
School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 1

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3

Sequential Logic Circuits

 SEQUENTIAL LOGIC CIRCUIT – next output 
depends on its present inputs and its present state

 STATE – collection of state variables whose values 
at any one time contain all the information about 
the past necessary to account for the circuit’s 
future behavior

 BI-STABLE – a logic device with two stable states

 LATCH – sequential circuit that watches all of its 
inputs continuously and changes its outputs at any 
time it is enabled to do so (independent of a 
clocking signal)

Glossary of Common Terms

2

 FLIP-FLOP – sequential circuit that samples its 
inputs and changes its outputs only at times 
determined by a clocking signal

 FEEDBACK SEQUENTIAL CIRCUIT – uses ordinary 
gates and feedback loops to create sequential circuit 
building blocks such as latches and flip-flops

 CLOCKED SYNCHRONOUS STATE MACHINE – uses 
latches or flip-flops to create circuits whose inputs 
are examined and whose outputs change state in 
accordance with a controlling clock signal

Glossary of Common Terms

3

 PRESENT STATE – NEXT STATE (“NEXT STATE” or 
“PS-NS”) EQUATIONS – equations that describe the 
next state of a sequential circuit based on its present 
inputs and present state

 CHARACTERISTIC EQUATION – a next state equation 
that characterizes the behavior of a latch or flip-flop

 STATE TRANSITION DIAGRAM – a graph that depicts 
the state transition behavior of a sequential circuit

 TIMING CHART – a chart that depicts the timing 
behavior of a sequential circuit

Glossary of Common Terms

4

 EXCITATION EQUATIONS – equations that describe the 
inputs needed by sequential circuit memory elements 
(latches or flip-flops) to enable the circuit to transition 
from its present state to the desired next state

 SEQUENCE GENERATOR – a state machine that 
generates a (periodic) pre-defined output pattern of 
signal assertions

 COUNTER – a state machine that has a closed sequence 
of states

 SEQUENCE RECOGNIZER – a state machine that 
responds to a pre-defined input pattern of signal 
assertions and produces corresponding output signal 
assertions

Glossary of Common Terms

5

Module 3
 Learning Outcome: “An ability to analyze and design 

sequential logic circuits”
A. Bi-stable Elements
B. Set-Reset (S-R) and Data (D) Latches
C. Data (D) and Toggle (T) Flip-Flops
D. State Machine Structure and Analysis
E. Clocked Synchronous State Machine Synthesis
F. State Machine Design Examples: Sequence Generators
G. State Machine Design Examples: Counters and Shift Registers
H. State Machine Design Examples: Sequence Recognizers

6



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 2

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3-A

Bi-stable Elements

Reading Assignment:  
DDPP 4th Ed. pp. 521-526, DDPP 5th Ed. pp. 495-499

Learning Objectives:
 Describe the difference between a combinational logic circuit and a 

sequential logic circuit

 Describe the difference between a feedback sequential circuit and a 
clocked synchronous state machine

 Define the state of a sequential circuit

 Define active high and active low as it pertains to clocking signals

 Define clock frequency and duty cycle

 Describe the operation of a bi-stable and analyze its behavior

 Define metastability and illustrate how the existence of a metastable
equilibrium point can lead to a random next state

8

Outline
 Overview
 Finite state machines
 Clock signal properties
 Types of sequential circuits
 Bi-stable elements

– Digital analysis
– Analog analysis

 Metastable behavior

9

Overview
 Logic circuits are classified into two types:

– a combinational logic circuit is one whose outputs 
depend only on its current inputs

– a sequential logic circuit is one whose outputs depend 
not only on its current inputs, but also its current state
(arrived at by its past sequence of inputs)

 The state of a sequential circuit is a collection of state 
variables whose values at any one time contain all the 
information about the past necessary to account for the 
circuit’s future behavior

10

Finite State Machines
 In a digital logic circuit, state variables are binary values –

a circuit with n binary state variables has 2n possible states
 Since there are a only finite number of states possible, 

sequential circuits are sometimes called finite state 
machines

 The state changes of most sequential circuits occur at 
times specified by a free-running CLOCK signal

11

Clock Signal Properties
 By convention, a CLOCK signal is active high if state 

changes occur in response to the clock signal’s rising
edge (or when it is high)

 Similarly, a CLOCK signal is active low if state changes 
occur in response to the clock signal’s falling edge (or 
when it is low)

 The clock period is the time between successive 
transitions in the same direction

 The clock frequency (measured in Hertz, or cycles-per-
second) is the reciprocal of the clock period

 The duty cycle is the percentage of time that the clock 
signal is at its asserted level

12



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 3

Clock Signal Properties

13

Types of Sequential Circuits
 There are two basic types of sequential circuits that 

account for the majority of practical discrete designs:
– a feedback sequential circuit uses ordinary gates 

and feedback loops to create sequential circuit 
building blocks such as latches and flip-flops

– a clocked synchronous state machine uses latches 
and flip-flops (in particular, edge-triggered “D” flip-
flops) to create circuits whose inputs are examined 
and whose outputs change state in accordance with 
a controlling clock signal

14

Bi-stable Elements
 The “simplest” sequential circuit consists of a pair of 

inverters forming a feedback loop:

 This element has no inputs and therefore no way of 
controlling or changing its state

 When power is first applied, it randomly comes up in 
one state or the other and stays there forever (“not 
very useful”)

15

Digital Analysis of Bi-stable
 This circuit is called a bi-stable because, based on 

(strictly) digital analysis, it has two stable states:
– if Q is HIGH, then the bottom inverter has a high 

input and a LOW output, which forces the top 
inverter’s output HIGH

– if Q is LOW, then the bottom inverter has a LOW 
input and a HIGH output, which forces Q to go 
LOW

 Based on this analysis, a single state variable (“Q”) 
could be used to describe the state of this circuit

16

Analog Analysis of Bi-stable
 Given the feedback connection, we know that 

Vin1 = Vout2 and Vin2 = Vout1

 The feedback loop is in equilibrium if the input and 
output voltages of both inverters are constant DC 
values consistent with their transfer functions

Transfer fns:

Vout1 = T(Vin1)

Vout2 = T(Vin2)

17 18

Vout2
Vin2

Vout1Vin1Analog Analysis

Vout1

Vin1

Vout2

Vin2

Rotate, and…

“flip”



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 4

Analog Analysis of Bi-stable
 The equilibrium points can be found graphically – they 

are the points at which the two transfer functions meet:

– the two stable equilibrium points correspond to the 
two states identified in the “digital” analysis, with Q  
(Q_L) either “0” (LOW) or “1” (HIGH)

– the metastable equilibrium point occurs with Vout1 and 
Vout2 about halfway between a valid logic “1” voltage 
and a valid logic “0” voltage – here, Q and Q_L are not 
valid logic signals but the loop equations are satisfied

19

Metastable Behavior
 The metastable point is not truly stable, because random 

noise will tend to drive a circuit operating at the metastable 
point toward one of the stable operating points

20

Metastable Behavior
 Metastable behavior of a bistable can be compared to 

the behavior of a ball dropped onto a hill:
– if ball is dropped from overhead, it will probably roll 

down immediately to one side of the hill or the other
– if ball lands right at the top, it may sit there a while 

before random forces start it rolling

21

Metastable Behavior
 Important: If the “simplest” sequential circuit is susceptible 

to metastable behavior, you can be sure that all sequential 
circuits are susceptible (and it is not something that only 
occurs at power-up)

 Consider what happens if we try to “kick” the ball from side 
of the hill to the other:

22

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3-B

Set-Reset (S-R) and Data (D) Latches

Reading Assignment: 
DDPP 4th Ed. pp. 526-532, DDPP 5th Ed. pp. 499-504 

Learning Objectives:
 Write present state – next state (PS-NS) equations that describes 

the behavior of a sequential circuit
 Draw a state transition diagram that depicts the behavior of a 

sequential circuit
 Construct a timing diagram that depicts the behavior of a 

sequential circuit
 Draw a circuit for a set-reset latch and analyze its behavior
 Discuss what is meant by “transparent” (or “data following”) in 

reference to the response of a latch

26



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 5

Outline
 Overview
 Set-Reset (S-R) latch

– Basic operation
– Timing charts

• Normal operation
• Response to 1-1 input combination
• Response to a glitch/hazard

– Propagation delays
– Input pulse width
– Variants

• S-R latch
• S-R latch with enable

– Characteristic equation
 Data (D) latch

– Propagation delays
– Setup and hold times 27

Overview
 Definition: A latch is a sequential circuit that watches all of 

its inputs continuously and changes its outputs at any time
 When a latch is enabled, it is “open” (i.e., its outputs 

“follow” its inputs)
 When a latch is disabled (its enable input is negated), it is 

“closed” (i.e., its outputs are “frozen” or “latched”)
 This behavior lends itself to the names “data following” and 

“transparent”
 Note: Latches do not utilize a “clocking” signal; rather, they 

are “enabled” to open/close

28

S-R Latch
 An S-R (“set-reset”) latch based on NOR gates can 

be implemented as follows:

 It has a “set” (S) input and a “reset” (R) input and two 
outputs (Q and QN) that are normally complements of 
each other

29

S-R Latch

 If both S and R are “0”, the circuit behaves like the 
bistable element – a feedback loop retains one of 
two logic states, Q = 0 or  Q = 1

 Asserting S sets (presets) the Q output to “1”

 Asserting R resets (clears) the Q output to “0”

30

S-R Latch

31

S-R Latch
 If both S and R are “1”,  both outputs go LOW; 

if both S and R return to “0” simultaneously, 
the circuit goes to a random next state 

32



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 6

Exercise
 Construct a timing chart for the S-R latch

 Solution: Start by writing next state equations
that describe the circuit, and from them construct 
a present state - next state table

Q(t+) = R(t)•QN(t)

QN(t+) = S(t)•Q(t)





33

Exercise
 PS-NS table:

Q(t+) = R′(t)•QN′(t) QN(t+) = S′(t)•Q′(t)





Present State
Q(t) QN(t) 

Present Inputs: S(t) R(t) 

00 01 10 11 

00 11 01 10 00 

01 01 01 00 00 

10 10 00 10 00 

11 00 00 00 00 

Next State
Q(t+) QN(t+)

34

Exercise
 From the PS-NS table, construct a state 

transition diagram





dd

39

00,10

01,11

00 01

10 11

Q QN

S R
00

01

10

11 10,11

00, 01

Exercise
 From the state transition diagram, construct 

a timing chart





S

R

Q

QN

Initial Conditions
41

Exercise
 From the state transition diagram, construct 

a timing chart





S

R

Q

QN

52

Exercise
 Note the propagation delays





S

R

Q

QN

tPLH

tPHL tPHL

tPLH

tPLH = 2 x tPHL 62



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 7

Exercise
 Investigate the response of an S-R latch to 

the “1-1” input combination





S

R

Q

QN

Initial Conditions 64

Exercise
 Investigate the response of an S-R latch to 

the “1-1” input combination





S

R

Q

QN

80

Clicker Quiz

81

Q1. For the NOR-implemented SR latch, the 
following output combination cannot occur 
at any time:

