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Lecture Summary – Module 4 
Arithmetic and Computer Logic Circuits 

 
Learning Outcome: an ability to analyze and design computer logic circuits 
 
Learning Objectives: 
4-1. compare and contrast three different signed number notations: sign and magnitude, diminished 

radix, and radix 
4-2. convert a number from one signed notation to another 
4-3. describe how to perform sign extension of a number represented using any of the three notation 

schemes 
4-4. perform radix addition and subtraction 
4-5. describe the various conditions of interest following an arithmetic operation: overflow, 

carry/borrow, negative, zero 
4-6. describe the operation of a half-adder and write equations for its sum (S) and carry (C) outputs 
4-7. describe the operation of a full adder and write equations for its sum (S) and carry (C) outputs 
4-8. design a “population counting” or “vote counting” circuit using an array of half-adders and/or full-

adders 
4-9. design an N-digit radix adder/subtractor circuit with condition codes 
4-10. design a (signed or unsigned) magnitude comparator circuit that determines if A=B, A<B, or A>B 
4-11. describe the operation of a carry look-ahead (CLA) adder circuit, and compare its performance to 

that of a ripple adder circuit 
4-12. define the CLA propagate (P) and generate (G) functions, and show how they can be realized using 

a half-adder 
4-13. write the equation for the carry out function of an arbitrary CLA bit position 
4-14. draw a diagram depicting the overall organization of a CLA 
4-15. determine the worst case propagation delay incurred by a practical (PLD-based) realization of a 

CLA 
4-16. describe how a “group ripple” adder can be constructed using N-bit CLA blocks 
4-17. describe the operation of an unsigned multiplier array constructed using full adders 
4-18. determine the full adder arrangement and organization (rows/diagonals) needed to construct an 

NxM-bit unsigned multiplier array 
4-19. determine the worst case propagation delay incurred by a practical (PLD-based) realization of an 

NxM-bit unsigned multiplier array 
4-20. describe the operation of a binary coded decimal (BCD) “correction circuit” 
4-21. design a BCD full adder circuit 
4-22. design a BCD N-digit radix (base 10) adder/subtractor circuit 
4-23. define computer architecture, programming model, and instruction set 
4-24. describe the top-down specification, bottom-up implementation strategy as it pertains to the design 

of a computer 
4-25. describe the characteristics of a “two address machine” 
4-26. describe the contents of memory: program, operands, results of calculations 
4-27. describe the format and fields of a basic machine instruction (opcode and address) 
4-28. describe the purpose/function of each basic machine instruction (LDA, STA, ADD, SUB, AND, 

HLT) 
4-29. define what is meant by “assembly-level” instruction mnemonics 
4-30. draw a diagram of a simple computer, showing the arrangement and interconnection of each 

functional block 



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer 

2 
 

 
4-31. trace the execution of a computer program, identifying each step of an instruction’s microsequence 

(fetch and execute cycles) 
4-32. distinguish between synchronous and combinational system control signals 
4-33. describe the operation of memory and the function of its control signals: MSL, MOE, and MWE 
4-34. describe the operation of the program counter (PC) and the function of its control signals: ARS, 

PCC, and POA 
4-35. describe the operation of the instruction register (IR) and the function of its control signals: IRL and 

IRA 
4-36. describe the operation of the ALU and the function of its control signals: ALE, ALX, ALY, and 

AOE 
4-37. describe the operation of the instruction decoder/microsequencer and derive the system control table 
4-38. describe the basic hardware-imposed system timing constraints: only one device can drive a bus 

during a given machine cycle, and data cannot pass through more than one flip-flop (register) per 
cycle 

4-39. discuss how the instruction register can be loaded with the contents of the memory location pointed 
to be the program counter and the program counter can be incremented on the same clock edge 

4-40. modify a reference ALU design to perform different functions (e.g., shift and rotate) 
4-41. describe how input/output  instructions can be added to the base machine architecture 
4-42. describe the operation of the I/O block and the function of its control signals: IOR and IOW 
4-43. compare and contrast the operation of OUT instructions with and without a transparent latch as an 

integral part of the I/O block 
4-44. compare and contrast “jump” and “branch” transfer-of-control instructions along with the 

architectural features needed to support them 
4-45. distinguish conditional and unconditional branches 
4-46. describe the basis for which a conditional branch is “taken” or “not taken” 
4-47. describe the changes needed to the instruction decoder/microsequencer in order to dynamically 

change the number of instruction execute cycles based on the opcode 
4-48. compare and contrast the machine’s asynchronous reset (“START”) with the synchronous state 

counter reset (“RST”) 
4-49. describe the operation of a stack mechanism (LIFO queue) 
4-50. describe the operation of the stack pointer (SP) register and the function of its control signals: ARS, 

