stage 1
e definitions and derivations Bl 5
0 generate function (carry guaranteed) G; = XieY;
0 propagate function (carry in propagated out) Pi= X; @ Y; + X0 X
0 note that a “PG box™ is just a half-adder (HA)
0 can rewrite sum bit equation as S; = P;i @ Ci.1 (C.1 is Cin) Propagated by
O can rewrite carry out equation as C; = Gi + Ci.1*P; stage 2
e rewriting carry equations for 4-bit
adder in terms of P’s and G’s /As B A; B, A, B, Aq Bo\
0 Ci1=Ci || || || ||
Xi Yi Xi Yi Xi Yi Xi Yi
0 Co=Gp+ Cin*Po HA HA HA HA
C1=G1+ CoePq Ci Si Ci Si Ci Si Ci Si

° [[[1 [1
0O C2 = G2 + Cl'PZ G3 P3 GZ P2 G1 P1 Go Po
(0]

—Co = |1 || || | |
= = + °
Co= Cour=Ga+ CarPs “— Cout Carry and Sum Equations Cinf—

e rewriting carry equations for ~ 4- S,=P,®C,, ﬁ ﬁ ﬁ ﬁ

bit adder in terms of available
inputs (successive expansion) \CI = G+ G 4*P; + G,*P;*P; + ... + C, *P*P ***P,

o C.=0Cin where G;=ApB; and P;=A;®B;
0 Co=Go+ CinePo
0 C1=G1+ CpeP1=G1+ (Go + CipePo)eP1= G1 + G *P1 + Cin*PoP1

o know what these equations are *“saying”

o C=

o C3=

e observations

o regardless of adder length (number of operand bits), the time required to produce any
sum digit is the same (i.e. they are all produced in parallel)

o large CLA adders are difficult to build in practice because of “product term explosion”

0 reasonable compromise is to make a group ripple adder (cascading m-bit CLA blocks
together to get desired operand length)

11

ECE 270 IM:PACT

4-bit CLA realized in Verilog

Introduction to Digital System Design

assign G

assign P

wire [3:0] C;
wire [3:0] P,

G;

=X &Y;

assign C[3] =

X ™NY;

G[O]
G[1]

module clad(X, Y, CIN, S);

input wire [3:0] X, Y; // Operands
input wire CIN;
output wire [3:0] S;

// Carry in
// Sum outputs

// Carry equations (C[3] i1s Cout)

// Generate functions G[0] = X[0]&Y[O];
G[1] = .. so on

// Propagate functions P[0] = X[O]"Y[O];
P[1] = .. so on

// Carry fTunction definitions
assign C[0] =
assign C[1] =
assignh C[2] =

CIN & P[O];

G[0] & P[1] | CIN & P[0] & P[1];
G[1] & P[2] | G[O] & P[1] & P[2]
CIN & P[O] & P[1] & P[21;

G[2] & P[3]1 | G[1] & P[2] & P[3]
G[0] & P[1] & P[2] & P[3]

CIN & P[0] & P[1] & P[2] & P[3];

© 2019 by D. G. Meyer

assign S[0] = CIN ~ P[O];
assign S[3:1] = C[2:0] ™ P[3:1];

endmodulle

alternate version using “+” (addition) operator

module cladp(X, Y, CIN, S);
input wire [3:0] X, Y; // Operands
input wire CIN; // Carry in
output wire [3:0] S; // Sum outputs
assign S = X + Y + {3"b000,CIN};

endmodule

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD

Delay Level Source Destination
6.40 1 CIN S3
6.40 1 X0 S3
6.40 1 YO S3
6.35 1 X1 S3
6.35 1 Y1 S3
6.30 1 X2 S3
6.30 1 Y2 S3
6.25 1 Y3 S3

identical timing analysis for both versions — “+”” operator synthesizes CLA equations

12

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-E
Multiplier Circuits

Reference: DDPP (4" Ed.) pp. 45-47, 494-497; (5" Ed.) pp. 54-56, 416-419

: % -
e overview & 5
o0 consider 3x3 unsigned binary multiplication: /C(/
X X
X2 ¥l — —

Multiplicand: X2 X1 X0
Multiplier: X Y2 Y1 YO

_______________________ 0 X0 Y0

X2Y0 X1Y0 X0YO o c.Z "—CIZ 2

X2Y1 X1Y1l XO0Y1l
X2Y2 X1¥Y2 X0Y2

Product P5 P4 P3 P2 P1 PO

based on “shift and add” algorithm

each row is called a product component

each Xjeyj term represents a product component bit (logical AND)

the product P is obtained by adding together the product components

O O OO

e generalizations for an NxM multiplier array circuit

o0 N = number of bits in multiplicand
0 M =number of bits in multiplier
0 produces an N+M digit result
0 requires NxM AND gates to generate the product components
0 requires N-1 “diagonals” of full adders
o requires M rows of full adders
X3 Y0 X2 Y0 X1 Y0
e exercise: 4x2 multiplier array circuit % # %
Y Pes
X3 X2 041 X0 X
Y1 Y0 x3 v1 jrmss e e Z)—o
X3¥0 X2Y¥0 X1Y0 XO0XO0 %0 %0
XI¥1 H2¥1 HKi¥l XOY1
P5 P4 P3 P2 Pl PO @ :
— S
(|
P5 P4 P3 P2 Pl PO

13

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e exercise: 2x4 multiplier array circuit

X1l Y0
el YO
X3 X2 X1 X0
X0Yl XOYO
X1yl X1Y0
X2¥1 %2Y0
X3Y1l X3Y0
P5 P4 P3 P2 Pl PO
N3 ¥l X2 Y1 X1 ¥1 X0Y1 X3 YO X2 YOX1 YO X0 Y0

PP0 Y

X3 X2 X1 X0 Y3 Y2 Y1 YO
Cout 4-bit Adder Cin —o
S3 S2 S1 SO

L |

P5

e generalizations for an NxM multiplier
0 N = number of bits in multiplicand (top)
M = number of bits in multiplier (bottom)
produces an N+M digit result
requires NxM AND gates to generate the product components
requires N-1 diagonals of full adders
requires M rows of full adders

OO0O0OO0O0

1. A 6x4 unsigned binary multiplier array

would require rows of full adder cells 2. A 6x4 unsigned binary multiplier amay would
p— require ___ “diagonals” of full adder cells
A 3
A 3
B. 4 B. 4
C.5 &b
D. 6 D. 6
E. none of the above E. none of the above

14

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

4. A 6x4 unsigned binary multiplier array
would require _ AND gates to generate
the product component bits

3. A 6x4 unsigned binary multiplier array
would require __ full adder cells

A. 10 A. 10
B. 18 B. 18
C. 20 c. 20
D. 24 D. 24
E. none of the above E._ none of the above

5. Assuming alarge 10 ns PLD was used to
generate each product component bit and
implement each full adder cell, the worst
case propagation delay of a 6x4 unsigned A3
binary multiplier array would be ___ ns

. 80

6. A 4x6 unsigned binary multiplier array would
require ___ rows of full adder cells

4
5
6

none of the above

. 90
. 100
. 110

moomw»

. none of the above

7. A 4x6 unsigned binary multiplier array would 8. A 4x6 unsigned binary multiplier array
require _ “diagonals” of full adder cells would require full adder cells
cel A.10
C.5 B.18
D. 6 c.20
E. none of the above D.24

E. none of the above

9. A 4x6 unsigned binary multiplier array 10.Assuming alarge 10 ns PLD was used to
would require ___ AND gates to generate generate each product component bit and
the product component bits implement each full adder cell, the worst case
A 10 propagation delay of a 4x6 unsigned binary
B. 18 multiplier array would be ____ns
c. 20 A. 80
D. 24 90
C. 100
E. none of the above D. 110
E. none of the above