A. Q=0, QN=0

B. Q=0, QN=1

C. Q=1, QN=0

D. Q=1, QN=1

E. none of the above

82

Q2. If the input combination S=0, R=1 is 
applied to this circuit, the (steady state) 
output will be: 

A. Q=0, QN=0

B. Q=0, QN=1

C. Q=1, QN=0

D. Q=1, QN=1

E. none of the above

83

Q3. If the input combination S=1, R=0 is 
applied to this circuit, the (steady state) 
output will be: 

A. Q=0, QN=0

B. Q=0, QN=1

C. Q=1, QN=0

D. Q=1, QN=1

E. none of the above

84



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 8

Q4. If the input combination S=1, R=1 is 
applied to this circuit, the (steady state) 
output will be: 

A. Q=0, QN=0

B. Q=0, QN=1

C. Q=1, QN=0

D. Q=1, QN=1

E. none of the above

85

Exercise
 Investigate the response of an S-R latch to 

a glitch or hazard





S

R

Q

QN

Initial Conditions 87

Exercise
 Investigate the response of an S-R latch to 

a glitch or hazard





S

R

Q

QN

103

S-R Latch Propagation Delays
 The propagation delay of a latch is the time it takes 

for a transition on an input signal to produce a 
transition on an output signal

 A given latch may have several different propagation 
delay specifications, one for each pair of input and 
output signals

 Also, the propagation delay may be different 
depending on whether the output makes a LOW-to-
HIGH or HIGH-to-LOW transition

 Example: tpLH(SQ) is the rise propagation delay of the 
Q output in response to the S input being asserted 
(latch being “set”)

104

S-R Latch Input Pulse Width
 Minimum-pulse-width specifications are usually 

given for the S and R inputs (the latch may go 
into the metastable state if a pulse shorter than 
TPW(min) is applied to S or R

105

 An S-R “S-bar, R-bar” latch – with active low set 
and reset inputs – can be built using NAND gates

S´-R´ Latch

106



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 9

S-R Latch with Enable
 An S-R latch can be modified to be sensitive to its 

inputs only when an enabling input “C” is asserted
 The circuit behaves like an S-R latch when C is “1”, 

and retains its state when C is “0”
 If both S and R are “1” when C changes from “1” to 

“0”, the next state is unpredictable and the output 
may become metastable

107

S R Q Q*

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 d

1 1 1 d

Q* = ______________________

0 2 6 4

1 3 7 5

S S

R R

Q

Q

R

d0

1

0

0

1

1d

S + R·Q

111

Exercise  Complete the PS-NS table for an S-R latch 
and derive its characteristic equation

Clicker Quiz

112

1
2

3

1
2

3

A

B

X

Y

113

Present 
State

Present Input  
A(t) B(t)

X(t) Y(t) 0  0 0  1 1  0 1  1

0  0

0  1

1  0

1  1

X(t+) = ___________

Y(t+) = ___________

Next State 
X(t+) Y(t+)

Q1. For the circuit shown, the following output 
combination cannot occur at any time:

A. X=0, Y=0

B. X=0, Y=1

C. X=1, Y=0

D. X=1, Y=1

E. none of the above

1
2

3

1
2

3

A

B

X

Y

123

Q2. If the input combination A=0, B=1 is 
applied to this circuit, the (steady state) 
output will be:

A. X=0, Y=0

B. X=0, Y=1

C. X=1, Y=0

D. X=1, Y=1

E. unpredictable

1
2

3

1
2

3

A

B

X

Y

124



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 10

Q3. If the input combination A=1, B=0 is 
applied to this circuit, the (steady state) 
output will be:

A. X=0, Y=0

B. X=0, Y=1

C. X=1, Y=0

D. X=1, Y=1

E. unpredictable

1
2

3

1
2

3

A

B

X

Y

125

Q4. If the input combination A=0, B=0 is 
applied to this circuit, followed immediately
by the input combination A=1, B=1, the 
(steady state) output will be:

A. X=0, Y=0

B. X=0, Y=1

C. X=1, Y=0

D. X=1, Y=1

E. unpredictable

1
2

3

1
2

3

A

B

X

Y

126

Q5. If the propagation delay of each gate is 
10 ns, the minimum length of time that 
(valid) input combinations need to be 
asserted in order to prevent metastable 
behavior is:

A. 10 ns

B. 20 ns

C. 30 ns

D. 40 ns

E. none of the above

1
2

3

1
2

3

A

B

X

Y

127

Transparent D Latch
 In situations where we simply need to store a single 

“bit” of information, a D (“data”) latch can be used

 Note that a D latch is just an S-R latch, with D connected 
to the S input and D connected to the R input (this 
eliminates the troublesome “1-1” input combination)

128

Transparent D Latch
 When the enable input C is asserted, the latch is said to 

be “open” and the path from the D input to the Q output 
is “transparent” – hence the name transparent latch

 When the enable input C is negated, the latch “closes” –
the Q output retains its last value and no longer changes 
in response to D

129

D Latch Propagation Delays
 There are four propagation delay parameters that must 

be considered:

– tpLH(CQ) and tpHL(CQ)

– tpLH(DQ) and tpHL(DQ)

130



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 11

D Latch Setup and Hold Times
 There is a “window” of time around the falling 

edge of C when the D input must not change
– the time prior to this edge that the D input 

must remain stable is the setup time
– the time after this edge that the D input 

must remain stable is the hold time

131

Clicker Quiz

132

Q1. A “D” latch is called transparent because its output:
A. is always equal to its input

B. is equal to its input when the latch is closed

C. is equal to its input when the latch is open

D. changes state as soon as the latch is clocked

E. none of the above

133

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3-C

Data (D) and Toggle (T) Flip-Flops

Reading Assignment: 
DDPP 4th Ed. pp. 532-535, 541-542; DDPP 5th Ed. pp. 504-506, 507-508 

Learning Objectives:
 Draw a circuit for an edge-triggered data (“D”) flip-flop and analyze its 

behavior
 Compare the response of a latch and a flip-flop to the same set of stimuli
 Define setup and hold time and determine their nominal values from a 

timing chart
 Determine the frequency and duty cycle of a clocking signal
 Identify latch and flip-flop propagation delay paths and determine their 

values from a timing chart
 Describe the operation of a toggle (“T”) flip-flop and analyze its behavior
 Derive a characteristic equation for any type of latch or flip-flop

135

Outline
 Overview
 Positive edge-triggered D flip-flop
 Negative edge-triggered D flip-flop
 D flip-flop characteristic equation
 D flip-flop setup and hold times
 D flip-flop with enable
 Edge-triggered T flip-flop
 T flip-flop characteristic equation
 Flip-flop timing parameters
 Response of latch vs. flip-flop
 Summary

136



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 12

Overview
 Definition: A flip-flop is a sequential circuit that 

samples its inputs and changes its outputs only at 
times determined by a clocking signal (“CLK”)

 Flip-flops change state in response to the transition
(“edge”) of a clocking signal

– positive-edge-triggered flip-flops change state on 
the low-to-high transition of a clocking signal

– negative-edge-triggered flip-flops change state on 
the high-to-low transition of a clocking signal

137

Positive Edge-Triggered D Flip-Flop

 A positive-edge-triggered D flip flop combines a pair of 
D latches to create a circuit that samples its D input 
and changes its Q and QN outputs at the rising edge of 
a controlling CLOCK (CLK) signal

– the first latch, called the master, opens and follows 
the input when CLK is 0

– the second latch, called the slave, opens and reads 
the master’s output when CLK is 1 – this is when the 
output state change occurs (note that the master 
latch is closed at this point and thus “immune” to 
input changes)

138

 A triangle on the D flip-flop’s CLK input indicates 
edge-triggered behavior and is called a dynamic input 
indicator

 The characteristic equation of a D flip-flop is Q* = D 
i.e. the next state is the current input, shorthand for 
Q(t+) = D(t), where  is the clocking period

 D flip-flops are included in the macrocells of virtually 
all PLDs, and are therefore the “most popular” (and 
easiest) way to realize clocked synchronous state 
machines

139

Positive Edge-Triggered D Flip-Flop
 One way an edge-triggered D flip flop can be 

constructed is illustrated below

140

Positive Edge-Triggered D Flip-Flop

 D flip flops can also be designed to be 
negative-edge-triggered

 An inversion bubble on the CLK input is 
used to indicate that a flip flop is triggered 
on the HIGH-to-LOW transition of the CLK 
signal

141

Negative Edge-Triggered D Flip-Flop

D Q Q*

0 0 0

0 1 0

1 0 1

1 1 1

Q* = ______________________

0 2

1 3

D D

Q

Q

0

0

1

1

D

145

Exercise  Complete the PS-NS table for an D flip-flop 
and derive its characteristic equation



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 13

D Flip-Flop Setup and Hold Times
 For edge-triggered flip-flops, all propagation 

delays are measured from the rising edge of 
the CLK signal

 The “window” during which the D input must 
remain stable is tsetup prior to the CLK edge 
and thold after the CLK edge

146

D Flip-Flop with Enable
 A commonly desired function in D flip-flops is to 

retain the last value stored (rather than load a new 
one) at the clock edge

 This is accomplished by adding an enable input, 
called EN or CE (clock enable), which uses a 2:1 
multiplexer to control the value applied to the 
internal D flip-flop input

147

Edge-Triggered T Flip Flop
 A positive edge-triggered toggle (T) flip-flop changes to the 

complement of its former state (“toggles”) in response to a 
positive clock edge when enabled

 The T input is used to enable/disable the flip-flop from toggling
– when T=0, Q* = Q   stays in same state
– when T=1, Q* = Q toggles

 The characteristic equation for a T flip-flop is             
Q* = T•Q + T•Q = TQ

148

Q

QT

EN

(a) (b)

T

EN

Q

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

CLK

Q

QT

EN

(a) (b)

T

EN

Q

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Q

T

CLK

T

 A T flip-flop can be realized using a D flip-flop by implementing 
the T  flip-flop characteristic equation

Q* = T•Q + T•Q = TQ

T

CLK

149

Edge-Triggered T Flip Flop

T Q Q*

0 0 0

0 1 1

1 0 1

1 1 0

Q* = ______________________

0 2

1 3

T T

Q

Q

0

01

1

Q·T' + Q'·T = Q T

152

Exercise  Complete the PS-NS table for a T flip-flop and 
derive its characteristic equation