SPI, SPD, SPA 
4-51. compare and contrast the two possible stack conventions: SP pointing to the top stack item vs. SP 

pointing to the top stack item 
4-52. describe how stack manipulation instructions (PSH/POP) can be added to the base machine 

architecture 
4-53. discuss the consequences of having an unbalanced set of PSH and POP instructions in a given 

program 
4-54. discuss the reasons for using a stack as a subroutine linkage mechanism: arbitrary nesting of 

subroutine calls, passing parameters to subroutines, recursion, and reentrancy 
4-55. describe how subroutine linkage instructions (JSR/RTS) can be added to the base machine 

architecture 
4-56. analyze the effect of changing the stack convention utilized (SP points to top stack item vs. next 

available location) on instruction cycle counts 
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Lecture Summary – Module 4-A 
Signed Number Notation 

 
Reference:  Digital Design Principles and Practices (4th Ed.) pp. 39-43, (5th Ed.) pp. 44-48 
 
 overview – signed number notations 

o sign and magnitude (SM) 
o diminished radix (DR) 
o radix (R) 
o only negative numbers are different – positive numbers are the same in all 3 notations 

 

 sign and magnitude 
o vacuum tube vintage 
o left-most (“most significant”) digit is sign bit 

 0  positive 
 R-1  negative (where R is radix or base of number) 

o positive-negative pairs are called sign and magnitude complements of each other 
o negation method: replace sign digit (ns) with R-1-ns 

 

 diminished radix 
o most significant digit is still sign bit  
o positive-negative pairs are called diminished radix complements of each other 
o negation method: subtract each digit (including ns) from R-1, i.e. -(N)R = (Rn-1)R – (N)R  

 

 radix 
o most significant digit is still sign bit  
o positive-negative pairs are called radix complements of each other 
o negation method: add one to the DR complement of (N)R, i.e. -(N)R = (Rn)R – (N)R 

 

 comparison (3-bit signed numbers, each notation): 
 
 
 
 
 
 
 
 
 
 
 
 
 simplifications for binary (base 2) 

o SM: complement sign position (0  1) 
o DR (also called 1’s complement): complement each bit 
o R (also called 2’s complement):  

 add 1 to DR complement -or-  
 scan number from right to left and complement each bit to the left of the first “1” 

encountered 
 

 sign extension: SM – pad magnitude with leading zeroes; R and DR – replicate the sign digit 

Observations: 
1. SM and DR have a balanced set 

of positive and negative numbers 
(as well as  +0 and -0) 

2. R notation has a single 
representation for zero, which 
results in an “extra negative 
number” – this unbalanced set of 
positive and negative numbers 
can lead to round-off errors in 
numeric computations 

3. Virtually all computers in service 
today use R notation 
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Lecture Summary – Module 4-B 
Radix Addition and Subtraction 

 
Reference:  Digital Design Principles and Practices (4th Ed.) pp. 39-43, (5th Ed.) pp. 48-52 

 
 radix addition 

o method: add all digits, including the sign digits; ignore any carry out of the sign position 
o note that overflow can occur, since we are working with numbers of fixed length 

 overflow occurs if two numbers of like sign are added and a result with the opposite 
sign is obtained 

 overflow cannot occur when adding numbers of opposite sign 
 another way to detect overflow: if the carry in to the sign position is different than 

the carry out of the sign position, then overflow has occurred 
 when overflow occurs, there is no valid numeric result 

 
 
 
 
 
 
 
 
 

 radix subtraction 
o method: form the radix complement of the subtrahend and ADD (the same rules for 

overflow detection apply) 
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Lecture Summary – Module 4-C 
Adder, Subtractor, and Comparator Circuits 

 
Reference:  DDPP (4th Ed.) pp. 458-466, 474-478; (5th Ed.) pp. 331-339, 341-345, 372-375 
 
 overview 

o an adder circuit combines two operands based on rules described in 5-C 
o same addition rules apply for  both signed (2’s complement) and unsigned numbers 
o subtraction performed by taking complement of subtrahend and performing add 

 
 building blocks 

o half adder 
 

Xi Yi Ci Si 
0 0   
0 1   
1 0   
1 1   

 
o full adder 

 
 
 
 
 
 
 
 
 
 
 

 
o “vote counting” application 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Xi Yi Ci-1 Ci Si 
0 0 0   
0 0 1   
0 1 0   
0 1 1   
1 0 0   
1 0 1   
1 1 0   
1 1 1   



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer 

8 
 

 
 

  



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer 

9 
 

 
 multi-digit adder/subtractor 

o ripple = iterative 
o to subtract, take DR radix complement       

of subtrahend and add 1 
o conditions of interest (“condition codes”) 

 overflow (V) 
 negative (N)  
 zero (Z) 
 carry/borrow (C) 

 
 
 

 magnitude comparator 
o calculate AB and condition codes 
o results (A=B, A<B, A>B) are functions  of 

the condition codes 
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Lecture Summary – Module 4-D 
Carry Look-Ahead (CLA) Adder Circuits 