15

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e realizations in Verilog
0 use expressions to define product components
0 use addition operator (+) to form unsigned sum of product components
o example: 4x4 multiplier array circuit

/* 4x4 Combinational Multiplier */
module mul4x4(X, Y, P);

input wire [3:0] X, Y; // Multiplicand, multiplier
output wire [7:0] P; // Product bits
wire [7:0] PC[3:0]; // Four 8-bit variables

assign PC[O0]
assign PC[1]
assign PC[2]
assign PC[3]

1} & {47b0, X}; // 0000X3X2X1X0
1} & {3"b0, X, 1"bO}; // 000X3X2X1X00
1} & {2°b0, X, 2"b0}; // 00X3X2X1X000
1} & {1"b0, X, 3"b0}; // 0X3X2X1X0000

e o A

assign P = PC[O] + PC[1] + PC[2] + PC[3]:;

endmodule

{8 '} }will extend the 1-bit signal ¥ [0]to an 8-bit vector

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD
Delay Level Source Destination
6.50 1 X0 P4
6.50 1 X0 P5
6.50 1 X1 P4
6.50 1 X1 P5
6.50 1 X2 P4
6.50 1 X2 P5
6.50 1 YO P4
6.50 1 YO P5
6.50 1 Y1 P4
6.50 1 Y1 P5
6.50 1 Y2 P4
6.50 1 Y2 P5
6.45 1 X3 P4
6.45 1 X3 P5
6.45 1 Y3 P4
6.45 1 Y3 P5
6.05 1 X0 PO
6.05 1 X0 P1
6.05 1 X0 P2
6.05 1 X0 P3

16

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-F
BCD Adder Circuits

Reference: Digital Design Principles and Practices (4" Ed.) pp. 48-51; (5" Ed.) pp. 58-60

e overview
o external computer interfaces may need to read or display decimal digits (examples)

need to perform arithmetic operations on decimal numbers directly

most commonly used code in binary-coded decimal (BCD)

object is to design circuit that adds two BCD digit codes plus carry in, to produce a sum

digit plus a carry out

want to use standard 4-bit binary adder modules as “building blocks”

note that there are six “unused combinations” in BCD, so potential exists for needed to

perform a “correction”

e general circuit model

BCD BCD
operand operand

| T A

X3 X2 X1 X0 Y3 Y2Y1lYO
Cout 4-bit Adder Cin l« Cin
S3 S2 S1 S0

O OO

o O

270,707 1 Co S:$S. S| Correction

VL v v v
Z4 73 Z2 71 Z0
Correction Circuit

|Zs4tzh?;azd2§1e§§ Cout S3 S2 S1 SO
sum obtained l l l l l
Cout BCD sum digit
e examples of decimal addition and correction
e summary of rules
o if the sum of two BCD digits is< 9
(i.e. 1001), no correction is needed
o if the sum of two BCD digits is > 9,
the result must be corrected by
adding six (0110)
e ‘“correction function” derivation

1
1
1
1
1
1
1
1
1
1

4 73 73 Z4 z3' 73
0 4 12 8 16 20 28 24 \
0|0 1 0 |zo 1|1d dl| d |gv
|1 5 13 0 17 21 29 25
z1 0 0 1 0 z 1 d d Feorrection = Cout =
3 7 z0 19 23 31 27 20 ZA4 + Z3e72 + Z3Z1
0|0 1 1 1 d| d
Z1 I3 6 Fl 10 Z1 3 22 a0 26
0|0 1 lJ Z0 1|d dal| d |gv
72 72 72’ 72 | 72 | 72’

17

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e BCD “full adder” circuit
BCD operands

BREE PR

Tn

XX X Xy Yy3Y, Y, Y,
| Cont d4-bit adder Cinl— Cln
S, S, 8, 8
= 372 °1 g
Fcorrection cc:ut -
b by b

=Z4+Z3Z2+2Z3Z1 & 3 3f2 1o
t

Add 0110 (6) to

0 0
[I

direct sum when
xa)(2 xl xo Yy Y, Y, Y, Fcorrection = 1
- cout 4-bit adder cin -0
53 S2 SI SG

|]]
Cout BCDsum

e example: maximum value that can be generated by a BCD full adder cell (9+9+Cin)
10 01 1001

X3 X2 X1 X0 Y3 Y2 Y1 YO
Cout 4-bit Adder Cinl— 1
S3 S2 S1 S0
wefeeeeneees S l l l l ________ 10011
Za 23 Z2 21 20

Correction Circuit
Cout S3 S2 S1 S0
1 1001
e example: circuit that produces the diminished radix complement of a BCD digit

module ninescmp(X, Y);
input wire [3:0] X; // Input code
output reg [3:0] Y; // Output code
always @ (X) begin
case (X)
4"b0000: Y = 4"b1001;
4"b0001: Y = 4"b1000;
4"pb0010: Y = 47"b0111;
4"pb0011: Y = 47b0110;
4"b0100: Y = 47b0101;
4"pb0101: Y = 4"b0100;
4"pb0110: Y = 4"b0011;
4"pb0111: Y = 4"b0010;
4"p1000: Y = 4"b0001;
4"pb1001: Y = 47b0000;
default: Y = 4"b0000; // used for inputs > 9
endcase
end
endmodule

18

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

1. If the BCD codes for 8 and 5 were added
using a decimal full adder cell, with Cy = 1,
the resulting 5-bit output (C,;: S5 S, S Sp)
would be:

01101
01110
10011
10100
none of the above

moow»

2. If the BCD codes for 4 and 5 were added
using a decimal full adder cell, with C, =1,
the resulting 5-bit output (C,yt S3 S5 S4 Sp)
would be:

01001
01010
10000
10001
none of the above

moowp

19

ECE 270 IM:PACT

Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-G
Simple Computer — Top-Down Specification

Reference: Meyer Supplemental Text, pp. 1-18

overview

0 the “ultimate application” of what we have learned
o0 computer defn — sequential execution of stored program
o architecture defn — arrangement and interconnection of functional blocks

0 house analogy
e big picture
0 input/output
O start (reset)
o clock
e floor plan

0 programming model

0 instruction set
O registers
o]

instruction format

= opcode
= address

o two-address machine

e programming example
e memory snapshot

Location Contents

00000 001 01011
00001 010 01100
00010 101 01101
00011 001 01011
00100 100 01100
00101 101 01110
00110 001 01011
00111 011 01100
01000 101 01111
01001 000 00000
01010
01011 10101010
01100 01010101

\

addr

Addr

addr

addr
addr
addr

Instruction Comments

00000

LDA 01011 |Load A with contents of location 01011

00001

ADD 01100 | Add contents of location 01100 to A

00010

STA 01101 |Store contents of A at location 01101

00011

LDA 01011 |Load A with contents of location 01011

00100

AND 01100 |AND contents of 01100 with contents of A

00101

01001

STA 01110 |Store contents of A at location 01110

HLT Stop - discontinue execution

>Program

J

Operands

Calculation of ADD, AND, and SUB results:

Location Contents

00000 001 01011 Sub:

00001 010 01100 10101010
00010 101 01101

00011 | 001 01011 -01010101

00100 100 01100
00101 101 01110

1
0 10101010
1 10101010
000 00000
01010 0 + 1
01011 10101010 l) 01010101
01010101
Overflow!
<« SUB

20

ECE 270 IM:PACT

block diagram

O memory Instruction Decoder
O program counter — and Micro-Sequencer I Program
0 instruction register Counter
o arithmetic logic unit Start@ Clock @
0 instruction decoder and 4 l
micro-sequencer
Opcode Address é
Instruction =
- 7]
(]
Register Memory 2
Flags o
m <
) L8 o
ALU < " ® 5
8 3

notes

Introduction to Digital System Design © 2019 by D. G. Meyer

o each functional block is “self-contained” (can be independently tested)