The clock pulse width provided for the D flip-flop is 10 ns

153

Example – Flip-Flop Timing Parameters



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 14

The clock period provided for the D flip-flop is 30 ns

154

Example – Flip-Flop Timing Parameters

The duty cycle of the clocking signal is 10/30 x 100% = 33%

155

Example – Flip-Flop Timing Parameters

The nominal setup time provided for the D flip-flop is 5 ns

156

Example – Flip-Flop Timing Parameters

The nominal hold time provided for the D flip-flop is 15 ns

157

Example – Flip-Flop Timing Parameters

The tPLH(CQ) = tPLH(CQ_L) of the D flip-flop is 10 ns

158

Example – Flip-Flop Timing Parameters

The tPHL(CQ) = tPHL(CQ_L) of the D flip-flop is 5 ns

159

Example – Flip-Flop Timing Parameters



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 15

Clicker Quiz

160

Q1. The duty cycle of the clocking signal is:

A. 20%    B. 33%    C.  40%    D. 67%

E. none of the above

161

Q2. The nominal setup time provided for the 
D flip-flop is:

A. 5 ns    B. 10 ns    C.  15 ns    D. 20 ns

E. none of the above
162

Q3. The nominal hold time provided for the 
D flip-flop is:

A. 5 ns    B. 10 ns    C.  15 ns    D. 20 ns

E. none of the above
163

Q4. The clock pulse width provided for the 
D flip-flop is:

A. 5 ns    B. 10 ns    C.  15 ns    D. 20 ns

E. none of the above
164

Q5. The tPLH(CQ) of the D flip-flop is:

A. 5 ns    B. 10 ns    C.  15 ns    D. 20 ns

E. none of the above
165



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 16

Q6. The tPHL(CQ) of the D flip-flop is:

A. 5 ns    B. 10 ns    C.  15 ns    D. 20 ns

E. none of the above
166

Q7. Metastable behavior of an edge-triggered D flip-flop 
can be caused by:

A. violating its minimum setup time 
requirement

B. violating its minimum hold time requirement

C. violating its minimum clock pulse width 
requirement

D. all of the above

E. none of the above
167

Example – Response of Latch vs. Flip-Flop 

Assume a positive edge-triggered D flip-flop (X) and a transparent D 
latch (Y) are supplied the signals given on the timing chart (next slide). 

Plot the response of each, noting the initial states.

Assume the propagation delays of the flip-flop and latch are negligible
relative to the period of “C”.

168

Example – Response of Latch vs. Flip-Flop 

 
A 

                    

 
X 

                    

 
Y 

                    

 
C 

                    

 

169

Summary
 Latches and flip-flops are the basic building blocks of 

virtually all sequential circuits
– a latch is a sequential device that watches all of its 

inputs continuously and changes its outputs at any 
time (independent of a clocking signal)

– a flip-flop is a sequential device that samples its inputs 
and changes its outputs only at times determined by a 
clocking signal

 Because the functional behavior of latches and flip flops 
is quite different, it is important to know which type is 
being used in a design

170

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3-D
Clocked Synchronous State Machine Structure and Analysis



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 17

Reading Assignment: 
DDPP 4th Ed. pp. 542-553, DDPP 5th Ed. pp. 443-453 

Learning Objectives:
 Identify the key elements of a clocked synchronous state machine: 

next state logic, state memory (flip-flops), and output logic
 Differentiate between Mealy and Moore model state machines, and 

draw a block diagram of each
 Analyze a clocked synchronous state machine realized as either a 

Mealy or Moore model

172

Outline
 Overview
 State machine structure

– Moore machine
– Mealy machine

 State machine analysis
– Moore machine analysis
– Mealy machine analysis

173

Overview
 “State machine” (or “finite state machine”) is a generic 

name given to sequential circuits
 “Clocked” indicates that the flip-flops employ a CLOCK 

(CLK) input
 “Synchronous” means that all the flip-flops in the state 

machine use the same CLOCK signal
 “Analysis” means to analyze the behavior of a given 

state machine
– construct a PS-NS table
– derive PS-NS equations
– draw a state transition diagram
– draw a timing chart

174

State Machine Structure
 Clocked synchronous state machines consist of three basic 

blocks:

– next state logic – combinational circuitry that provides the 
“excitation” necessary to transition to the next state, based 
on the current state and the present inputs

– state memory (flip flops) – set of N flip-flops that store the 
current state of the machine (providing 2N distinct states)

– output logic – combinational circuitry that uses the current 
state (and possibly current inputs) to determine the 
outputs generated

175

Moore Machine
 In a Moore machine, the outputs are only a function of 

the current state

176

Mealy Machine
 In a Mealy machine, the outputs are a function of the 

current state as well as the current inputs

177



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 18

State Machine Structure
 With appropriate circuit or drawing manipulations, one 

state machine model can be mapped into another

 The exact classification of a state machine into one 
style or another is ultimately not very important

 What is important is how the structure chosen satisfies 
your design requirements

178

Characteristic Equations (Review)
 The characteristic equations of the various flip-flops 

described previously are:

– S-R:    Q* = S + R´•Q

– D:        Q* = D

– T:         Q* = Q  T   

 We will use these characteristic equations as the 
basis for analyzing state machines

 Analysis in this context means writing the next state 
equations that describe the circuit’s behavior

179

State Machine Analysis
 The analysis of a clocked synchronous state machine has four 

basic steps:

– Determine the next state and the output functions based on 
the circuit diagram

– Use the next state and output functions to construct a 
present state - next state / output table  (PS-NS / O)

– Draw a state transition diagram that presents the information 
tabulated in the present state - next state / output table in 
graphical form 

– Draw a timing diagram that shows the timing relationship 
between the input, output, and clocking signals

180

Exercise 1
 Analyze the following Mealy state machine:

181

Exercise 1
 Analyze the following Mealy state machine:
EN´•Q0 + EN•Q0´

EN´•Q1 + EN•(Q1Q0) 

EN•Q0•Q1 

184

Exercise 1
 STEP 1: Write the next state equations for each D flip-flop 

and the output logic function

Q0* = EN´•Q0 + EN•Q0´ = EN  Q0

Q1* = EN´•Q1 + EN•(Q1  Q0)

MAX = EN•Q0•Q1

185



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 19

Exercise 1
 STEP 2: Construct a PS-NS / O table

PS PI NS Output 
Q1  Q0 EN Q1* Q0* MAX 
0  0 0 0  0 0 
0  0 1 0  1 0 
0  1 0 0  1 0 
0  1 1 1  0 0 
1  0 0 1  0 0 
1  0 1 1  1 0 
1  1 0 1  1 0 
1  1 1 0  0 1 

 

186

Exercise 1
 STEP 3: Construct a Mealy state transition diagram

EN
MAX

190

Q1 Q0

0 0 0 1

1 1 1 0

0
0

0
0

0
0

0
0

1
0

1
0

1
0

1
1

Exercise 1
 STEP 4: Draw a timing chart

195

Exercise 2
 Analyze the following Moore state machine:

196

Exercise 2
 Analyze the following Moore state machine:

EN´•Q0 + EN•Q0´

EN´•Q1 + EN•(Q1Q0) 

Q0•Q1 

199

Exercise 2
 STEP 1: Write the next state equations for each D flip-flop 

and the output logic function

Q0* = EN´•Q0 + EN•Q0´ = EN  Q0

Q1* = EN´•Q1 + EN•(Q1  Q0)

MAXS = Q0•Q1

200



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 20

Exercise 2
 STEP 2: Construct a PS-NS / O table

PS PI NS Output 
Q1  Q0 EN Q1* Q0* MAXS 
0  0 0 0  0 0 
0  0 1 0  1 0 
0  1 0 0  1 0 
0  1 1 1  0 0 
1  0 0 1  0 0 
1  0 1 1  1 0 
1  1 0 1  1 1 
1  1 1 0  0 1 

 201

Exercise 2
 STEP 3: Construct a Moore state transition diagram

204

Q1 Q0
MAXS

0 0
0

1 1
1

0 1
0

1 0
0

0 0

00

EN

1

1

1

1

Exercise 2
 STEP 4: Draw a timing chart

208

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3-E

Clocked Synchronous State Machine Synthesis

Reading Assignment:  
DDPP 4th Ed. pp. 553-566, 646-659, 682-689;
DDPP 5th Ed. pp. 453-471, 676-680, 525-527
Learning Objectives:
 Outline the steps required for state machine synthesis
 Derive the excitation table for any type of latch or flip-flop
 Discuss reasons why formal state-minimization procedures 

are seldom used by experienced digital system designers
 Draw block diagrams for Moore and Mealy type state 

machines and explain how each block can be coded in 
Verilog

 Draw a circuit for an oscillator and calculate its frequency of 
operation

 Draw a circuit for a bounce-free switch based on an S-R latch 
and analyze its behavior

210

Outline
 Overview
 State machine design steps

– Derivation of flip-flop excitation tables
– Flip-flop choice

 State machines in Verilog
– Syntax and synthesis
– Macrocell structure

 Clocking considerations
– Periodic clock generation circuits
– Timing diagram and specifications
– Event clock generation circuits

211



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 21

Overview
 Designing a finite state machine (FSM) is a creative 

process that is, in many ways, like writing a computer 
program:

– You have a fairly good idea of what the input and 
output signals should be, but perhaps an imprecise 
description of the desired relationship between them

– During the design you may have to identify and choose 
among different ways of doing things – sometimes 
using common sense, sometimes arbitrarily

– You may have to identify and handle special cases that 
weren’t included in the original description

212

Overview
 Creative process…

– You will probably have to keep track of several ideas in 
your head during the design process

– Since the design process is not an algorithm, there’s 
no guarantee that you can complete it using a finite 
number of states or lines of code

– When you finally run the state machine or program, it 
will do exactly what you told it to do – no more, no less

– There’s no guarantee the thing will work the first time –
you may have to debug and iterate the entire process

213

State Machine Design Steps
 State machine design steps

– Given a word description, construct a state/output table
or transition diagram

– Minimize any “obvious” redundant states in the 
translated description

– Choose a set of state variables and assign binary state-
variable combinations to the named states

– Substitute the state-variable combinations into the 
state/output table (and/or state transition diagram) to 
create a table that shows the desired next state-variable 
combination and output for each state/input 
combination 

214

State Machine Design Steps
 State machine design steps...