 
Reference:  DDPP (4th Ed.) pp. 478-482, 484-488; (5th Ed.) pp. 376-383, 384-386 
 
 introduction 

o previously considered iterative (“ripple”) adder circuit 
o problem: propagation delay increases with number of bits 
o solution: determine carries in parallel rather than iteratively  significant speedup 
o “look-ahead”  “anticipated” 

 
 definitions and derivations 

o generate function (carry guaranteed) Gi = Xi•Yi 
o propagate function (carry in propagated out) Pi = Xi  Yi 
o note that a “PG box” is just a half-adder (HA) 
o can rewrite sum bit equation as Si = Pi  Ci-1  (C-1 is Cin) 
o can rewrite carry out equation as Ci = Gi + Ci-1•Pi 

 
 rewriting carry equations for 4-bit 

adder in terms of P’s and G’s 
o C-1 = Cin 

o C0 = G0 + Cin•P0 

o C1 = G1 + C0•P1 

o C2 = G2 + C1•P2 

o C3 = Cout = G3 + C2•P3 

 
 rewriting carry equations for       4-

bit adder in terms of available 
inputs (successive expansion) 

o C-1 = Cin 

o C0 = G0 + Cin•P0 

o C1 = G1 + C0•P1 = G1 + (G0 + Cin•P0)•P1 = G1 + G0 •P1 + Cin•P0•P1 

o know what these equations are “saying” 

 

o C2 = ______________________________________________________________________ 

 

o C3 = ______________________________________________________________________ 

 observations 

o regardless of adder length (number of operand bits), the time required to produce any 
sum digit is the same (i.e. they are all produced in parallel) 

o large CLA adders are difficult to build in practice because of “product term explosion” 
o reasonable compromise is to make a group ripple adder (cascading m-bit CLA blocks 

together to get desired operand length) 
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 4-bit CLA realized in Verilog 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 alternate version using “+” (addition) operator 

 
 
 
 
 
 
 
 

 
 identical timing analysis for both versions  “+” operator synthesizes CLA equations 

 
 
 
 
 
 
 
 
 

  

module cla4(X, Y, CIN, S); 
 
 input wire [3:0] X, Y; // Operands 
 input wire CIN;   // Carry in 
 output wire [3:0] S;  // Sum outputs 
 
 wire [3:0] C;   // Carry equations (C[3] is Cout) 
 wire [3:0] P, G; 
 
assign G = X & Y;  // Generate functions G[0] = X[0]&Y[0];   

             G[1] = .. so on 
 assign P = X ^ Y;  // Propagate functions P[0] = X[0]^Y[0];  

 P[1] = .. so on 
 
 // Carry function definitions 
 assign C[0] = G[0] | CIN & P[0];  
 assign C[1] = G[1] | G[0] & P[1] | CIN & P[0] & P[1]; 
 assign C[2] = G[2] | G[1] & P[2] | G[0] & P[1] & P[2]  
                    | CIN & P[0] & P[1] & P[2]; 
 assign C[3] = G[3] | G[2] & P[3] | G[1] & P[2] & P[3]  
                    | G[0] & P[1] & P[2] & P[3]  
                    | CIN & P[0] & P[1] & P[2] & P[3]; 
 
 assign S[0] = CIN ^ P[0]; 
 assign S[3:1] = C[2:0] ^ P[3:1]; 
 
endmodule 

module cla4p(X, Y, CIN, S); 
 
  input wire [3:0] X, Y; // Operands 
  input wire CIN;  // Carry in 
  output wire [3:0] S; // Sum outputs 
     
  assign S = X + Y + {3'b000,CIN}; 
 
endmodule 

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD 
 
  Delay      Level     Source      Destination 
  =====      =====     ======      =========== 
   6.40        1        CIN            S3 
   6.40        1         X0            S3 
   6.40        1         Y0            S3 
   6.35        1         X1            S3 
   6.35        1         Y1            S3 
   6.30        1         X2            S3 
   6.30        1         Y2            S3 
   6.25        1         Y3            S3 



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer 

13 
 

Lecture Summary – Module 4-E 
Multiplier Circuits 

 
Reference:  DDPP (4th Ed.) pp. 45-47, 494-497; (5th Ed.) pp. 54-56, 416-419 
 
 overview 

o consider 3x3 unsigned binary multiplication: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o based on “shift and add” algorithm 
o each row is called a product component 
o each xi•yj term represents a product component bit (logical AND) 
o the product P is obtained by adding together the product components 

 
 generalizations for an NxM multiplier array circuit 

o N = number of bits in multiplicand 
o M = number of bits in multiplier 
o produces an N+M digit result 
o requires NxM AND gates to generate the product components 
o requires N-1 “diagonals” of full adders 
o requires M rows of full adders 

 
 exercise: 4x2 multiplier array circuit 
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 exercise: 2x4 multiplier array circuit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 generalizations for an NxM multiplier 

o N = number of bits in multiplicand (top) 
o M = number of bits in multiplier (bottom) 
o produces an N+M digit result 
o requires NxM AND gates to generate the product components 
o requires N–1 diagonals of full adders 
o requires M rows of full adders  
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 realizations in Verilog 

o use expressions to define product components 
o use addition operator (+) to form unsigned sum of product components 
o example: 4x4 multiplier array circuit 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