O OO

Q1. The next instruction to fetch from memory is
pointed to by the:
A accumulator
8. program counter
C instruction register
D microsequencer
E none of the above

Q3. If two additional address bits were added to the
Simple Computer, the numberof memory locations
the machine could access would increase:

A by two locations
8 by fourlocations

by two times the original number of locations

by four times the original number of locations

none of the above

m o

can add more instructions by increasing number of opcode bits
can add more memory by increasing the number of address bits
can increase numeric range by increasing the number of data bits

Q2. The place where an instruction fetched from
memory is “staged” while it is being decoded
and executed is the:

A accumulator

program counter

instruction register

microsequencer

none of the above

mo o w

N

Q4. The expression (10110) < (A) + (10110) means:

% replace the contents of the accumulator with the sum of its
current contents plus the contents of memory location 10110
replace the contents of the accumulator with the sum of its
current contents plus the constant 10110
replace the contents of memory location 10110 with the sum of
its current contents plus the contents of the accumulator

add the constant 10110 to the contents of the accumulator and
store the result in memory location 10110

none of the above

21

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-H
Simple Computer — Instruction Tracing

Reference: Meyer Supplemental Text, pp. 18-24

e overview
0 two basic steps in “processing” an instruction
= fetch
= execute
o will trace the processing of several instructions to better understand this

e program segment to trace

Addr Instruction Comments

00000 LDA 01011 Load A with contents of location 01011
00001 ADD 01100 Add contents of location 01100 to A
00010 STA 01101 Store contents of A at location 01101

e worksheet

Instruction Trace Worksheet

Instruction Decoder
— and Micro-Sequencer . | ? | PC Notes:
Start@ Clock @ “"i"’ss 1. The clock edges drive the
4 ‘[I synchronous functions of the
IR _ S ” computer (e.g., increment
e el B program counter)
— ? 2. The decoded states (here
i3 o T o ' X
2 Diata S 3 fetch and execute) enable the
01000 101 01111 - - -
CF NF VF ZF I P g < combinational functions of
£ < u:u 10101010 | .= h
P Sfom o ls the computer (e.g., turn on
ATegister % 2 tri-state buffers)
t ALU (cycle: 2 t_Memory

e step 1 (after START pushbutton pressed)

Instruction Trace Worksheet 1

Instruction Decoder
— and Micro-Sequencer »| 00000 |pC
Start@ Clock @ Address
I lR T WUUD 001 01011
Opcode Address GO00:_| 030 62104 | 9
00010 101 01101 3
o1l | 001 01011 | m
[~oo101 | 101 01110 8
Data 00110 001 01011 —
e | 5
CF NF VF ZF L § <
K |§ = S G e
' 2
A register]
j ALU Cycle: _START t Memory

22

ECE 270 IM:PACT

Introduction to Digital System Design

Instruction Trace Worksheet 2

© 2019 by D. G. Meyer

Instruction Trace Worksheet 3

In:thr;ctlogDECOdET Instruction Decoder
—and Micro-Sequencer _ 100000 — 00001 | pC —and Micro-Sequencer __| 00001 lpc
Start@ Clock . Adiress Start@ Clock @ Address
]]
IR 20000 001 01011 g I IR I S
OPCOde Address 00y :;: ::i:: ﬁ Opcode Address 0001 _| 010 01100 b
00010 101 01101
001 01011 e 3 001 01011 oo o] "
:31 ::;i: g 00101 | 101 01110 8
= E 2[o] 'y =8 (P
cF NF VF zF g cF NF vF ZF I Qo0 Q00 00000 g -E
ST Ao
<L < g 11| T0101010 | o5 e 54
Data Bus = 10101010 Data Bus = m R <
Amyimr 00101011 A register 10101010
_T ALU cycle: Fetch LDA t_Memory $ ALU Cycle: Exec LDA TML

Instruction Decoder .
—and Micro-Sequencer __|00001 00010 |pc| [and Micro-Sequencer _,| 00010 | PC
Start@ Clock @ Address Start@ Clock @ Adilress
v
I IR I Lecaticn Contents I IR T

2]1] 7o

Instruction Trace Worksheet 4

Opcode Address

Data

00000
00001
ooLo
o011
00100
00101
£C110
00111
01000

001 01011
010 01100
101 91101
001 91011
100 01100

101 01110

001 01011

011 21100
101 21111

Address Bus = 00001

Instruction Trace Worksheet 5

Instruction Decoder

Opcode Address

010 01100

Data

I

CF NF VF ZF il CF NF VF ZF
GG 4
10101010 § Data Bus = (T | 1M1 1111 |§ Data Bus =
Aregister 01001100 A register 01010101
I ALU Cycle: Fetch ADD + Memory 1 ALU Cycle: Exec ADD
Instruction Trace Worksheet 6
Instruction Decoder Instruction Decoder
_ and Micro-Sequencer »| 00010 - 00011 | pC — and Micro-Sequencer ___ 00011 PC
Start@ Clock @ Address Start@ Clock @
- y
[e 2 [=]
Opcode Address EEETP = Opcode Address
(]
== | [101 ot101]
Data T0110 | 001 01011 m Data
of1]o]o | crmsrsox S| o Lo[1]oo]
CF NF VF ZF W T § o CF NF VF ZF
gw EEREON g g
3 Data Bus = e 3 [1111111 | S —
A register 101 01101 A register 11111111
f ALU [cycle: Fetch STA t Memory P ALU [cycle: Exec sTa

00000
00001
20010
00011
00100
00101
00110
00111
01000
01001

01010
g 10101010
[otoi0101 |

001 01011
010 01100
101 01101
001 01011
100 01100
101 01110
001 01011
011 01100
101 01111
000 00000

Address Bus = 01100

t Memorz

Instruction Trace Worksheet 7

Address

Lecation Contents

00000
00001
00010

001 01011
010 01100
101 01101

01101

00011 001 01011

10100
00101
00110
00111

LOD DL100
101 01110
001 01011
011 01100

01000
91001
91019

101 01111
000 00000

10101010
01010101

Address Bus

t Memorz

23

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-1
Simple Computer — Bottom-Up Implementation

Reference: Meyer Supplemental Text, pp. 24-42 L om oo
1 s
e overview oo | IHR ")/ Heeh Heh Hee
o finished top-down specification of design = = | TP e
o ready for bottom-up implementation s ™" L:L;“.. =1 |l il il T
o all system control signals active high S Rl —— NAmE—— AR
o0 some control signals mutually exclusive e ™" H |] He~T j
o all blocks use the same clock signal P N I A —— R — e =
+ memory oo | T R PR
o key definitions/terms oo b= = ‘
= read/write He LE i E | e
= “random access” (wrt prop delay) T oe— HoeH et (e
= static (does not need “refresh”) | e | e e
= volatile (loses data when “off”) M = et L=
= size NxM (here 32x8) e e | | s | e
o 3 control signals ™= oot Lt |
= MSL - memory select o s =1 R —1=
= MOE - memory output enable e
= MWE - memory write enable ” E VJ YJ 2
0 notes oo oo sou

= read operation is combinational
= write operation involves open/closing latch — setup and hold timing matters

Q1. When a set of control signals are said to be
mutually exclusive, it means that:

A. all the control signals may be asserted
simultaneously

B. only one control signal may be assertedat a
given instant

C. each control signal is dependenton the
others

D. any combination of control signals may be
asserted at a given instant

E. none of the above

Q2. For the memory subsystem, the set of signals
that are mutually exclusive is:

A. MSL and MOE

B. MSL and MWE

C. MOE and MWE

D. MSL, MOE, and MWE
E. none of the above

24

ECE 270 IM:PACT Introduction to Digital System Design

e program counter

© 2019 by D. G. Meyer

o0 basically a binary “up” counter with tri-state outputs and an asynchronous reset

o 3control signals
= ARS -asynchronous reset
= PCC - program counter count enable