– If you haven’t done so already, choose a flip-flop or 
latch type for the state memory

– Construct an excitation table that shows the excitation 
values required to obtain the desired next state for each 
state-input combination

– Derive excitation equations from the excitation table

– Derive output equations from the transition/output table

– Draw a logic diagram (or realize the equations directly 
in a PLD)

215

Q Q* S R

0 0 0 d

0 1

1 0

1 1

S R Q Q*

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 d

1 1 1 d
217

Example: Derive the excitation table for an S-R latch

Q Q* S R

0 0 0 d

0 1 1 0

1 0

1 1

S R Q Q*

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 d

1 1 1 d
218

Example: Derive the excitation table for an S-R latch



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 22

Q Q* S R

0 0 0 d

0 1 1 0

1 0 0 1

1 1

S R Q Q*

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 d

1 1 1 d
219

Example: Derive the excitation table for an S-R latch

Q Q* S R

0 0 0 d

0 1 1 0

1 0 0 1

1 1 d 0

S R Q Q*

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 d

1 1 1 d
220

NOTE: Two excitation equations  are 
required for each flip-flop…probably 
not desirable~

Example: Derive the excitation table for an S-R latch

Q Q* T

0 0 0

0 1

1 0

1 1

T Q Q*

0 0 0

0 1 1

1 0 1

1 1 0

221

Example: Derive the excitation table for a T flip-flop Example: Derive the excitation table for a T flip-flop

Q Q* T

0 0 0

0 1 1

1 0

1 1

T Q Q*

0 0 0

0 1 1

1 0 1

1 1 0

222

Q Q* T

0 0 0

0 1 1

1 0 1

1 1

T Q Q*

0 0 0

0 1 1

1 0 1

1 1 0

223

Example: Derive the excitation table for a T flip-flop

Q Q* T

0 0 0

0 1 1

1 0 1

1 1 0

T Q Q*

0 0 0

0 1 1

1 0 1

1 1 0

224

NOTE: Here, only one excitation equation is required for 
each flip-flop – a common application is binary counters

Example: Derive the excitation table for a T flip-flop



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 23

Q Q* D

0 0 0

0 1

1 0

1 1

D Q Q*

0 0 0

0 1 0

1 0 1

1 1 1

225

Example: Derive the excitation table for a D flip-flop

Q Q* D

0 0 0

0 1 1

1 0

1 1

D Q Q*

0 0 0

0 1 0

1 0 1

1 1 1

226

Example: Derive the excitation table for a D flip-flop

Q Q* D

0 0 0

0 1 1

1 0 0

1 1

D Q Q*

0 0 0

0 1 0

1 0 1

1 1 1

227

Example: Derive the excitation table for a D flip-flop

Q Q* D

0 0 0

0 1 1

1 0 0

1 1 1

D Q Q*

0 0 0

0 1 0

1 0 1

1 1 1

228

NOTE: For D flip-flops, Q*=D, which means the excitation 
equation is identical to the next state equation, which 
makes synthesis using D flip-flops very straight-forward~

Example: Derive the excitation table for a D flip-flop

Flip-Flop Choice
 Any type of latch or flip-flop (S-R, D, T) may be chosen for 

a sequential circuit’s state memory; this choice, however, 
will determine how much work you will have to do when 
it’s time to “turn the crank” (i.e., transform the next state 
equations into a circuit)

 Our focus for state machine synthesis will be on use of 
edge-triggered D flip-flops 

– they are incorporated directly into the PLDs used in lab 

– they require the least amount of “crank work” to realize 
next state equations

– in Verilog, They result in cleaner, easier to read code
229

Clicker Quiz

230



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 24

Q1. Identify which statement concerning state machine 
models is true:

A. Mealy and Moore models that represent equivalent state machines will 
always have the same number of states

B. Mealy and Moore models that represent equivalent state machines will 
always have a different number of states

C. any Mealy model can be transformed into an equivalent Moore 
model, and vice-versa

D. Mealy and Moore models that represent equivalent state machines, 
when realized, will exhibit the same observable behavior (i.e., if 
placed in a  “black box”, their observable behavior would be 
indistinguishable) 

E. none of the above

231

Q2. An FSM design has 212 states; to reduce the number 
of flip-flops required by one, you would have to identify 
and eliminate _____ redundant state(s).

A. 1

B. 2

C. 44

D. 84

E. none of the above

232

Q3. Formal state-minimization procedures are seldom used
by most digital designers because:

A. there are situations where increasing the number of states may simplify 
the design or reduce its cost

B. the designer can do more to simplify a state machine [than using formal 
state-minimization procedures] during the state-assignment phase of the 
design

C. by carefully matching state meanings to the requirements of the problem, 
experienced digital designers can produce state tables with a minimal or 
near-minimal number of states

D. all of the above

E. none of the above

233

Reference: DDPP p. 559 (4th Ed.), p. 461 (5th Ed.)

Blocking vs Non-Blocking Assignments in Verilog 
Blocking Statements (Out = In)

 The = symbol represents a blocking procedural assignment 

 Assignment is done immediately in a single step: new value is used by subsequent 
statements

 Execution flow within a procedure is blocked until the current assignment is complete

 Used to model combinational Logic

Non-Blocking Statements (Out <= In) 

 The <= symbol represents a non-blocking procedural assignment

 Assignment is done in a two steps

1. The RHS is evaluated immediately

2. The assignment to LHS is postponed until all other evaluations in the current 
time step are complete

 Used to model sequential logic (like a “clocked assignment operator”)

234

Blocking vs Non-Blocking

module(D,CLK,Q1,Q2);

input wire D,CLK;

output reg Q1,Q2; 

always @(posedge CLK) 

begin 

Q1 = D; 

Q2 = Q1; 

end 

endmodule

module(D,CLK,Q1,Q2);

input D,CLK;

output reg Q1,Q2; 

always @(posedge CLK) 

begin 

Q1 <= D; 

Q2 <= Q1; 

end 

endmodule

235

What is the difference between these two implementations? 

notice the posedge keyword

Verilog Design Guidelines
 Do not mix blocking and non-blocking statements in the same 

block or procedure

 Combinational blocks – use blocking statements

 Sequential blocks (registers) – use non-blocking statements

 You will come across a lot of tri-state (Hi-Z) buffer implementations 
in this and the next module – it is important to understand this 
concept, but you will not be implementing tri-state buffers in lab

 This will be discussed in detail in ECE 337 (ASIC Design)  

236



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 25

State Machines in Verilog
 To specify a state machine in Verilog, an always block 

triggered on edges of the clock and other asynchronous 
signals (such as reset) is used. 

 The registers are assigned next-state values with non-
blocking statements

 The next-state values themselves are evaluated in a 
separate combinational always block or a dataflow 
assignment

 Differences in macrocell architecture will determine the 
complexity of state machine that can be implemented 
with a given PLD 

237

State Machines in Verilog
 A trivial state machine
module stateMachine(CLK, RST, state);

input wire CLK, RST;
output reg state;

reg next_state;

always @ (posedge CLK, posedge RST) begin

if (RST == 1’b1)
state <= 1’b0;

else
state <= next_state;

end

always @ (state) begin
next_state = ~state;

end 238

A D flip-flop triggered on positive 
edges of CLK and a reset signal RST

Out of reset, state is assigned the 
value of next_state at every 
positive clock edge

next_state logic evaluated in a 
separate combinational block

Variables assigned values in the 
always block must be reg type

If active-high asynchronous
reset (RST) is high 

State Machines in Verilog
 A trivial state machine
module stateMachine(CLK, RST, state);

input wire CLK, RST;
output reg state;

reg next_state;

always @ (posedge CLK, posedge RST) begin

if (RST == 1’b1)
state <= 1’b0;

else
state <= next_state;

end

always @ (state) begin
next_state = ~state;

end 239

RST can go high asynchronous to the CLK 
and reset logic will force state to 0

240

How PLD/CPLD logic blocks are used when 
implementing a state machine 

GAL22V10 Output Logic Macrocell (“OLMC”)

241

All OLMC edge-triggered D flip-flops utilize common clock (CLK) , 
asynchronous reset (AR), and asynchronous preset (SP) signals

I/O 
pin

Note: Flip-flops are used to 
create sequential circuits

GAL22V10 Output Logic Macrocell (“OLMC”)

242

4:1 multiplexer selects (routes) true/complemented combinational 
or true/complemented registered function to the I/O pin

I/O 
pin



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 26

GAL22V10 Output Logic Macrocell (“OLMC”)

243

2:1 multiplexer selects (routes) true/complemented I/O pin or
true/complemented registered feedback to the P-term array

I/O 
pin

Note: Tri-state 
buffer is turned 
off to use I/O 
pin as an input

ispMACH 4000ZE Macrocell

244

ispMACH 4000ZE I/O Cell

245 246

Clocking Considerations
 State machines require a clocking signal in order to operate 

“sequentially”

 There are two basic types of clocking signals that can be used:

– periodic (“continuously running”), generated using an 
oscillator circuit

– event (non-periodic, single clock edge), generated using a 
bounce-free switch or sensor contact closure

 A timing diagram can be used to show the relationship between 
the clock and various input, output, and internal signals – it can 
also be used to help answer the key question facing computer 
system designers: “How fast can this thing run?”

Periodic Clock Generation Circuits
 Periodic clock signals can be generated using several 

different types of oscillator circuits:
– based on an R-C time constant (least accurate)
– based on a ceramic resonator
– based on a quartz crystal (most accurate)

 Issues of interest include the following:
– frequency of operation
– duty cycle
– transition time
– ringing (undershoot / overshoot)
– stability (long term drift / short term “jitter”)
– driving capability / need for buffers
– skew (different length paths on PCB)

247

Example - CMOS “Ring” Oscillator

f  (2C(0.4Req + 0.7R2))-1 where Req = (R1R2)/(R1+R2)

OUTPUT

C
74HC04

1 2

74HC04

5 6

74HC04

3 4

R2R1

248



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 27

Example - Crystal Oscillator Circuit

For a 1 MHz oscillator, use R1 = 22 M, 
R2 = 22 K, C1 = 20 pF, and C2 = 10 pF

74HC04

3 4

C2

R2

OUTPUT

R1

74HC04

1 2

C1
Crystal

249

ispMach 4000ZE Internal Oscillator

250

module OscTest(RST, CLK_out);

input wire RST;

output reg CLK_out;

wire osc_dis, tmr_rst, osc_out, tmr_out;

assign osc_dis = 1'b0;

assign tmr_rst = 1'b0;

defparam I1.TIMER_DIV = "1048576";

OSCTIMER I1 (.DYNOSCDIS(osc_dis),.TIMERRES(tmr_rst),.OSCOUT(osc_out), .TIMEROUT(tmr_out));

always @(posedge tmr_out, posedge RST)

begin
if (RST == 1'b1) begin

CLK_out <= 0;

end 

else begin

CLK_out <= ~CLK_out; 

end

end 

endmodule

RST can be connected to a DIP 
switch on instantiation

Divide internal oscillator frequency by 2:

frequency of CLK_out = 6/2 = 3 Hz 

1048576 is the constant for internal CLK 
division, output CLK frequency approx 6 Hz

OSCTIMER is an internal module 
used for clocking signal generation 

Example – Timing Diagram and Specifications

255

time 
high

time 
low

clock 
period

clock frequency (f) = 1/tclk duty cycle = tH/(tH+tL)

flip-flip C→Q prop delay

comb output prop delay

flip-flop setup and hold times

timing margin

Event Clock Generation Circuits
 Some applications of sequential circuits require that they 

be clocked by an event

– sensor firing (open drain transistor changing from high 
impedance to low impedance)

– contact closure (pushing a button)

 Problem: Mechanical switches have contacts that 
“bounce” (i.e., “make”/“break” multiple times before the 
contacts “settle”)

 Illustration: Use of a single-pole, single throw (S.P.S.T.) 
normally-open (N.O.) pushbutton as a clocking signal

256

Example – S.P.S.T. Pushbutton Used as Clock

257

S.P.S.T. stands for “single pole, single throw”

N.O. stands for “normally open”

262

Example – S.P.S.T. Pushbutton Used as Clock
S.P.S.T. stands for “single pole, single throw”

N.O. stands for “normally open”

Problem: The “bounces” 
will be interpreted as 
multiple clock edges



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 28

Classic Bounce-free Switch Circuit
 Bounce-free switch implemented using 

S.P.D.T. (“single pole, double throw”) 
pushbutton with an S R latch

N.C.