/* 4x4 Combinational Multiplier */
module mul4x4(X, Y, P); 
 
  input wire [3:0] X, Y;    // Multiplicand, multiplier 
  output wire [7:0] P;  // Product bits 
 
  wire [7:0] PC[3:0];       // Four 8-bit variables  
 
  assign PC[0] = {8{Y[0]}} & {4'b0, X};       // 0000X3X2X1X0 
  assign PC[1] = {8{Y[1]}} & {3'b0, X, 1'b0}; // 000X3X2X1X00 
  assign PC[2] = {8{Y[2]}} & {2'b0, X, 2'b0}; // 00X3X2X1X000 
  assign PC[3] = {8{Y[3]}} & {1'b0, X, 3'b0}; // 0X3X2X1X0000 
 
  assign P = PC[0] + PC[1] + PC[2] + PC[3]; 
 
endmodule 
 

Timing Analysis for ispMACH 4256ZE 5.8 ns CPLD
  
  Delay    Level    Source     Destination 
  =====    =====    ======     =========== 
   6.50      1        X0            P4 
   6.50      1        X0            P5 
   6.50      1        X1            P4 
   6.50      1        X1            P5 
   6.50      1        X2            P4 
   6.50      1        X2            P5 
   6.50      1        Y0            P4 
   6.50      1        Y0            P5 
   6.50      1        Y1            P4 
   6.50      1        Y1            P5 
   6.50      1        Y2            P4 
   6.50      1        Y2            P5 
   6.45      1        X3            P4 
   6.45      1        X3            P5 
   6.45      1        Y3            P4 
   6.45      1        Y3            P5 
   6.05      1        X0            P0 
   6.05      1        X0            P1 
   6.05      1        X0            P2 
   6.05      1        X0            P3 
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N10 Z4 Z3 Z2 Z1 Z0 Cout S3 S2 S1 S0 Correction
0 0  0  0  0  0 0    0  0  0  0 <none>
1 0  0  0  0  1 0    0  0  0  1 <none> 
2 0  0  0  1  0 0    0  0  1  0 <none> 
3 0  0  0  1  1 0    0  0  1  1 <none>
4 0  0  1  0  0 0    0  1  0  0 <none>
5 0  0  1  0  1 0    0  1  0  1 <none> 
6 0  0  1  1  0 0    0  1  1  0 <none>
7 0  0  1  1  1 0    0  1  1  1 <none>
8 0  1  0  0  0 0    1  0  0  0 <none> 
9 0  1  0  0  1 0    1  0  0  1 <none>
10 0  1  0  1  0 1    0  0  0  0 <add 6> 
11 0  1  0  1  1 1    0  0  0  1 <add 6>
12 0  1  1  0  0 1    0  0  1  0 <add 6>
13 0  1  1  0  1 1    0  0  1  1 <add 6> 
14 0  1  1  1  0 1    0  1  0  0 <add 6>
15 0  1  1  1  1 1    0  1  0  1 <add 6> 
16 1  0  0  0  0 1    0  1  1  0 <add 6>
17 1  0  0  0  1 1    0  1  1  1 <add 6>
18 1  0  0  1  0 1    1  0  0  0 <add 6> 
19 1  0  0  1  1 1    1  0  0  1 <add 6> 

Lecture Summary – Module 4-F 
BCD Adder Circuits 

 
Reference:  Digital Design Principles and Practices (4th Ed.) pp. 48-51; (5th Ed.) pp. 58-60 
 
 overview 

o external computer interfaces may need to read or display decimal digits (examples) 
o need to perform arithmetic operations on decimal numbers directly 
o most commonly used code in binary-coded decimal (BCD) 
o object is to design circuit that adds two BCD digit codes plus carry in, to produce a sum 

digit plus a carry out 
o want to use standard 4-bit binary adder modules as “building blocks” 
o note that there are six “unused combinations” in BCD, so potential exists for needed to 

perform a “correction” 
 general circuit model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 examples of decimal addition and correction 
 summary of rules 

o if the sum of two BCD digits is  9 
(i.e. 1001), no correction is needed 

o if the sum of two BCD digits is > 9, 
the result must be corrected by 
adding six (0110) 

 “correction function” derivation 
 
 
 
 
 
 
 
 
 
 
 

X3  X2  X1  X0     Y3  Y2  Y1  Y0

CinCout

S3  S2  S1  S0

4-bit Adder

Correction Circuit

Z4     Z3  Z2  Z1  Z0

S3  S2  S1  S0CoutZ4Z3Z2Z1Z0 
is the direct 
sum obtained 

BCD sum digit 

Cin 

BCD 
operand

BCD 
operand 

Cout 

Fcorrection = Cout = 

Z4 + Z3•Z2 + Z3•Z1 
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 BCD “full adder” circuit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 example: maximum value that can be generated by a BCD full adder cell (9+9+Cin) 
 
 
 
 
 
 
 
 
 