= POA - program counter output on address bus tri-state buffer enable

/* Program Counter Module */
module pc(CLK, PCC, POA, RST, ADRBUS_Z);

input wire CLK;
input wire PCC;
input wire POA;
input wire RST;
output wire [4:0] ADRBUS z;

// PC count enable

wire [4:0] next PC;
reg [4:0] PC;

assign ADRBUS z = POA ? PC : 5'bZZZZZ;
always @ (posedge CLK, posedge RST) begin

if (RST == 1'bl)
PC <= 5'b00000;

else
PC <= next_PC;
end
I/ (PCC) ? count up : retain value;
assign next_PC = (PCC) ? (PC+1) : PC;
endmodule

// PC output on address bus tri-state enable
// asynchronous reset (connected to START)

e instruction register

0 basically an 8-bit data register, with tri-state outputs on the lower 5 (address) bits
0 upper 3 bits (opcode) output directly to instruction decoder and micro-sequencer

o two control signals
= |RL - instruction register load enable

= [RA —instruction register address field tri-state output enable

/* Instruction Register Module */
module ir(CLK, IR z, DB_z, IRL, IRA);
input wire CLK;
input wire IRL; // IR load enable
input wire IRA; // IR output on address bus enable
input wire [7:0] DB_z; // data bus

I/ IR z [7]. .IR'_Z[S] supply opcode to IDMS

reg [7:0] IR;
wire [7:0] next_ IR;

assign IR _z[4:0] = IRA ? IR[4:0] : 5'bZZZZ%Z;
assign IR z[7:5] = IR[7:5]:

always @ (posedge CLK) begin
IR <= next IR;

output wire [7:0] IR z; // IR z[4]..IR z[0] connected to address bus

end

/7 (IRL) ? load : retain state (select load or retain state based on IRL)
assign next IR = (IRL) ? DB_z : IR;

endmodule

25

ECE 270 IM:PACT
e ALU

Introduction to Digital System Design

© 2019 by D. G. Meyer

o a multi-function register that performs arithmetic and logical operations

o four control signals

= ALE - overall ALU enable

= ALX - function select
= ALY - function select
= AOE - A register tri-state output enable

/* ALU Module */
/* B8-bit,
ADD: (AQ[7:0])
SUB: (AQ[7:01)
LDA: (AQ[7:01)
AND: (AQ[7:01)
OUT: Value
AOE ALE ALX ALY
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 d d
0 0 d d
¥ -> flag affected
Note: If ALE = 0,

Function

<none>

+ => flag not

the state of all

<= (AQ[7:0]) + DB_z[7:0]
<- (AQ[7:0]) - DB _z[7:0]
<- DB_z[7:0]
<- (AQ[7:0]) & DB_z[7:0]
in AQ[7:0] output on data bus DB _z[7:0]

module alu(CLK, ALE, AOE, ALX, ALY, DB z, CF, VF, NF, ZF);

4-function ALU with bi-directiocnal data bus
Accumulator register is AQ, tri-state data bus is DB z

CF ZF NF VF

.4 X X .4

X X X X

- X X -

- p.4 p. 4 .
affected

register bits should be retained */

o block diagram of one bit

ALY
If ALX=1, then ALY selects LDA klj
(ALY=0) or AND (ALY=1) y 3
Al AD X v
ALY —»l i, 2:1mux Ful Adder Cin |g— CY[i1]
F Cout §
L J . . ¢ L 4
L[S[i] CY[i]
Al A0 Q
ALX selects ADD/SUB (ALX=0) ax—li 2
or LDA/AND (ALX=1) o o ShmE e
F A
CLOCK
A S J
ALE controls A register retaining . AL A
state (ALE=0) or taking on new ALE =1, Ilmux
state (ALE=1) F

is the next state of AQJi] (the A register)

(ALY=0) or

subtrahend)

—-fI?—-H DB _z[i]
AQIi] -

SUB (ALY=1)

If ALX=0, then ALY selects ADD

The LSB Cin CY][i-1] is connected
to ALY: 0 for ADD, 1 for SUB (to
obtain the radix complement of the

¥ =-> flag affected

AOE
ACE ALE ALX ALY Function CE 2ZF NF VF

0 1 o 0 ADD X X X X
0 1 0 1 SUB X X X X
0 1 1 0 1DA X X -

0 1 1 1 AND X X

1 o d d ouT . .

0 0 4 d <none>

*= => flag not affected

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

input wire CLK;

// ALU control lines

input wire ALE; // overall ALU enable

input wire AOCE; // data bus tri-state output enable
input wire ALX, ALY; // function select

inout wire [7:0] DB_z; // bidirectional 8-bit tri-state data bus

output reg CF, VF, NF, ZF; // condition code register bits (flags)
// carry, Overflow, Negative, Zero

// Carry equations

wire [7:0] CY;

// Combinational ALU outputs
wire [7:0] ALU;

wire [7:0] S; // Adder/subtractor sum
wire [7:0] L; // LDA/AND multiplexer output
reg [7:0] AQ; // A register flip-flops

// Next state wvariables
reg next CF, next VF, next NF, next ZF;
reg [7:0] next AQ;

// Declaration of intermediate equations
// Least significant bit carry in (0 for ADD, 1 for SUB => ALY)
assign CIN = ALY;

// Intermediate equations for adder/subtractor SUM (S) selected when ALX = 0
assign S = AQ * (DB_z ~ ALY) * {CY[6:0],CIN};

// Ripple carry equations (CY[7] is COUT, DB _z is data from data bus)
assign CY = AQ & (ALY ~ DB_z) | AQ & {CY[6:0],CIN} | ALY & DB_z & {CY[6:0],CIN};

// Intermediate equations for LOAD and AND, selected when ALY = 1
/7 (ALY) ? AND : LDA (select LDA or AND based on ALY)
assign L = ALY ? AQ & DB z : DB_z ;

// Combinational ALU outputs
// (ALX)? L : S (select LDA/AND or ADD/SUB based on ALX)
assign ALU = ALX ? L : S;

// Register bit and data bus control eguations
always @ (posedge CLK) begin
AQ <= next AQ;

end

always @ (AQ, ALE, ALU) begin
next AQ = ALE ? ALU : AQ;

end
AOE ALE ALX ALY Function CF ZF NF VF
assign DB _z = RAOE ? AQ : B8'bZZZZZZZZ; e — — — = = =
0 1 0 0 ADD X X X X
// Condition code register state equations 0 1 0 1 SUB X x x X
always @ (posedge CLK) begin 0 1 1 0 LDA . X X .
CF <= next CF; 0 1 1 s AND . X X .
ZF <= next ZF; 1 0 d d ouT > o a8 c
NF <= next NF; 0 0 d d <none>
VF <= next VF;
end - X -> flag affected » -> flag not affected
always @ (CF, NF, ZF, VF, ALE, ALX, ALY, CY) begin
next CF = ALE ? (ALX ? CF : (CY[7]) : CF;
next ZF = ALE ? (ALU = 0) : ZF;
next NF = ALE ? ALU[7] : NF;
next VF = ALE ? (ALX ? VF : (CY[7] * CY[6])) : VF;
end
endmodule 27

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Block Diagram for Bit 3 of a Simple Computer ALU

- Q2.
a
= ae

L 4
i *': r:w-T G fe—c, S"é’é’ﬁ
L T‘ = connected
L e Y to ALY’

Q1. If the input control combination AOE=0, ALE="1, ALX=0, ALY=0
is appliedto this circuit, the function performed will be:

A ADD (s

B SUBTRACT e

C. LOAD L —
D NEGATE \J !
E. none of the above 4 l/

T —r Assime
LS8 Cin

ALY =i, 30 FElAdier Cm g g, connected

: fed & ALY

Q2. Ifthe input control combination AOE=0, ALE=1, ALX="1, ALY=0
is applied to this circuit, the function performed will be:

A ADD =T
==
B. SUBTRACT l |
C. LOAD T L=
D. NEGATE \J \ fL
E. none of the above l’ * Assume

LB Cin
connected

ALY =], Fallidier o bg— o,

28

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e instruction decoder and microsequencer

o0 state machine that tells all the other state machines what to do (“‘orchestra director”)

O micro-sequence consists of two steps (states)
= fetching instruction from memory
= executing instruction
= fetch/execute state represented by single flip-flop (SQ)

o fetch cycle
= POA (output location of instruction on address bus)
= MSL (select memory, i.e., enable memory to participate)
= MOE (turn on memory tri-state buffers, so that selected location can be read)
= |IRL (enable IR to load instruction fetched from memory)
= PCC (enable PC to increment)

o execute cycle — ALU functions (ADD, SUB, LDA, AND) The synchronous fetch
* IRA (output operand location on address bus) functions (IRL and PCC)
= MSL (select memory) will take place on the
= MOE (enable memory to be read) clock edge that causes
= ALE (enable ALU to perform the selected function) | the state counter to

. . transition from the fetch
0 execute cycle — STA instruction N L nep—
= |RA (output location at which to store result)

= MSL (select memory)
= MWE (enable write to memory)
= AOE (output data in A register via data bus to memory)

0 to stop execution (“halt™), need a “run/stop” flip-flop
= when START pressed, asynchronously set RUN flip-flip
= when HLT instruction executed, asynchronously clear RUN flip-flop
= AND the RUN signal with each synchronous enable signal — effectively disables

all functional blocks

Instruction Decoder
- and Micro-Sequencer

Start@ Clock @

Program
Counter

}

Opcode Address

Instruction

Register Memory

Address Bus

v

O

o
I

w

C

w

Data

Address

29

ECE 270 IM:PACT Introduction to Digital System Design

© 2019 by D. G. Meyer

(000)
51 LDA (001) H|H H H| H
51 ADD (010) H|H H H
51 SUB (011) H|H H H H
51 AND (100) H|H H H|H]|H
51 STA (101) H H H|H

/* Instruction Decoder and Microsequencer */

input wire CLK;

wire IDA, STA, ADD, SUB, AND, HLT; // Opcode names

input wire START; // Asynchronous START pushbutton
input wire [2:0] OP; // opcode bits (input from IR5..IR7)
output wire MSL, MOE, MWE; // Memory control signals

output wire PCC, POA, ARS; // PC control signals

output wire IRL, IRA; // IR control signals

output wire ALE, ALX, ALY, AOE; // ALU control signals (without flags)
reg SQ, next SQ; // State counter

reg RUN, next RUN; // RUN/HLT state

module idms (CLK, START, OP, MSL, MOE, MWE, PCC, POA, ARS, IRL, IRA, ALE, ALX, ALY, AOE);

always @ (SQ, RUN) begin
next SQ = RUN & ~SQ;
end

// Run/stop
assign RUN ar = S[1] & HLT;
always @ (posedge CLK, posedge RUN ar, posedge START) begin
if (START == 1'bl) // RUN set to 1 when START asserted
RUN <= 1'bl;

RUN <= 1'b0;
end

else if (RUN_ar == 1'bl) // RUN is cleared when HLT is executed

A D flip-flop synthesized
by an always block will

wire [1:0] S; // State wvariables
wire RUN_ar; // Asynchronous reset for RUN
assign HLT = ~OP[2] & ~OP[1] & ~OP[0]; // BLT opcode = 000
assign LDA = ~OP[2] & ~OP[1] & OF[O0]; // LDA opcode = 001
assign ADD = ~OP[2] & OP[1l] & ~OP[0]; // BRDD opcode = 010
assign SUB = ~OP[2] & OP[1] & OP[0]; // SUB opcode = 011
assign AND = OP[2] & ~OP[1] & ~OP[0]; // BAND opcode = 100
assign STA = OP[2] & ~OP[1] & OP[O0]; // STA opcode = 101
// Decoded state definitions |___
assign S[0] = ~8Q; // fetch 000 Halt — stop, discontinue execution
assign S[1] = sQ; // execute 001 LDA addr Load A with contents of location addr
010 ADD addr Add contents of addr to contents of A
// State counter 011 SUB addr Subtract contents of addr from contents of A
always @ (posedge CLK, posedge START) begin 100 2ND addr AND contents of addr with contents of A
if (START == 1'bl) // start in fetch state 101 STA addr Store contents of A at location addr
SQ <= 1'b0;
else // if RUN negated, resets SQ
SQ <= next S5Q;
end

retain its value by default
unless otherwise specified

oV

ECE 270 IM:PACT

Introduction to Digital System Design

© 2019 by D. G. Meyer

// System control equations

assign MSL = RUN & (S[0] | S[1] & (ILDA | STA | ADD | SUB | RAND));

assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND);

assign MWE = S[1] & STA;

assign ARS = START;

assign PCC = RUN & S[0];

assign POA = S[0];

assign IRL = RUN & S[0];

assign IRA = S[1] & (LDA | STA | ADD | SURB | AND);

assign AOE = S[1l] & STA;

assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);

assign ALX = S[1] & (LDA | AND);

assign ALY = S[1] & (SUB | AND); : ﬁ = ; -

endmodule “—IIIIII-IIIIIII!I-----
(000) L L

S1 LDA (001) | H| H H H|H
51 ADD (010) | H| H H H
S1 SUB (011) | H| H H H H
51 AND (100) | H| H H H|H|H
s1 STA (101) | H H H|H

¢ system data flow analysis — procedure
0 understand operation of functional units
understand what each instruction does
identify address & data source/destination
identify micro-operations required
identify control signals that need to be asserted
0 examine timing relationship
e system data flow analysis - constraints

O 00O

o only one device can drive the bus during a machine cycle
O data cannot pass through more than one flip-flop or latch per cycle

Previous S1J,Execute SOAFetch S‘IAExecute
r e Mo N\
CLK | | I
L -l- -1-
H- =« = - e = oa
- 1
L N TR -
MOE IR loaded with

instruction on
data bus before
this point

IRL
I e .
H- - -

PC incremented

after this point

PC = PC+1

Instruction
_ Loadedin IR

31

ECE 270 IM:PACT

Introduction to Digital System Design

Q1. The increment ofthe program counter (PC)
needsto occur as part of the “fetch” cycle because:

A. ifit occurred on the “execute” cycle, the new value might
not be stable in time for the subsequent “fetch” cycle

B if it occurred on the “execute” cycle, it would not be
possible to execute an “STA” instruction

C. if it occurred on the “execute” cycle, it would not be
possible to read an operand from memory

D if it occurred on the “execute” cycle, it would not be
possible to read an instruction from memory

E. none of the above

Q2. The program counter (PC) can be incremented on the
same cycle that its value is used to fetch an instruction from
memory because:

A the synchronous actions associated with the IRL and PCC
control signals occur on different fetch cycle phases

B. the IRL and PCC control signals are not asserted
simultaneously by the IDMS

C_ the load of the instruction register is based on the data bus
value prior to the system CLOCK edge, while the increment
of the PC occurs after the CLOCK edge

D the load of the instruction register occurs on the negative
CLOCK edge, while the increment of the PC occurs on the
positive CLOCK edge

E. none of the above

Q3. Incrementing the program counter (PC) on the
same clock edge that loads the instruction register (IR)
does not cause a problem because:

A. the memory will ignore the new address the PC
places on the address bus

B. the output buffers in the PC will not allow the new PC
value to affect the address bus until the next fetch
cycle

C. the IR will be loaded with the value on the data bus
prior to the clock edge while the contents of the PC
will increment after the clock edge

D. the value in the PC will change in time for the correct
value to be output on the address bus (and fetch the
correct instruction), before the IR load occurs