N.O.

S'

R'

Q

QN
L

H L

H

Initial/Default State
(S-R latch reset)

263

/* SR latch for use in switch debouncer on small PLD */
module SR_LATCH(RN, SN, Q, QN);

input wire RN;    // active low reset
input wire SN;    // active low set 
output wire Q;    // active high output 
output wire QN;   // active low output 

assign QN = (~RN | ~Q);
assign Q  = (~SN | ~QN);

endmodule

271

Example – SR Latch in Verilog

WARNING: This method 
is only intended for 
use on a small PLD 
such as a 22v10 device

/* D flip flop used as bounce-free switch in Verilog */
module DFF_BF(CLK, AR, AP, D, BFC);

input wire CLK;   // Clock input for DFF
input wire AR,AP; // Asynchronous Reset and Preset 
input wire D;     // Data input for DFF 
output reg BFC;   // Bounce Free Switch output  

always @ (posedge CLK, posedge AR, posedge AP) begin
if (AR == 1’b1)

BFC <= 0;
else if (AP == 1’b1)

BFC <= 1;
else

BFC <= D;
end

endmodule
/* For a Bounce-Free Switch, these are the changes in DFF: 

CLK = 0 and D = 0 as we use AR and AP to control the switch
AR = NC -> AR connected to Normally Closed switch contact 
AP = NO -> AP to Normally Open switch contact
Below is a sample instance of BF1

DFF_BF  BF1 (.CLK(1’b0),.AR(NC),.AP(NO),.D(1’b0),.BFC(out)); */ 272

Example – Bounce-Free Switch in Verilog for use on CPLD

Here, we are using the D flip-flop as an S-R 
latch by asserting asynchronous reset (AR) 
and asynchronous preset (AP) 

WARNING: This method 
only works for a CPLD, 
not a small PLD – for 
PLD, a gate-level SR 
latch needs to be 
implemented Clicker Quiz

273

Q1. The following passive components can be used as 
timing reference to generate a periodic clocking signal:

A. resistor and capacitor combination

B. ceramic resonator

C. crystal

D. all of the above 

E. none of the above

274

Q2. The next state equation represented by 
the following state transition diagram is:

A. X* = A·X + A·X

B. X* = A·X + A·X
C. X* = A + X 

D. X* = A·X 

E. none of the above
275



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 29

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3-F
State Machine Design Examples: Sequence Generators

Reading Assignment:  
DDPP 4th Ed. pp. 566-576, DDPP 5th Ed. pp. 472-478

Learning Objectives:
 Design a clocked synchronous state machine and verify its 

operation

 Define minimum risk and minimum cost state machine design 
strategies, and discuss the tradeoffs between the two approaches

 Compare state assignment strategy and state machine model 
choice (Mealy vs. Moore) with respect to PLD resources (P-terms 
and macrocells) required for realization

277

Outline
 Overview
 Simple character sequence display
 “Dual mode” sequence generator

– Moore model realizations
– Mealy model realizations

 Summary

278

Overview
 A sequence generator state machine produces a (periodic) series of 

output signal assertions that constitute a pre-defined pattern:
– vehicle tail lights (e.g., “T-bird”)
– traffic control signs (e.g., “blinkers” and stoplights)
– character displays (e.g., “GO BOILERS”)
– process control sequences (e.g., wash, rinse, dry)

 Either a Mealy or a Moore model can be used as the basis for designing 
a sequence generator

 Two different design strategies can be employed:
– minimum cost – unused states are assumed to be don’t cares, 

potentially reducing realization cost while increasing risk of 
undefined behavior if machine gets into an unknown (unused) state

– minimum risk – unused states are explicitly assigned a next state, 
eliminating risk of undefined behavior but potentially increasing 
realization cost

279

Clicker Quiz

280

Q1. Designing a state machine based on minimum risk 
means:

A. there are no hazards in the clocking signal

B. there are no “don’t cares” in the output 
equations

C. there are no “don’t cares” in the next state 
equations

D. all of the above 

E. none of the above

281



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 30

Q2. Designing a state machine based on minimum cost
means:

A. there can be “don’t cares” in the next state equations

B. there can be “don’t cares” in the excitation equations

C. there can be “don’t cares” in the output equations

D. all of the above 

E. none of the above

282

Q3. If designed for minimum cost, the next state 
equation for X is:
A. X* = A·Y 

B. X* = X + Y

C. X* = X·Y + A·X 

D. X* = A·Y + X·Y 

E. none of the above
283

Q4. If designed for minimum cost, the next state 
equation for Y is:
A. Y* = A·Y 

B. Y* = A + Y

C. Y* = X·Y + A·X 

D. Y* = A·Y + X·Y 

E. none of the above
284

Example - Character Sequence Display

Design a circuit that produces the character 
sequence AbC or CbS on a 7-segment LED

Draw a Moore model state transition diagram.  Note that 
there is one input (M) and seven active-low outputs 
(segments a-g) 

285

Example - Character Sequence Display 

Design a circuit that produces the character 
sequence AbC or CbS on a 7-segment LED

Draw a Moore model state transition diagram.  Note that 
there is one input (M) and seven active-low outputs 
(segments a-g) 

Q1 Q0
a  b  c  d  e  f  g   

Only 
need 4 
states

“A” = 1110111
“b” = 0011111
“C” = 1001110
“S” = 1011011

0 0

A = 1110110

0 1

b = 0011111

1 0

C = 1001110

1 1

S = 1011011

0

0

0 1

1

1

0

1

291

/* Character Sequence Display */
module tv_disp(CLK, M, Q, nL);

input wire CLK;
input wire M; // Mode control
output reg [1:0] Q;
output wire [6:0] nL;

reg [6:0] L; // L[6] = LA, L[5] = LB, .. L[0] = LG
reg [1:0] next_Q;

assign nL = ~L; // Active-low outputs on L

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q, M) begin
case({Q,M})
3'b000:  next_Q = 2'b01;
3'b001:  next_Q = 2'b10;
3'b010:  next_Q = 2'b10;
3'b011:  next_Q = 2'b11;
3'b100:  next_Q = 2'b00;
3'b101:  next_Q = 2'b01;
3'b110:  next_Q = 2'b00;
3'b111:  next_Q = 2'b10;

endcase
end

always @ (Q) begin

case (Q)
2'b00:  L = 7'b1110111; // Character A
2'b01:  L = 7'b0011111; // Character b
2'b10:  L = 7'b1001110; // Character C 
2'b11:  L = 7'b1011011; // Character S

endcase
end

endmodule 292



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 31

Example – Dual Mode Light Sequencer
 Design a clocked synchronous state machine that generates 

the following “light patterns” (using three LEDs)

Mode 0: “single dot, left-to-right”

293

Time

Example – Dual Mode Light Sequencer
 Design a clocked synchronous state machine that generates 

the following “light patterns” (using three LEDs)

294

Time

Mode 1: “single dot, right-to-left”

Example – Dual Mode Light Sequencer
 Design a clocked synchronous state machine that generates 

the following “light patterns” (using three LEDs)

295

Time

Mode 2: “building dots, left-to-right”

Example – Dual Mode Light Sequencer
 Design a clocked synchronous state machine that generates 

the following “light patterns” (using three LEDs)

296

Time

Mode 3: “building dots, right-to-left”

 To specify in which of the 4 modes we want the circuit to 
operate, we will need 2 “mode control” inputs, M1 and M0, 
where:

 0 0  single dot, left-to-right

 0 1  single dot, right-to-left

 1 0  building dots, left-to-right

 1 1  building dots, right-to-left

 A separate output function needs to be determined for each 
of the 3 LED outputs: G, Y, and R (from left-to-right)

 A state will be needed corresponding to the “all LEDs off”
condition

297

Moore Model Realizations
STEP 1: Construct a state transition diagram

A0
000

A1
100

A2
010

A3
001

00,10

00
00

00

302

0 0  single dot, left‐to‐right
0 1  single dot, right‐to‐left
1 0  building dots, left‐to‐right
1 1  building dots, right‐to‐left

01,11

01

01

01

A4
110

A5
111

10

10

10

A6
011

A7
111

1111

11



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 32

STEP 2: Minimize the number of states

A0
000

A1
100

A2
010

A3
001

00,10

00
00

00

303

01

01

01

A4
110

A5
111

10

10

10

A6
011

A7
???

11

11

X

An equivalent state is one that has the same next state and produces the same output

01,11

STEP 3: Assign binary state variable combinations

000
000

001
100

010
010

011
001

00,10

00
00

00

304

01

01

01

100
110

101
111

10

10

10

110
011

A7
???