 
 
 
 example: circuit that produces the diminished radix complement of a BCD digit 

 

  module ninescmp(X, Y); 
  input wire [3:0] X; // Input code 
  output reg [3:0] Y; // Output code 
  always @ (X) begin 
    case (X) 
      4'b0000: Y = 4'b1001; 
      4'b0001: Y = 4'b1000; 
      4'b0010: Y = 4'b0111; 
      4'b0011: Y = 4'b0110; 
      4'b0100: Y = 4'b0101; 
      4'b0101: Y = 4'b0100; 
      4'b0110: Y = 4'b0011; 
      4'b0111: Y = 4'b0010; 
      4'b1000: Y = 4'b0001; 
      4'b1001: Y = 4'b0000; 
      default: Y = 4'b0000; // used for inputs > 9  
    endcase 
  end 
endmodule 
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Calculation of ADD, AND, and SUB results: 

Lecture Summary – Module 4-G 
Simple Computer – Top-Down Specification 

 
Reference:  Meyer Supplemental Text, pp. 1-18 
 
 overview 

o the “ultimate application” of what we have learned 
o computer defn – sequential execution of stored program 
o architecture defn – arrangement and interconnection of functional blocks 
o house analogy 

 big picture 
o input/output 
o start (reset) 
o clock 

 floor plan 
o programming model 
o instruction set 
o registers 
o instruction format 

 opcode 
 address 

o two-address machine 
 programming example 
 memory snapshot 
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 block diagram 

o memory 
o program counter 
o instruction register 
o arithmetic logic unit 
o instruction decoder and 

micro-sequencer 
 
 
 
 
 
 
 
 
 
 
 
 
 notes 

o each functional block is “self-contained” (can be independently tested) 
o can add more instructions by increasing number of opcode bits 
o can add more memory by increasing the number of address bits 
o can increase numeric range by increasing the number of data bits 
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Lecture Summary – Module 4-H 
Simple Computer – Instruction Tracing 

 
Reference:  Meyer Supplemental Text, pp. 18-24 
 
 overview  

o  two basic steps in “processing” an instruction 
 fetch 
 execute 

o will trace the processing of several instructions to better understand this 
 program segment to trace 

 

 
 
 
 
 
 

 worksheet 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 step 1 (after START pushbutton pressed) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Addr Instruction Comments 
00000 LDA 01011 Load A with contents of location 01011 
00001 ADD 01100 Add contents of location 01100 to A 
00010 STA 01101 Store contents of A at location 01101 

Notes: 
1. The clock edges drive the 

synchronous functions of the 
computer (e.g., increment 
program counter) 

2. The decoded states (here, 
fetch and execute) enable the 
combinational functions of 
the computer (e.g., turn on 
tri-state buffers) 
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Lecture Summary – Module 4-I 
Simple Computer – Bottom-Up Implementation 

 
Reference:  Meyer Supplemental Text, pp. 24-42 
 
 overview  

o finished top-down specification of design 
o ready for  bottom-up implementation 
o all system control signals active high 
o some control signals mutually exclusive 
o all blocks use the same clock signal 

 memory 
o key definitions/terms 

 read/write  
 “random access” (wrt prop delay) 
 static (does not need “refresh”) 
 volatile (loses data when “off”) 
 size NxM (here 32x8) 

o 3 control signals 
 MSL – memory select 
 MOE – memory output enable 
 MWE – memory write enable 

o notes 
 read operation is combinational 
 write operation involves open/closing latch  setup and hold timing matters 
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 program counter 
o basically a binary “up” counter with tri-state outputs and an asynchronous reset 
o 3 control signals 

 ARS – asynchronous reset 
 PCC – program counter count enable 
 POA – program counter output on address bus tri-state buffer enable 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 instruction register 
o basically an 8-bit data register, with tri-state outputs on the lower 5 (address) bits 
o upper 3 bits (opcode) output directly to instruction decoder and micro-sequencer 
o two control signals 

 IRL – instruction register load enable 
 IRA – instruction register address field tri-state output enable 
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 ALU 
o a multi-function register that performs arithmetic and logical operations 
o four control signals 

 ALE – overall ALU enable 
 ALX – function select 
 ALY – function select 
 AOE – A register tri-state output enable 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
o block diagram of one bit 
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 instruction decoder and microsequencer 

 
o state machine that tells all the other state machines what to do (“orchestra director”) 

 
o micro-sequence consists of two steps (states) 

 fetching instruction from memory 
 executing instruction 
 fetch/execute state represented by single flip-flop (SQ) 

 
o fetch cycle 

 POA (output location of instruction on address bus) 
 MSL (select memory, i.e., enable memory to participate) 
 MOE (turn on memory tri-state buffers, so that selected location can be read) 
 IRL (enable IR to load instruction fetched from memory) 
 PCC (enable PC to increment) 

 
o execute cycle – ALU functions (ADD, SUB, LDA, AND) 