E. none of the above

Q4. The hardware constraint that “data cannot pass through
more than one edge-triggered flip-flop per clock cycle” is
based on the fact that:

A. only asingle entity can drive a bus on a given clock cycle
B. the system clock has limited driving capability

C. the flip-flops that comprise a register do not change state
simultaneously, so additional time must be provided before
the register's output can be used

D. for a D flip-flop with clocking period A, Q(t+A)=D(t)
E. none of the above

© 2019 by D. G. Meyer

32

ECE 270 IM:PACT

Introduction to Digital System Design

Lecture Summary — Module 4-J
Simple Computer — Basic Extensions

Reference: Meyer Supplemental Text, pp. 42-50

e overview
o will use “spare” opcodes (110 and 111) to add new instructions
o will add rows and columns to original system control table as needed

e shift instructions (extension to ALU)

translation of bits to the left or right

end off: discard bit shifted out

preserving: retain bit shifted out

logical: zero fill (zero shifted in)

arithmetic: sign preserving

(0]

O oO0OO0oo

S1 LDA (001) H | H H H

S1 LSR (010) H H
S1 ASL (011) H | H

S1 ASR (100) H|H]|H
S1 STA (101) H H H H

S1

s1

/*

/* ALU Module Version 2 */

module alu(CLK, ALE, AOE, ALX, ALY, DB, CF, VF, NF, ZF);

8-bit, 4-function ALU with bi-directional data bus

Value

W a4

COKHKEEKER "

(AQ[7:
(AQ[7:
(AQ[7:
(RQ[7:

ALE ALX ALY Function CF ZF NF VF

parrool

0]) <- DB_z[7:0]

0]) <- 0 RQ7 AQ6 AQ5 AQ4 AQ3 AQ2 AQl, CF <- AQO
0]) <- AQ6 AQ5 AQ4 AQ3 AQ2 AQl AQO0 O , CF <- AQ7
0]) <- AQ7 AQ7 AQ6 AQS AQ4 AQ3 AQZ AQl, CF <- AQO
in AQ[7:0] output on data bus DB _z[7:0]

0 ILDA . X 4 .
i | LSR X X X .
0 ASL X X >4 .
s ASR X X X .
d ouT . . ® -
d <none> B . . .

X -> flag affected + => flag not affected

Note: If ALE

= 0, the state of all register bits should be retained

*/

© 2019 by D. G. Meyer

33

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

input wire CLK;
// ALU control lines

input wire ALE; // Overall ALU enable

input wire AOE; // Data bus tri-state output enable
input wire ALX, ALY; // Function select

inout wire [7:0] DB _z; // Bidirectional 8-bit data bus
output reg CF, VF, NF, ZF; // Condition code bits (flags)

// Carry, Overflow, Negative, Zero
// Combinational ALU outputs
wire [7:0] ALU;
// Accumulator (A) register
reg [7:0] AQ;
// Next state variables
reg next _CF, next_VF, next_NF, next_ZF;
reg [7:0] next_AQ;

// Combinational ALU outputs
always @ (ALX, ALY, DB _z) begin
case ({ALX,ALY})

2"b00: ALU = DB _z; // LDA

2"b01: ALU = {1"b0,AQ[7:1]1}; // LSR

2"b10: ALU = {AQ[6:0],1"b0}; // ASL

2°b11: ALU = {AQ[7]1.AQ[7:1]}%}; // ASR
endcase

end
// Register bit and data bus control equations
always @(posedge CLK) begin
AQ <= next_AQ;
end
always @ (ALE, ALU, AQ) begin
next AQ = ALE ? ALU : AQ;
end
assign DB z = AOE ? AQ : 8"bzzzzzzzz;
// Flag register state equations
always @ (posedge CLK) begin
CF <= next_CF;
ZF <= next_ ZF;
NF <= next NF;
VF <= next_VF;
end
always @ (ALE, ALX, ALY, CF, ZF, NF, VF, ALU, AQ) begin
casez ({ALE,ALX,ALY})
3"b0??: next_CF 1*b0;
3"b100: next CF = CF;// LDA (not affected)
3"b101: next CF = AQ[O]:; // LSR
3"b110: next CF = AQ[7]; // ASL
3"b111: next CF = AQ[O]; // ASR

endcase
next_ZF = ALE ? (ALU == 0) : ZF;
next_NF = ALE ? ALU[7] : NF;
next VF = VF; // NOTE: NOT AFFECTED
end
endmodule

34

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Block Diagram for Bit 3 of a Simple Computer ALU

- @2 .
a1
= ao

A Al % T
o i Assume
i - A i PR LSB Cinis
d om 2 connected
: r Y to ALY’

Q1. If the input control combination AOE="1, ALE=1, ALX=1, ALY="
is appliedto this circuit, the function (lnadvertently} performed on
(A) will be equivalent to:

1. I'—
A logical left shift |
. . " -,_I._:- I — AL
logical right shift Ny, w
rotate left . L Assume

LSB Cin
connected

rotate right r tw 3 ALY

l—l_! r]
none of the above 3

ALY =1 Tlma L e

m o o6 0

35

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e input/output (1/O) instructions

0 new instructions
= [N addr — input data from port addr and load into A register
= QOUT addr - output data in A register to port addr

0 new control signals
* |OR -asserted when IN executed
= |JOW - asserted when OUT executed

o modified block diagram, Verilog code for 1/0 module, modified system control table

/* Input/Output Port 00000 - with Output Latch */
Instruction Decoder P T module io(ADRBUS z, IN, OUT, IOR, IOW, DB z);
- and Micro-Sequencer Counter input wire [4:0] ADRBUS z; // address bus
Slart. Clqck. input wire [7:0] IN; // input port
1 input wire IOR; // input port read
input wire IOW; // input port write
output wire [7:0] OUT; // output port
OpcodeAddress g :.;z:tpvsv:!.re [7:0] DB_z; // bidirectional data bus
@ ;
Instruction &
7] // Port select equation for port address 00000
Register Memory _ig assign PS = (ADRBUS z == 5/b00000) ;
Flags o
- = -§ < assign DB z = IOR & PS ? IN : 8'bZZZZZZZZ;
o < > [I —
ALU 8 t 3 ! // Transparent latch for output port
always @ (IOW, PS, DB z) begin
"0 — if((IOW & PS) == 1’bl) . .

J L OUT = DB_z; The if construct without an else

end

creates an inferred latch
endmodule ‘

g |8
51 LDA (001) H H H | H
S1 ADD (010) H|H H H
S1 SUB (011) H|H H H H
3 AND (100) H|H H H|H|H
51 STA (101) H H H| H
s1 IN (110) H H H H
51 OuUT (111) H | H H

// System control equations
assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND));
assign MOE S[0] | S[1] & (LDA | ADD | SUB | AND);

assign MWE S[1] & STA;
assign ARS START;
assign PCC RUN & S[0];
assign POA s[0];

assign IRL
assign IRA
assign AOCE
assign ALE
assign ALX
assign ALY

RUN & S[0];

S[1] & (LDA | STA | ADD | SUB | AND | IN | OUT);
S[1] & (STA | OUT);

RUN & S[1] & (LDA | ADD | SUB | AND | IN);

S[1] & (LDA | AND);

S[1] & (SUB | AND);

assign IOR
assign IOW
endmodule

S[1] & IN;
S[1] & OUT;

36

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Q1. If the output port pins are latched, data written to
the port will remain on its pins:

A. only during the execute cycle of the OUT instruction
B. only when the clock signal is high

C. until another OUT instruction writes different data to
the port

D. until the next instruction is executed
. none of the above

m

Q2. If the output port pins are not latched, data written

to the port will remain on its pins:

A. only during the execute cycle of the OUT instruction

B. only when the clock signal is high

C. until another OUT instruction writes different data to the port
D. until the next instruction is executed

E. none of the above

37

ECE 270 IM:PACT Introduction to Digital System Design

transfer of control instructions

0 addressing mode

© 2019 by D. G. Meyer

= absolute — operand field of instruction contains absolute address in memory
= relative - operand field contains signed offset that should be added to PC

o condition
= unconditional — always happen

= conditional — happen only if specific condition is true (else no-operation)

o illustrative examples
= JMP addr — unconditional jump (to absolute address)

= JZF addr — jump (to absolute address) iff ZF=1 (else no-op)

o modified block diagram

Instruction Decoder
— and Micro-Sequencer

Start@ Clock @

Program
Counter

3

Opcode Address
Instruction
Register
Flags I

ALU &+
2

Memory

Address Bus

, 8

Address

|1 | T—

o Verilog code for modified PC (with “load from address bus” capability)

/* Modified Program Counter with Load Capability */
module pc (CLK, PCC, POA, ADRBUS z, PLA, RST);

input wire CLK;

input wire PCC; // PC count enable

input wire POA; // PC output on address bus tri-state enable
input wire PLA; // PC load from address bus enable

input wire RST; // Asynchronous reset (connected to START)
inout wire [4:0] ADRBUS z:; // address bus

// NOTE: Assume PCC and PLA are mutually exclusive
reg [4:0] PC, next PC;
assign ADRBUS z = POA ? PC : 5'bZZZZIZ;

always @ (posedge CLK, posedge RST) begin
if (RST =— 1'bl)
PC <= 5'b00000;
else
PC <= next._PC;
end

always @ (PCC, PC) begin

if (PLA == 1’'bl) // load
next PC = ADRBUS z;

else if (PCC == 1’'bl) // count up by 1
next PC = PC + 1;

else J// retain state

next PC = PC;
end

endmodule

38

Q1.

ECE 270 IM:PACT

o modified system control table

Introduction to Digital System Design

© 2019 by D. G. Meyer

S1 HLT (000) L L L L

S1 LDA (001) H H H H

S1 LSR (010) H H

ST ASL (011) H H

S1 ASR (100) H H H

S1 STA (101) H H H H

S1 JMP (110) H H
S1 JZF (111) ZF ZF
// System control equations

assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND));
assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND);

assign MWE = S[1] & STA;

assign ARS = START;

assign PCC = RUN & S[0];

assign POA = S[0];

assign IRL = RUN & S[0];

assign IRA = S[1] & (LDA | STA | ADD | SUB | AND | JMP | JZF&ZF) ;
assign AOE = S[1] & STA;
assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);
assign ALX = S[1] & (LDA | AND);
assign ALY = S[1] & (SUB | AND);
assign PLA = S[1] & (JMP | JZF & ZF);

endmodule

Implementation of “branch” instructions (that performa

relative transfer of control) requires the following modification
to the program counter:

A.
B.

C.
. add a two’s complement N-bit adder circuit

add a bi-directional path to the data bus

use the ALU to compute the address ofthe next
instruction

make it an up/down counter

(where N is the address bus width)
none of the above

Q2. Whether or not a conditional branch is taken or not taken
dependson:

A.
. the state of the condition code bits
. the cycle of the state counter

. the value in the accumulator

. none of the above

mooOm

the value of the program counter

39

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 4-K
Simple Computer — Advanced Extensions

Reference: Meyer Supplemental Text, pp. 50-64

e Qverview

o

advanced extensions include
= multi-cycle execution
= stack mechanism

e state counter modifications

(0]

(elNelNe]

provide multiple execute cycles (here, up to 3)
determine number of execute cycles based on opcode
realize using 2-bit synchronously resettable state counter
new state names
= SO - fetch
" — execute (first, second, third)
new control signal: RST (asserted on final execute state of each instruction)

Q1. The state counter in the “extended” machine’s instruction
decoder and micro-sequencer needs both a synchronous
reset (RST) and an asynchronous reset (ARS) because:

A we want to make sure the state counter gets reset

B. the ARS signal allows the state counter to be reset to the
‘fetch” state when START is pressed, while the RST
allows the state counter to be reset when the last
execute cycle of an instruction is reached

C. the RST signal allows the state counter to be reset to the
‘fetch” state when START is pressed, while ARS allows
the state counter to be reset when the last execute cycle
of an instruction is reached

D. the state counter is not always clocked

E. none of the above

Q2. Adding a third bit to the state counter would allow
up to ____ execute states:

A 3
B. 5
C.7
D. 8
E. none of the above

40

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

/* Instruction Decoder and Microsequencer with Multi-Execution States */
module idmsr(CLK, START, OP, MSL, MOE, MWE, PCC, POA, ARS, IRL, IRA, ALE, ALX, ALY, AOCE);
input wire CLK;

input wire START; // Asynchronous START pushbutton
input wire [2:0] OP; // opcode bits (input from IR5._1IR7)
output wire MSL, MOE, MWE; // Memory control signals

output wire PCC, POA, ARS; // PC control signals

output wire IRL, IRA; // IR control signals

output wire ALE, ALX, ALY, AOE; // ALU control signals

reg SQA, SQB; // State counter low bit, high bit
reg RUN; // RUN/HLT state

wire RST; // Synchronous state counter reset

wire LDA, STA, ADD, SUB, AND, HLT;

wire [3:0] S;

reg next_SQA, next_SQB;

wire RUN_ar; // Asynchronous reset for RUN
// Decoded opcode definitions

assign HLT = ~OP[2] & ~OP[1] & ~OP[O0]; // HLT opcode = 000
assign LDA = ~OP[2] & ~OP[1] & OP[O]; // LDA opcode = 001
assign ADD = ~OP[2] & OP[1] & ~OP[O]; // ADD opcode = 010
assign SUB = ~OP[2] & OP[1] & OP[O]; // SUB opcode = 011
assign AND = OP[2] & ~OP[1] & ~OP[O]; // AND opcode = 100
assign STA = OP[2] & ~OP[1] & OP[O]; // STA opcode = 101
// Decoded state definitions
assign S[0] = ~SQB & ~SQA; // fetch state
assign S[1] = ~SQB & SQA; // Tirst execute state
assign S[2] = SQB & ~SQA; // second execute state
assign S[3] = SQB & SQA; // third execute state
// State counter
always @ (posedge CLK, posedge START) begin
iT(START == 1"b1) begin // start in fetch state
SQA <= 17b0;
SQB <= 17b0;
end else begin
SQA <= next_SQA;
SQB <= next_SQB;
end
end
always @ (RST, RUN, SQA, SQB) begin
next_SQA = ~RST & RUN & ~SQA; // if RUN negated or RST asserted,
next_SQB = ~RST & RUN & (SQA ™ SQB); // state counter is reset
end
assign RUN_ar = S[1] & HLT;
// Run/stop
always @ (posedge CLK, posedge RUN_ar, posedge START) begin
if(START == 1"b1) // start with RUN set to 1
RUN <= 1"bl;
else if(RUN_ar == 1"b1l) // RUN is cleared when HLT is executed
RUN <= 1"b0;

end
// System control equations

assign MSL = RUN & (S[O] | S[1] & (LDA | STA | ADD | SUB | AND));

assign MOE = S[O] | S[1] & (LDA | ADD | SUB | AND);

assign MWE = S[1] & STA;

assign ARS = START;

assign PCC = RUN & S[O0];

assign POA = S[0];

assign IRL = RUN & S[O0];

assign IRA = S[1] & (LDA | STA | ADD | SUB | AND);

assign AOE = S[1] & STA;

assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND);

assign ALX = S[1] & (LDA | AND);

assign ALY = S[1] & (SUB | AND);

assign RST = S[1] & (LDA | STA | ADD | SUB | AND);
endmodule

41

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e stack mechanism
o defn: last-in, first-out (LIFO) data structure

0 primary uses of stacks in computers
= subroutine linkage
= saving/restoring machine context
= expression evaluation