11

11

X
01,11

299

STEP 4: Construct a PS-NS/PO Table
PS

Q2 Q1 Q0
PI

M1 M0
NS

Q2* Q1* Q0*
PO

G     Y R
0 0 0 0 0 0 0 1 0 0 0

0 1 0 1 1
1 0 0 0 1
1 1 0 1 1

0 0 1 0 0 0 1 0 1 0 0
0 1 0 0 0
1 0 1 0 0
1 1 0 0 0

0 1 0 0 0 0 1 1 0 1 0
0 1 0 0 1
1 0 0 0 0
1 1 0 0 0

0 1 1 0 0 0 0 0 0 0 1
0 1 0 1 0
1 0 0 0 0
1 1 1 1 0 300

STEP 4: Construct a PS-NS/PO Table...
PS

Q2 Q1 Q0
PI

M1 M0
NS

Q2* Q1* Q0*
PO

G     Y R
1 0 0 0 0 0 0 0 1 1 0

0 1 0 0 0
1 0 1 0 1
1 1 0 0 0

1 0 1 0 0 0 0 0 1 1 1
0 1 0 0 0
1 0 0 0 0
1 1 0 0 0

1 1 0 0 0 0 0 0 0 1 1
0 1 0 0 0
1 0 0 0 0
1 1 1 0 1

1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0
1 0 0 0 0
1 1 0 0 0

/* Light Sequencer - Moore Model A */

module moorelsA(CLK, M, Q, L);

input wire CLK;  // Input clock
input wire [1:0] M; // Mode select
output reg [2:0] L;
output reg [2:0] Q;

reg [2:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q, M) begin
case ({Q,M})

5'b00000:  next_Q = 3'b001;
5'b00001:  next_Q = 3'b011;
5'b00010:  next_Q = 3'b001;
5'b00011:  next_Q = 3'b011;

5'b00100:  next_Q = 3'b010;
5'b00101:  next_Q = 3'b000;
5'b00110:  next_Q = 3'b100;
5'b00111:  next_Q = 3'b000;

5'b01000:  next_Q = 3'b011;
5'b01001:  next_Q = 3'b001;
5'b01010:  next_Q = 3'b000;
5'b01011:  next_Q = 3'b000;

5'b01100:  next_Q = 3'b000;
5'b01101:  next_Q = 3'b010;
5'b01110:  next_Q = 3'b000;
5'b01111:  next_Q = 3'b110;

5'b10000:  next_Q = 3'b000;
5'b10001:  next_Q = 3'b000;
5'b10010:  next_Q = 3'b101;
5'b10011:  next_Q = 3'b000;

5'b10100:  next_Q = 3'b000;
5'b10101:  next_Q = 3'b000;
5'b10110:  next_Q = 3'b000;
5'b10111:  next_Q = 3'b000;

5'b11000:  next_Q = 3'b000;
5'b11001:  next_Q = 3'b000;
5'b11010:  next_Q = 3'b000;
5'b11011:  next_Q = 3'b101;

5'b11100:  next_Q = 3'b000;
5'b11101:  next_Q = 3'b000;
5'b11110:  next_Q = 3'b000;
5'b11111:  next_Q = 3'b000;

endcase
end

always @ (Q) begin
case(Q)

3'b000:  L = 3'b000;
3'b001:  L = 3'b100;
3'b010:  L = 3'b010;
3'b011:  L = 3'b001;
3'b100:  L = 3'b110;
3'b101:  L = 3'b111;
3'b110:  L = 3'b011;
3'b111:  L = 3'b000;

endcase
end

endmodule

307
This realization uses 6 macrocells

Note: G=L[2], Y=L[1], R=L[0] Revisit Steps 2 & 3: Did we pick the “best” 
state/output assignments possible?

Here, let the state assignment be the output functions

311

000
000

0 0  single dot, left‐to‐right
0 1  single dot, right‐to‐left
1 0  building dots, left‐to‐right
1 1  building dots, right‐to‐left

001
001

010
010

100
100

00,10

00

00

00

01,11

0101

01

110
110

111
111

10

10

10,11

011
011

11

11



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 33

Revisit Steps 2 & 3: Did we pick the “best” 
state/output assignments possible?

Here, let the state assignment be the output functions

312

000
000

0 0  single dot, left‐to‐right
0 1  single dot, right‐to‐left
1 0  building dots, left‐to‐right
1 1  building dots, right‐to‐left

001
001

010
010

100
100

00,10

00

00

00

01,11

0101

01

110
110

111
111

10

10

10,11

011
011

11

11

101
101

dd

/* Light Sequencer - Moore Model B */

module moorelsB(CLK, M, Q);

input wire CLK; // Input clock
input wire [1:0] M; // Mode select
output reg [2:0] Q; // serve as L2 L1 L0

reg [2:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q, M) begin
case({Q,M})

5'b00000:   next_Q = 3'b100;
5'b00001: next_Q = 3'b001;
5'b00010: next_Q = 3'b100;
5'b00011: next_Q = 3'b001;

5'b00100: next_Q = 3'b000;
5'b00101: next_Q = 3'b010;
5'b00110: next_Q = 3'b000;
5'b00111: next_Q = 3'b011;

5'b01000: next_Q = 3'b001;
5'b01001: next_Q = 3'b100;
5'b01010: next_Q = 3'b000;
5'b01011: next_Q = 3'b000;

5'b01100: next_Q = 3'b000;
5'b01101: next_Q = 3'b000;
5'b01110: next_Q = 3'b000;
5'b01111: next_Q = 3'b111;

5'b10000: next_Q = 3'b010;

5'b10001: next_Q = 3'b000;

5'b10010: next_Q = 3'b110;

5'b10011: next_Q = 3'b000;

5'b10100: next_Q = 3'b000;

5'b10101: next_Q = 3'b000;

5'b10110: next_Q = 3'b000;

5'b10111: next_Q = 3'b000;

5'b11000: next_Q = 3'b000;

5'b11001: next_Q = 3'b000;

5'b11010: next_Q = 3'b111;

5'b11011: next_Q = 3'b000;

5'b11100: next_Q = 3'b000;

5'b11101: next_Q = 3'b000;

5'b11110: next_Q = 3'b000;

5'b11111: next_Q = 3'b000;

endcase

end

endmodule

313

Note: Here the output functions are 
merely the state variables 
G=Q[2], Y=Q[1], R=Q[0]

This realization uses 3 macrocells

Assigning Names to States

314

A0
000

0 0  single dot, left‐to‐right
0 1  single dot, right‐to‐left
1 0  building dots, left‐to‐right
1 1  building dots, right‐to‐left

A1
001

A2
010

A4
100

00,10

00

00

00

01,11

0101

01

A6
110

A7
111

10

10

10,11

A3
011

11

11

A5
101

dd

/* Light Sequencer Using State Diagram */

module moorelsB_sd(CLK, M, Q);

input wire CLK; // Input clock
input wire [1:0] M;  // Mode select
output reg [2:0] Q;

reg [2:0] next_Q;

// State declarations
localparam A0 = 3'b000;
localparam A1 = 3'b001;
localparam A2 = 3'b010;
localparam A3 = 3'b011;
localparam A4 = 3'b100;
localparam A5 = 3'b101;
localparam A6 = 3'b110;
localparam A7 = 3'b111;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin
case (Q)

A0: begin
if (M == 2'b00)       next_Q = A4;
else if (M == 2’b01)  next_Q = A1;
else if (M == 2'b10)  next_Q = A4;
else if (M == 2'b11)  next_Q = A1;
end

A1: begin
if (M == 2’b00)       next_Q = A0;
else if (M == 2’b01)  next_Q = A2;
else if (M == 2’b10)  next_Q = A0;
else if (M == 2’b11)  next_Q = A3;
end

A2: begin
if (M == 2'b00)       next_Q = A1;
else if (M == 2’b01)  next_Q = A4;
else if (M == 2’b10)  next_Q = A0;
else if (M == 2’b11)  next_Q = A0;
end

A3: begin
if (M == 2'b00)    next_Q = A0;
else if (M == 2'b01)  next_Q = A0;
else if (M == 2'b10)  next_Q = A0;
else if (M == 2'b11)  next_Q = A7;
end

A4: begin
if (M == 2'b00)       next_Q = A2;
else if (M == 2'b01)  next_Q = A0;
else if (M == 2'b10)  next_Q = A6;
else if (M == 2'b11)  next_Q = A0;
end

A5: next_Q = A0;

A6: begin
if (M == 2'b00) next_Q = A0;
else if (M == 2'b01)  next_Q = A0;
else if (M == 2'b10)  next_Q = A7;
else if (M == 2'b11)  next_Q = A0;
end

A7: next_Q = A0;
endcase

end

endmodule

315

Same design realized using STATE constants

This realization also uses 3 macrocells

316

Moore Model Recap

6 macrocells 3 macrocells

Mealy Model Realizations
 Now try MEALY model implementation, and compare with 

MOORE model done previously
 (Review) To specify in which of the 4 modes we want the 

circuit to operate, we will need 2 “mode control” inputs, 
M1 and M0, where:
 0 0  single dot, left-to-right
 0 1  single dot, right-to-left
 1 0  building dots, left-to-right
 1 1  building dots, right-to-left

 A separate output function needs to be determined for 
each of the 3 LED outputs: G, Y, and R (from left-to-right)

 A state will be needed corresponding to the “all LEDs off”
condition 317



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 34

STEP 1: Construct a state transition diagram

Mealy Model:

318

STATE
NAME

M1 M0

L2 L1 L0

STEP 1: Construct a state transition diagram

323

A

B

C

D

00
000

00
100

01
010

01
100

10
000

,

10
100

,00
010

10
110

,

00
001

10
111

,
11
111

,

11
011

,

01
001

11
001

,

01
000

11
000

,

0 0  single dot, left‐to‐right
0 1  single dot, right‐to‐left
1 0  building dots, left‐to‐right
1 1  building dots, right‐to‐left

324

A

B

C

D

00
000

00
100

01
010

01
100

10
000

,

10
100

,00
010

10
110

,

00
001

10
111

,
11
111

,

11
011

,

01
001

11
001

,

01
000

11
000

,

STEP 2: Minimize the number of states 
STEP 3: Assign state variable combinations

0 0  single dot, left‐to‐right
0 1  single dot, right‐to‐left
1 0  building dots, left‐to‐right
1 1  building dots, right‐to‐left

STEP 4: Construct a PS-NS/PO Table
PS

Q1 Q0
PI

M1 M0
NS

Q1* Q0*
PO

L2 L1 L0
0 0 0 0 0 1 0 0 0

0 1 1 1 0 0 0
1 0 0 1 0 0 0
1 1 1 1 0 0 0

0 1 0 0 1 0 1 0 0
0 1 0 0 1 0 0
1 0 1 0 1 0 0
1 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0
0 1 0 1 0 1 0
1 0 1 1 1 1 0
1 1 0 1 0 1 1

1 1 0 0 0 0 0 0 1
0 1 1 0 0 0 1
1 0 0 0 1 1 1
1 1 1 0 0 0 1

/* Light Sequencer - Mealy Model A */

module mealy1sa(CLK, M, Q, L);

input wire CLK; // Clock input

input wire [1:0] M; // Mode select

output wire [2:0] L;

output reg [1:0] Q;

wire [1:0] next_Q;

reg [4:0] nQL; // vector of 
{next_Q,L}

always @ (posedge CLK) begin

Q <= next_Q;

end

assign next_Q = nQL[4:3];

assign L      = nQL[2:0];

always @ (Q, M) begin

case ({Q,M})

4'b0000: nQL = {2'b01,3'b000};

4'b0001: nQL = {2'b11,3'b000};

4'b0010: nQL = {2'b01,3'b000};

4'b0011: nQL = {2'b11,3'b000};

4'b0100: nQL = {2'b10,3'b100};

4'b0101: nQL = {2'b00,3'b100};

4'b0110: nQL = {2'b10,3'b100};

4'b0111: nQL = {2'b00,3'b111};

4'b1000: nQL = {2'b11,3'b010};

4'b1001: nQL = {2'b01,3'b010};

4'b1010: nQL = {2'b11,3'b110};

4'b1011: nQL = {2'b01,3'b001};

4'b1100: nQL = {2'b00,3'b001};

4'b1101: nQL = {2'b10,3'b001};
4'b1110: nQL = {2'b00,3'b111};

4'b1111: nQL = {2'b10,3'b001};

endcase

end

endmodule

326

This realization uses 5 macrocells

Revisit Steps 2 & 3: Did we pick the “best” 
state/output assignments possible?