 IRA (output operand location on address bus) 
 MSL (select memory) 
 MOE (enable memory to be read) 
 ALE (enable ALU to perform the selected function) 

 
o execute cycle – STA instruction 

 IRA (output location at which to store result) 
 MSL (select memory) 
 MWE (enable write to memory) 
 AOE (output data in A register via data bus to memory) 

 
o to stop execution (“halt”), need a “run/stop” flip-flop 

 when START pressed, asynchronously set RUN flip-flip 
 when HLT instruction executed, asynchronously clear RUN flip-flop 
 AND the RUN signal with each synchronous enable signal  effectively disables 

all functional blocks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The synchronous  fetch 
functions (IRL and PCC) 
will take place on the 
clock edge that causes 
the state counter to 
transition from the fetch 
state to the execute state 
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 system data flow analysis – procedure 

o understand operation of functional units 
o understand what each instruction does 
o identify address & data source/destination 
o identify micro-operations required 
o identify control signals that need to be asserted 
o examine timing relationship 

 system data flow analysis - constraints 
o only one device can drive the bus during a machine cycle 
o data cannot pass through more than one flip-flop or latch  per cycle  
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Lecture Summary – Module 4-J 
Simple Computer – Basic Extensions 

 
Reference:  Meyer Supplemental Text, pp. 42-50 
 
 overview  

o will use “spare” opcodes (110 and 111) to add new instructions 
o will add rows and columns to original system control table as needed 

 shift instructions (extension to ALU) 
o translation of bits to the left or right 
o end off: discard bit shifted out 
o preserving: retain bit shifted out  
o logical: zero fill (zero shifted in) 
o arithmetic: sign preserving 
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  input wire CLK; 
  // ALU control lines 
  input wire ALE;   // Overall ALU enable 
  input wire AOE;   // Data bus tri-state output enable 
  input wire ALX, ALY;  // Function select 
  inout wire [7:0] DB_z;  // Bidirectional 8-bit data bus 
  output reg CF, VF, NF, ZF; // Condition code bits (flags) 
      // Carry, Overflow, Negative, Zero 
  // Combinational ALU outputs 
  wire [7:0] ALU; 
  // Accumulator (A) register 
  reg [7:0] AQ; 
  // Next state variables 
  reg next_CF, next_VF, next_NF, next_ZF; 
  reg [7:0] next_AQ; 
 
  // Combinational ALU outputs 
  always @ (ALX, ALY, DB_z) begin 
    case ({ALX,ALY}) 
      2'b00: ALU = DB_z;   // LDA 
      2'b01: ALU = {1'b0,AQ[7:1]}; // LSR 
      2'b10: ALU = {AQ[6:0],1'b0}; // ASL 
      2'b11: ALU = {AQ[7],AQ[7:1]}; // ASR 
    endcase 
  end 
  // Register bit and data bus control equations 
  always @(posedge CLK) begin 
    AQ <= next_AQ; 
  end 
  always @ (ALE, ALU, AQ) begin 
    next_AQ = ALE ? ALU : AQ; 
  end 
  assign DB_z = AOE ? AQ : 8'bZZZZZZZZ;  
  // Flag register state equations 
  always @ (posedge CLK) begin 
    CF <= next_CF; 
    ZF <= next_ZF; 
    NF <= next_NF; 
    VF <= next_VF; 
  end 
  always @ (ALE, ALX, ALY, CF, ZF, NF, VF, ALU, AQ) begin 
    casez ({ALE,ALX,ALY}) 
      3'b0??: next_CF = 1'b0;   
      3'b100: next_CF = CF; // LDA (not affected) 
      3'b101: next_CF = AQ[0];  // LSR 
      3'b110: next_CF = AQ[7];  // ASL 
      3'b111: next_CF = AQ[0]; // ASR 
    endcase 
    next_ZF = ALE ? (ALU == 0) : ZF; 
    next_NF = ALE ? ALU[7] : NF; 
    next_VF = VF;    // NOTE: NOT AFFECTED 
  end 
endmodule 
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 input/output (I/O) instructions 
o new instructions 

 IN addr – input data from port addr and load into A register 
 OUT addr – output data in A register to port addr 

o new control signals 
 IOR – asserted when IN executed 
 IOW – asserted when OUT executed 

o modified block diagram, Verilog code for I/O module, modified system control table 
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 transfer of control instructions 

o addressing mode 
 absolute – operand field of instruction contains absolute address in memory 
 relative  - operand field contains signed offset that should be added to PC 

o condition 
 unconditional – always happen 
 conditional – happen only if specific condition is true (else no-operation) 

o illustrative examples 
 JMP addr – unconditional jump (to absolute address) 
 JZF addr – jump (to absolute address) iff ZF=1 (else no-op) 

 
o modified block diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

o Verilog code for modified PC (with “load from address bus” capability) 
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o modified system control table 
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Lecture Summary – Module 4-K 
Simple Computer – Advanced Extensions 

 
Reference:  Meyer Supplemental Text, pp. 50-64 
 
 overview 

o advanced extensions include 
 multi-cycle execution 
 stack mechanism 

 state counter modifications  
o provide multiple execute cycles (here, up to 3) 
o determine number of execute cycles based on opcode 
o realize using 2-bit synchronously resettable state counter [SQB SQA] 
o new state names 