0 conventions
= stack area usually placed at “top” of memory (highest address range)

= stack pointer (SP) register used to indicate address of top stack item
= stack growth is toward decreasing addresses
0 SP register control signals
= SPI - stack pointer increment
= SPD - stack pointer decrement
= SPA - stack pointer output on address bus
= ARS -asynchronous reset (“stack empty” — (SP) = 00000)

Instruction Decoder
— and Micro-Sequencer Program
Counter

Start@® Clock @
| |

Opcode Address |_. SP o
Instruction E
Register Memory E
Flags = E
. © o
ALU 3 & P ‘g .E -—
3

|

/* Stack Pointer */

module sp(CLK, SPI, SPD, SPA, ARS, ADRBUS_Zz);

// NOTE: Assume SPI and SPD are mutually exclusive
input wire CLK;
input wire SPI, SPD; // SP increment, decrement
input wire SPA; // SP output on address but tri-state enable
input wire ARS; // asynchronous reset (connected to START)
output wire [4:0] ADRBUS_z; // address bus
reg [4:0] SP, next_SP;
assign ADRBUS_z = SPA ? SP : 5"bzzz77;
always @ (posedge CLK, posedge ARS) begin

ifT (ARS == 17bl)

SP <= 5"b00000;

else
SP <= next_SP;
end
always @ (SPI, SPD, SP) begin
it (SPI == 1°bl) // increment
next SP = SP + 1;
else if (SPD == 17bl) // decrement
next SP = SP - 1;
else // retain state
next SP = SP;
end

endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e stack mechanism, continued...
0 new instructions understand this notation
= PSH -save (A) on stack

e (SP)« (SP)-1 SPD
e ((SP)) <« (A) SPA, MSL, MWE, AOE
= POP - load A with value of top stack item
o (A)«((SP)) SPA, MSL, MOE, ALE, ALX, SPI
e (SP)«(SP)+1

0 note the overlap of operations (single execute state) possible with “POP”

[RSSETEN (NSRS 7 T) e e
51 HLT L L L L

S1 IDA addr | H| H H H|H H
S1 ADD addr | H | H H H H
S1 SUB addr | H | H H H H H
S1 AND addr | H | H H H|H]|H H
S1 STA addr | H H H|H H

Q1. If a program contains more POP instructions than PSH
instructions, the following is likely to occur:
A. stack overflow (stack collides with end of program space)
B. stack underflow (stack collides with beginning of program
space)
C. program counter overflow (program counter wraps to
beginning of program space)
D. program counter underflow (program counter wraps to
end of program space)

E. none of the above

Q2. If a program contains more PSH instructions than POP
instructions, the following is likely to occur:

A. stack overflow (stack collides with end of program space)

B. stack underflow (stack collides with beginning of program
space)

C. program counter overflow (program counter wraps to
beginning of program space)

D. program counter underflow (program counter wraps to
end of program space)

E. none of the above

43

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e subroutine linkage
0 capabilities provided
= arbitrary nesting of subroutine calls
= passing parameters to subroutine
= recursion
* reentrancy

MAIN start of main program

JSR SUBA

(next instruction)

HLT end of main program

SUBA sta}jt of subroutine A

JSR SUBB
(rext in?'tru ction)
RTS end of subroutine A

SUBB start of subroutine B <

RTS em} of subroutine B

0 new instructions understand this notation
= JSR addr — jump to subroutine at location addr

e (SP)«(SP)-1 SPD
e ((SP)) « (PC) SPA, MSL, MWE, POD
e (PC) < (IRs)) IRA,PLA

* RTS - return from subroutine
e (PC)« ((SP)) SPA, MSL, MOE, PLD, SPI
e (SP)« (SP)+1 note: value loaded into PC truncated to 5 bits

= note the overlap of operations (single execute state) possible with “RTS”
0 need PC with bi-directional data bus interface

|so | - Jelu] Jelwu] |] el | | 1 | | | ||
S1 HLT L L L L

S1 IDA addr | H | H H H|H H
S1 ADD addr | H | H H H H
s1 SUB addr | H | H H H H
51 AND addr | H | H H H|H H
S1 STA addr | H H H|H H

44

ECE 270 IM:PACT Introduction to Digital System Design

© 2019 by D. G. Meyer

output

if (R
PC
else
PC

end

if (P

else

end

endmodule

reg

/* Program Counter with Data Bus interface */

module pc(CLK, PCC, PLA, POA, RST, ADRBUS_z, DB_z, PLD, POD, PC);
input wire
input wire
input wire
input wire
input wire
input wire
input wire
inout wire
inout wire

CLK;

PCC; // PC count enable

PLA; // PC load from address bus enable

POA; // PC output on address bus tri-state enable
RST; // Asynchronous reset (connected to START)
PLD; // PC load from data bus enable

POD; // PC output on data bus tri-state enable
[4:0] ADRBUS z; // address bus (5-bits wide)

[7-0] DB _z; // data bus (8-bits wide)

[4:0] PC; // PC register

ST ==
<= 5"b00000;

reg [4:0] next_PC;

always @ (posedge CLK, posedge RST) begin

1"b1)

<= next_PC;

LA ==

assign ADRBU
assign DB_z

always @ (PLA, PLD, PCC, ADRBUS_z, DB_z, PC) begin
// synchronous control signals PLA, PLD, and PCC are mutually exclusive

17b1) // load PC from address bus

next_PC = ADRBUS_z;

else if (PLD == 1°bl) // load PC from data bus
next_PC = DB_z;

else if (PCC == 1°bl1l) // increment PC
next PC = PC + 1;

// retain state

next PC = PC;

S z = POA ? PC[4:0] : 5°bzz777;
= POD ? {3"b000, PC[4:0]1} : 8"bzzzzzzzz; // pad upper 3 bits of DB w/ O

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

MSL
MOE
MWE
ARS
PCC
POA
PLA
POD
PLD
IRL
IRA
ACE
ALE
ALX
ALY
SP1
SPD
SPA
RST

endmodule

// System control equations

RUN & (S[O0] | S[1] & (LDA | STA | ADD | SUB | AND | RTS) | S[2] & JSR):
S[0] | S[1] & (LDA | ADD | SUB | AND | RTS);
S[1] & STA | S[2] & JSR;

START;
RUN & S[O0];

S[O];

S[3] & JSR;

S[2] & JSR;

S[1] & RTS;

RUN & S[0];

S[1] & (LDA | STA | ADD | SUB | AND);

S[1] & STA;

RUN & S[1] & (LDA | ADD | SUB | AND);

S[1] & (LDA | AND);

S[1] & (SUB | AND);

S[1] & RTS;

S[1] & JSR;

S[1] & RTS | S[2] & JSR;

S[1] & (LDA | STA | ADD | SUB | AND | RTS) | S[3] & JSR;

45

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Q1.If a program contains more JRS instructions than RTS
instructions, the following is likely to occur:

A. stack overflow (stack collides with end of program space)

B. stack underflow (stack collides with beginning of program
space)

C. program counter overflow (program counter wraps to
beginning of program space)

D. program counter underflow (program counter wraps to
end of program space)

E. none of the above

Q2. If a program contains more RTS instructions than JSR
instructions, the following is likely to occur:

A. stack overflow (stack collides with end of program space)

B. stack underflow (stack collides with beginning of program
space)

C. program counter overflow (program counter wraps to
beginning of program space)

D. program counter underflow (program counter wraps to
end of program space)

E. none of the above

Fun things to think about...

what kinds of new instructions would be useful in writing “real” programs?

what new kinds of registers would be good to add to the machine?

what new kinds of addressing modes would be nice to have?

what would we have to change if we wanted “branch” transfer-of-control instructions
instead of “jump” instructions?

YVVYY

These are all good reasons to “continue your ‘digital life’
beyond this course”!

46