00

01

10

11

dd
000

d0
100

0d
010

d1
001

,
10
110

11
011

,,

00
001

01
100

1d
111

,,

327

Note there is no compelling 
reason to “reverse” the state 
machine “counting direction”

0 0  single dot, left‐to‐right
0 1  single dot, right‐to‐left
1 0  building dots, left‐to‐right
1 1  building dots, right‐to‐left



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 35

STEP 4: Construct a PS-NS/PO Table
PS

Q1 Q0
PI

M1 M0
NS

Q1* Q0*
PO

L2 L1 L0
0 0 0 0 0 1 0 0 0

0 1 0 1 0 0 0
1 0 0 1 0 0 0
1 1 0 1 0 0 0

0 1 0 0 1 0 1 0 0
0 1 1 0 0 0 1
1 0 1 0 1 0 0
1 1 1 0 0 0 1

1 0 0 0 1 1 0 1 0
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 1 1 1 0 1 1

1 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0
1 0 0 0 1 1 1
1 1 0 0 1 1 1

/* Light Sequencer - Mealy Model B */

module mealylsb(CLK, M, L);

input wire CLK; // Clock input

input wire [1:0] M; // Mode select

output wire [2:0] L;

reg [1:0] Q;

wire [1:0] next_Q;

reg [4:0] nQL; // vector of {next_Q,L}

always @ (posedge CLK) begin

Q <= next_Q;

end

assign next_Q = nQL[4:3];

assign L      = nQL[2:0]; 

always @ (Q, M) begin

case ({Q,M})

4'b0000: nQL = {2'b01,3'b000};

4'b0001: nQL = {2'b01,3'b000};

4'b0010: nQL = {2'b01,3'b000};

4'b0011: nQL = {2'b01,3'b000};

4'b0100: nQL = {2'b10,3'b100};

4'b0101: nQL = {2'b10,3'b001};

4'b0110: nQL = {2'b10,3'b100};

4'b0111: nQL = {2'b10,3'b001};

4'b1000: nQL = {2'b11,3'b010};

4'b1001: nQL = {2'b11,3'b010};

4'b1010: nQL = {2'b11,3'b110};

4'b1011: nQL = {2'b11,3'b011};

4'b1100: nQL = {2'b00,3'b001};

4'b1101: nQL = {2'b00,3'b100};

4'b1110: nQL = {2'b00,3'b111};

4'b1111: nQL = {2'b00,3'b111};

endcase

end

endmodule

329

This realization uses 5 macrocells

Assigning Names to States

A0

A1

A2

A3

dd
000

d0
100

0d
010

d1
001

,
10
110

11
011

,,

00
001

01
100

1d
111

,,

330

/* Mealy Model Implemented with State Diagram */

module mealylsb_sd(CLK, M, L, Q);

input wire CLK; // Clock input
input wire [1:0] M; // Mode select
output reg [2:0] L;
output reg [1:0] Q;

reg [1:0] next_Q;

// State declarations
localparam A0 = 2'b00;
localparam A1 = 2'b01;
localparam A2 = 2'b10;
localparam A3 = 2'b11;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin
case (Q)
A0: next_Q = A1;
A1: next_Q = A2;
A2: next_Q = A3;
A3: next_Q = A0;

endcase
end

always @ (Q, M) begin
case ({Q,M})
4'b0000: L = 3'b000;
4'b0001: L = 3'b000;
4'b0010: L = 3'b000;
4'b0011: L = 3'b000;

4'b0100: L = 3'b100;
4'b0101: L = 3'b001;
4'b0110: L = 3'b100;
4'b0111: L = 3'b001;

4'b1000: L = 3'b010;
4'b1001: L = 3'b010;
4'b1010: L = 3'b110;
4'b1011: L = 3'b011;

4'b1100: L = 3'b001;
4'b1101: L = 3'b100;
4'b1110: L = 3'b111;
4'b1111: L = 3'b111;

endcase
end

endmodule

331

This realization uses 5 macrocells

Same design realized using STATE constants

Clicker Quiz

332

/* Multi-Color LED Light Machine */

module mcleds(CLK, M, R, G, Y, B);

input wire CLK;
input wire M; // Mode control input
output wire R, G, B, Y; // Red/Green/Blue/Yellow

reg [1:0] Q; // State variables
wire [1:0] next_Q;
reg [5:0] nQRGYB; // vector for next_Q and R/G/Y/B values

always @ (posedge CLK) begin
Q <= next_Q;

end

assign next_Q = nQRGYB[5:4]
assign {R,G,Y,B} = nQRGYB[3:0];

always @ (Q, M) begin
case ({Q,M})
3'b000: nQRGYB = {2'b10,4'b1000};
3'b001: nQRGYB = {2'b11,4'b1000};
3'b010: nQRGYB = {2'b11,4'b0010};
3'b011: nQRGYB = {2'b00,4'b1111};
3'b100: nQRGYB = {2'b01,4'b0100};
3'b101: nQRGYB = {2'b01,4'b1110};
3'b110: nQRGYB = {2'b00,4'b0001};
3'b111: nQRGYB = {2'b10,4'b1100};

endcase
end

endmodule 333



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 36

Q1. When M=0, the 
(repeating) colored LED 
sequence produced will be:

A. RGYB… 

B. RYGB… 

C. BYGR… 

D. BGYR… 

E. none of the above

334

/* Multi-Color LED Light Machine */

module mcleds(CLK, M, R, G, Y, B);

input wire CLK;
input wire M;
output wire R, G, B, Y;

reg [1:0] Q, next_Q;
reg [5:0] nQRGYB;

always @ (posedge CLK) begin
Q <= next_Q;

end

assign next_Q = nQRGYB[5:4]
assign {R,G,Y,B} = nQRGYB[3:0];

always @ (Q, M) begin
case ({Q,M})
3'b000: nQRGYB = {2'b10,4'b1000};
3'b001: nQRGYB = {2'b11,4'b1000};
3'b010: nQRGYB = {2'b11,4'b0010};
3'b011: nQRGYB = {2'b00,4'b1111};
3'b100: nQRGYB = {2'b01,4'b0100};
3'b101: nQRGYB = {2'b01,4'b1110};
3'b110: nQRGYB = {2'b00,4'b0001};
3'b111: nQRGYB = {2'b10,4'b1100};

endcase
end

endmodule

Q2. When M=1, the 
(repeating) colored LED 
sequence produced will be:

A. RRGYBRGYRG…

B. RRGRGYRGYB…

C. RGYBRGYRGR…

D. RRGYRGRGYB…

E. none of the above

335

/* Multi-Color LED Light Machine */

module mcleds(CLK, M, R, G, Y, B);

input wire CLK;
input wire M;
output wire R, G, B, Y;

reg [1:0] Q, next_Q;
reg [5:0] nQRGYB;

always @ (posedge CLK) begin
Q <= next_Q;

end

assign next_Q = nQRGYB[5:4]
assign {R,G,Y,B} = nQRGYB[3:0];

always @ (Q, M) begin
case ({Q,M})
3'b000: nQRGYB = {2'b10,4'b1000};
3'b001: nQRGYB = {2'b11,4'b1000};
3'b010: nQRGYB = {2'b11,4'b0010};
3'b011: nQRGYB = {2'b00,4'b1111};
3'b100: nQRGYB = {2'b01,4'b0100};
3'b101: nQRGYB = {2'b01,4'b1110};
3'b110: nQRGYB = {2'b00,4'b0001};
3'b111: nQRGYB = {2'b10,4'b1100};

endcase
end

endmodule

Summary
 The choice of model (Mealy vs. Moore) can have a significant impact

on the complexity of the realization and PLD resources (macrocells) 
consumed

 The state assignment strategy employed can make a significant 
difference in the amount of work required

 “Obvious” state minimization can also sometimes be useful (formal 
state-minimization procedures are seldom used by most digital 
designers, however)

 The only formal way to find the best state assignment is to try all the 
assignments – that’s too much work (even for students)~

 To do this well, we need experience as well as have knowledge of 
some practical guidelines (see text)

 There is no substitute for practice in designing state machines –
much of engineering is applied intuition, and this is a good example 
of it~ 336

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3-G
State Machine Design Examples: Counters and Shift Registers

Reading Assignment:  
DDPP 4th Ed. pp. 710-718, 725-736; DDPP 5th Ed. pp. 554-561, 561-574

Learning Objectives:
 Compare and contrast the operation of binary and shift register 

counters
 Derive the next state equations for binary “up” and “down” 

counters
 Describe the feedback necessary to make ring and Johnson 

counters self-correcting
 Compare and contrast state decoding for binary and shift register 

counters
 Describe why “glitches” occur in some state decoding strategies 

and discuss how to eliminate them

338

Outline
 Overview
 Binary counter registers
 UP and DOWN counter derivations
 Basic binary counter extensions

– ENABLE input
– ASYNCHRONOUS RESET
– UP and DOWN count modes

 Synchronously resettable counters
– SYNCHRONOUS RESET
– MODULUS control

 Shift register counters
 State decoding
 Summary 339



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 37

Overview
 Definition: The name counter is used for any clocked 

sequential circuit whose state diagram contains a 
single cycle

 Definition:  A register is a collection of two or more flip-
flops with a common clock and, generally, a common 
purpose 340

Binary Counter Registers
 Definition: The modulus of a counter is the number of 

states in the cycle – a counter with M states is called a 
modulo-M counter (or sometimes a divide-by-M counter)

 Definition: A synchronous counter connects all of its 
flip-flop clock inputs to the same common CLOCK 
signal, so that all the flip-flop outputs change state 
simultaneously

 The most commonly used counter type is an n-bit binary 
counter, with n flip-flops and 2n states, visited in the 
sequence 0, 1, 2, … , 2n-1, 0, 1, 2, ...