 S0 – fetch 
 S1..S3 – execute (first, second, third) 

o new control signal: RST (asserted on final execute state of each instruction) 
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/* Instruction Decoder and Microsequencer with Multi-Execution States */  
module idmsr(CLK, START, OP, MSL, MOE, MWE, PCC, POA, ARS, IRL, IRA, ALE, ALX, ALY, AOE); 
  input wire CLK; 
  input wire START;    // Asynchronous START pushbutton 
  input wire [2:0] OP;   // opcode bits (input from IR5..IR7) 
  output wire MSL, MOE, MWE;  // Memory control signals 
  output wire PCC, POA, ARS;  // PC control signals 
  output wire IRL, IRA;   // IR control signals 
  output wire ALE, ALX, ALY, AOE;  // ALU control signals 
  reg SQA, SQB;    // State counter low bit, high bit 
  reg RUN;     // RUN/HLT state 
  wire RST;     // Synchronous state counter reset 
  wire LDA, STA, ADD, SUB, AND, HLT; 
  wire [3:0] S; 
  reg next_SQA, next_SQB; 
  wire RUN_ar;    // Asynchronous reset for RUN 
  // Decoded opcode definitions 
  assign HLT = ~OP[2] & ~OP[1] & ~OP[0]; // HLT opcode = 000 
  assign LDA = ~OP[2] & ~OP[1] &  OP[0]; // LDA opcode = 001 
  assign ADD = ~OP[2] &  OP[1] & ~OP[0]; // ADD opcode = 010 
  assign SUB = ~OP[2] &  OP[1] &  OP[0]; // SUB opcode = 011 
  assign AND =  OP[2] & ~OP[1] & ~OP[0]; // AND opcode = 100 
  assign STA =  OP[2] & ~OP[1] &  OP[0]; // STA opcode = 101 
   
  // Decoded state definitions 
  assign S[0] = ~SQB & ~SQA;  // fetch state 
  assign S[1] = ~SQB &  SQA;  // first execute state 
  assign S[2] =  SQB & ~SQA;  // second execute state 
  assign S[3] =  SQB &  SQA;  // third execute state 
  // State counter 
  always @ (posedge CLK, posedge START) begin 
    if(START == 1'b1) begin  // start in fetch state 
      SQA <= 1'b0; 
      SQB <= 1'b0; 
    end else begin   
      SQA <= next_SQA; 
      SQB <= next_SQB; 
    end 
  end 
  always @ (RST, RUN, SQA, SQB) begin 
    next_SQA = ~RST & RUN & ~SQA;   // if RUN negated or RST asserted, 
    next_SQB = ~RST & RUN & (SQA ^ SQB); //    state counter is reset 
  end 
  assign RUN_ar = S[1] & HLT; 
  // Run/stop 
  always @ (posedge CLK, posedge RUN_ar, posedge START) begin 
    if(START == 1'b1)   // start with RUN set to 1 
      RUN <= 1'b1; 
    else if(RUN_ar == 1'b1)  // RUN is cleared when HLT is executed 
      RUN <= 1'b0; 
  end 
  // System control equations 
  assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND)); 
  assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND); 
  assign MWE = S[1] & STA; 
  assign ARS = START; 
  assign PCC = RUN & S[0]; 
  assign POA = S[0]; 
  assign IRL = RUN & S[0]; 
  assign IRA = S[1] & (LDA | STA | ADD | SUB | AND); 
  assign AOE = S[1] & STA; 
  assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND); 
  assign ALX = S[1] & (LDA | AND); 
  assign ALY = S[1] & (SUB | AND); 
  assign RST = S[1] & (LDA | STA | ADD | SUB | AND); 
endmodule 
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 stack mechanism 
o defn: last-in, first-out (LIFO) data structure 
o primary uses of stacks in computers 

 subroutine linkage 
 saving/restoring machine context 
 expression evaluation 

o conventions 
 stack area usually placed at “top” of memory (highest address range) 
 stack pointer (SP) register used to indicate address of top stack item 
 stack growth is toward decreasing addresses 

o SP register control signals 
 SPI – stack pointer increment 
 SPD – stack pointer decrement 
 SPA – stack pointer output on address bus 
 ARS – asynchronous reset (“stack empty”  (SP) = 00000)  

 
 
 
 
 
 
 
 
 
 
 
  

/* Stack Pointer */ 
 
module sp(CLK, SPI, SPD, SPA, ARS, ADRBUS_z); 
  // NOTE: Assume SPI and SPD are mutually exclusive 
  input wire CLK; 
  input wire SPI, SPD;  // SP increment, decrement 
  input wire SPA;   // SP output on address but tri-state enable 
  input wire ARS;   // asynchronous reset (connected to START) 
  output wire [4:0] ADRBUS_z; // address bus  
  reg [4:0] SP, next_SP; 
  assign ADRBUS_z = SPA ? SP : 5'bZZZZZ; 
  always @ (posedge CLK, posedge ARS) begin 
    if (ARS == 1'b1) 
      SP <= 5'b00000; 
    else 
      SP <= next_SP;   
  end 
  always @ (SPI, SPD, SP) begin 
    if (SPI == 1’b1)  // increment 
      next_SP = SP + 1; 
    else if (SPD == 1’b1)  // decrement 
      next_SP = SP - 1;  
    else    // retain state 
      next_SP = SP; 
  end 
endmodule 
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 stack mechanism, continued… 
o new instructions  understand this notation 

 PSH – save (A) on stack 
 (SP)  (SP) – 1    SPD 
 ((SP))  (A)        SPA, MSL, MWE, AOE 

 POP – load A with value of top stack item 
 (A)  ((SP))     
 (SP)  (SP) + 1 

o note the overlap of operations (single execute state) possible with “POP” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

SPA, MSL, MOE, ALE, ALX, SPI 
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 subroutine linkage 
o capabilities provided 

 arbitrary nesting of subroutine calls 
 passing parameters to subroutine 
 recursion 
 reentrancy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o new instructions  understand this notation 
 JSR addr – jump to subroutine at location addr 

 (SP)  (SP) – 1            SPD 
 ((SP))  (PC)      SPA, MSL, MWE, POD 
 (PC)  (IR5..0)  IRA,PLA 

 RTS – return from subroutine 
 (PC)  ((SP))     
 (SP)  (SP) + 1 

 note the overlap of operations (single execute state) possible with “RTS” 
o need PC with bi-directional data bus interface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SPA, MSL, MOE, PLD, SPI 
note: value loaded into PC truncated to 5 bits
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/* Program Counter with Data Bus interface */ 
 
module pc(CLK, PCC, PLA, POA, RST, ADRBUS_z, DB_z, PLD, POD, PC); 
  input wire CLK; 
  input wire PCC;   // PC count enable 
  input wire PLA;   // PC load from address bus enable 
  input wire POA;   // PC output on address bus tri-state enable 
  input wire RST;   // Asynchronous reset (connected to START) 
  input wire PLD;   // PC load from data bus enable 
  input wire POD;   // PC output on data bus tri-state enable 
  inout wire [4:0] ADRBUS_z; // address bus (5-bits wide)  
  inout wire [7:0] DB_z;  // data bus (8-bits wide) 
  output reg [4:0] PC;  // PC register 
  reg [4:0] next_PC; 
 
  always @ (posedge CLK, posedge RST) begin 
    if (RST == 1'b1) 
      PC <= 5'b00000; 
    else 
      PC <= next_PC; 
  end 
 
  always @ (PLA, PLD, PCC, ADRBUS_z, DB_z, PC) begin 
  // synchronous control signals PLA, PLD, and PCC are mutually exclusive 
    if (PLA == 1’b1)  // load PC from address bus   
      next_PC = ADRBUS_z; 
    else if (PLD == 1’b1) // load PC from data bus 
      next_PC = DB_z; 
    else if (PCC == 1’b1) // increment PC 
      next_PC = PC + 1; 
    else   // retain state 
      next_PC = PC; 
  end 
 
  assign ADRBUS_z = POA ? PC[4:0] : 5'bZZZZZ; 
  assign DB_z = POD ? {3'b000, PC[4:0]} : 8'bZZZZZZZZ;  // pad upper 3 bits of DB w/ 0 
 
endmodule 

// System control equations 
 
  assign MSL = RUN & (S[0] | S[1] & (LDA | STA | ADD | SUB | AND | RTS) | S[2] & JSR); 
  assign MOE = S[0] | S[1] & (LDA | ADD | SUB | AND | RTS); 
  assign MWE = S[1] & STA | S[2] & JSR; 
  assign ARS = START; 
  assign PCC = RUN & S[0]; 
  assign POA = S[0]; 
  assign PLA = S[3] & JSR; 
  assign POD = S[2] & JSR; 
  assign PLD = S[1] & RTS; 
  assign IRL = RUN & S[0]; 
  assign IRA = S[1] & (LDA | STA | ADD | SUB | AND); 
  assign AOE = S[1] & STA; 
  assign ALE = RUN & S[1] & (LDA | ADD | SUB | AND); 
  assign ALX = S[1] & (LDA | AND); 
  assign ALY = S[1] & (SUB | AND); 
  assign SPI = S[1] & RTS; 
  assign SPD = S[1] & JSR; 
  assign SPA = S[1] & RTS | S[2] & JSR; 
  assign RST = S[1] & (LDA | STA | ADD | SUB | AND | RTS) | S[3] & JSR; 
endmodule 
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Fun things to think about… 
 what kinds of new instructions would be useful in writing “real” programs? 
 what new kinds of registers would be good to add to the machine? 
 what new kinds of addressing modes would be nice to have? 
 what would we have to change if we wanted “branch” transfer-of-control instructions 

instead of “jump” instructions? 
 