341

Binary UP Counter Derivation
 The design of a basic binary UP counter is 

derived as follows:

Q2 Q1 Q0
0    0    0
0    0    1
0    1    0
0    1    1
1    0    0
1    0    1
1    1    0
1    1    1

When does Q0 change state?

What is the equation for Q0*?

Every clock cycle

Q0* = Q0´

342

Binary UP Counter Derivation
 The design of a basic binary UP counter is 

derived as follows:

Q2 Q1 Q0
0    0    0
0    0    1
0    1    0
0    1    1
1    0    0
1    0    1
1    1    0
1    1    1

When does Q1 change state?

What is the equation for Q1*?

When Q0 = 1

Q1* = Q1  Q0

343

Binary UP Counter Derivation
 The design of a basic binary UP counter is 

derived as follows:

Q2 Q1 Q0
0    0    0
0    0    1
0    1    0
0    1    1
1    0    0
1    0    1
1    1    0
1    1    1

When does Q2 change state?

What is the equation for Q2*?

When Q0 = 1 AND Q1 = 1

Q2* = Q2  (Q1 • Q0)

344

Binary UP Counter Derivation
 The design of a basic binary UP counter is 

derived as follows:

What is the next state equation for an arbitrary stage “K” 
(QK*) of a binary UP counter?

QK* = QK  (QK-1 • QK-2 • … • Q1 • Q0)

345



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 38

/* Basic 8-bit binary UP Counter */

module count8u(CLK, Q);

input wire CLK;
output reg [7:0] Q;

reg [7:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^  Q[0];
next_Q[2] =  Q[2] ^ (Q[1] & Q[0]);
next_Q[3] =  Q[3] ^ (Q[2] & Q[1] & Q[0]);
next_Q[4] =  Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[5] =  Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[6] =  Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[7] =  Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);

end

endmodule

346

Binary DOWN Counter Derivation
 The design of a basic binary DOWN counter 

is derived as follows:

Q2 Q1 Q0
0    0    0
0    0    1
0    1    0
0    1    1
1    0    0
1    0    1
1    1    0
1    1    1

When does Q0 change state?

What is the equation for Q0*?

Every clock cycle

Q0* = Q0´

347

Binary DOWN Counter Derivation
 The design of a basic binary DOWN counter 

is derived as follows:

Q2 Q1 Q0
0    0    0
0    0    1
0    1    0
0    1    1
1    0    0
1    0    1
1    1    0
1    1    1

When does Q1 change state?

What is the equation for Q1*?

When Q0 = 0

Q1* = Q1  Q0´

348

Binary DOWN Counter Derivation
 The design of a basic binary DOWN counter 

is derived as follows:

Q2 Q1 Q0
0    0    0
0    0    1
0    1    0
0    1    1
1    0    0
1    0    1
1    1    0
1    1    1

When does Q2 change state?

What is the equation for Q2*?

When Q0 = 0 AND Q1 = 0

Q2* = Q2  (Q1´ • Q0´)

349

Binary DOWN Counter Derivation
 The design of a basic binary DOWN counter is 

derived as follows:

What is the next state equation for an arbitrary stage “K” 
(QK*) of a binary DOWN counter?

QK* = QK  (Q´K-1 • Q´K-2 • … • Q´1 • Q´0)

350

/* Basic 8-bit binary DOWN Counter */

module count8d(CLK, Q);

input wire CLK;
output reg [7:0] Q;

reg [7:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^  ~Q[0];
next_Q[2] =  Q[2] ^ (~Q[1] & ~Q[0]);
next_Q[3] =  Q[3] ^ (~Q[2] & ~Q[1] & ~Q[0]);
next_Q[4] =  Q[4] ^ (~Q[3] & ~Q[2] & ~Q[1] & ~Q[0]);
next_Q[5] =  Q[5] ^ (~Q[4] & ~Q[3] & ~Q[2] & ~Q[1] & ~Q[0]);
next_Q[6] =  Q[6] ^ (~Q[5] & ~Q[4] & ~Q[3] & ~Q[2] & ~Q[1] & ~Q[0]);
next_Q[7] =  Q[7] ^ (~Q[6] & ~Q[5] & ~Q[4] & ~Q[3] & ~Q[2] & ~Q[1] & ~Q[0]);

end

endmodule
351



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 39

Basic Binary Counter Extensions
 Extensions to the basic binary counter commonly 

of interest include:

– providing both UP and DOWN COUNT modes

– providing an ENABLE input

– providing an ASYNCHRONOUS RESET

352

/* Basic 8-bit binary UP/DOWN Counter */

module count8d(CLK, M, Q);

input wire CLK, M; // M=0 count down, M=1 count up
output reg [7:0] Q;

reg [7:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q, M) begin
if (M == 1’b0) begin
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^  ~Q[0];
next_Q[2] =  Q[2] ^ (~Q[1] & ~Q[0]);
next_Q[3] =  Q[3] ^ (~Q[2] & ~Q[1] & ~Q[0]);
next_Q[4] =  Q[4] ^ (~Q[3] & ~Q[2] & ~Q[1] & ~Q[0]);
next_Q[5] =  Q[5] ^ (~Q[4] & ~Q[3] & ~Q[2] & ~Q[1] & ~Q[0]);
next_Q[6] =  Q[6] ^ (~Q[5] & ~Q[4] & ~Q[3] & ~Q[2] & ~Q[1] & ~Q[0]);
next_Q[7] =  Q[7] ^ (~Q[6] & ~Q[5] & ~Q[4] & ~Q[3] & ~Q[2] & ~Q[1] & ~Q[0]);

end 
else begin
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^  Q[0];
next_Q[2] =  Q[2] ^ (Q[1] & Q[0]);
next_Q[3] =  Q[3] ^ (Q[2] & Q[1] & Q[0]);
next_Q[4] =  Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[5] =  Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[6] =  Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[7] =  Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);

end
end

endmodule 353

/* Basic 8-bit binary counter with enable */

module count8d(CLK, AR, EN, Q);

input wire CLK;
input wire AR; //  Asynchronous Reset 
input wire EN; //  Counts up only if EN=1  
output reg [7:0] Q;

reg [7:0] next_Q;

// If AR asserted, resets to 00...0 (regardless of whether or not enabled)

always @ (posedge CLK, posedge AR) begin
if (AR == 1’b1)

Q <= 8’b00000000;
else if (EN == 1’b1)

Q <= next_Q;
end

always @ (Q) begin
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^  Q[0];
next_Q[2] =  Q[2] ^ (Q[1] & Q[0]);
next_Q[3] =  Q[3] ^ (Q[2] & Q[1] & Q[0]);
next_Q[4] =  Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[5] =  Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[6] =  Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[7] =  Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);

end

endmodule

354

Clicker Quiz

355

000 001 010 011

111 110 101 100

0 0 0

0

000

0

1 1 1

1

111

1

356

/* Program (A) */
module CQ(CLK, M, Q);

input wire CLK, M;
output reg [2:0] Q;
reg [2:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q, M) begin
next_Q[0] = ~Q[0];
next_Q[1] = ~Q[1] ^ (~M&~Q[0] | M&Q[0]);
next_Q[2] = ~Q[2] ^ (~M&~Q[1]&~Q[0] |                        

M& Q[1]& Q[0]);
end

endmodule

/* Program (B) */
module CQ(CLK, M, Q);

input wire CLK, M;
output reg [2:0] Q;

reg [2:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q, M) begin
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^ (~M&Q[0] | M&~Q[0]);
next_Q[2] =  Q[2] ^ (~M& Q[1]& Q[0] |

M&~Q[1]&~Q[0]);

end

endmodule

/* Program (C) */
module CQ(CLK, M, Q);

input wire CLK, M;
output reg [2:0] Q;

reg [2:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q, M) begin
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^ (~M&~Q[0] |        

M& Q[0]);
next_Q[2] =  Q[2] ^ (~M&~Q[1]&~Q[0] |

M& Q[1]& Q[0])

end

endmodule

/* Program (D) */
module CQ(CLK, M, Q);

input wire CLK, M;
output reg [2:0] Q;

reg [2:0] next_Q;

always @ (posedge CLK) begin
Q <= Q + 1;

end

endmodule

(E) none of the above

357

0
00

0
0

1
0

1
0

01
1

1
11

1
1

0
1

0
1

10
0

0
0

0

0

0
0

0

0

1
1

1

1

1
1

1

1

Which Verilog program realizes 
this state machine?



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 40

Resettable Counters
 In addition to an asynchronous reset (which allows to the 

counter to be placed in a known initial state), it is 
sometimes useful to provide a synchronous reset
capability

 Such a counter is useful in applications where the 
number of states in the counting sequence is determined 
dynamically

 Example:  State counter in a computer’s execute unit, 
where the number of cycles necessary to complete an 
instruction varies

 Another variation: Counter with a “programmable” final 
state (modulo M)

359

/* Resettable 8-bit binary UP Counter */

module rcnt8U(CLK, R, Q);

input wire CLK;
input wire R;      // Synchronous Reset
output reg [7:0] Q;
reg [7:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

// If R  = 1, counter resets to 0 on the next clock edge
always @ (Q) begin
if (R == 1’b1) begin
next_Q = 8'b00000000;

end 
else begin 
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^  Q[0];
next_Q[2] =  Q[2] ^ (Q[1] & Q[0]);
next_Q[3] =  Q[3] ^ (Q[2] & Q[1] & Q[0]);
next_Q[4] =  Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[5] =  Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[6] =  Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[7] =  Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);

end 
end

endmodule 360

/* Modulo Resettable 8-bit binary UP Counter */

module mrcnt8U(CLK, MOD, Q);

input wire CLK;
input wire [7:0] MOD;  // MOD value 
output reg [7:0] Q;

reg [7:0] next_Q;
wire R; 

always @ (posedge CLK) begin
Q <= next_Q;

end

// Count up to value on MOD  00..00  value up to MOD
assign R = (Q == MOD);

always @ (Q) begin
if (R == 1’b1) begin  
next_Q = 8'b00000000;  // When Q reaches MOD, reset to 0

end
else begin 
next_Q[0] = ~Q[0];
next_Q[1] =  Q[1] ^  Q[0];
next_Q[2] =  Q[2] ^ (Q[1] & Q[0]);
next_Q[3] =  Q[3] ^ (Q[2] & Q[1] & Q[0]);
next_Q[4] =  Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[5] =  Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[6] =  Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
next_Q[7] =  Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);

end 
end

endmodule 361

Shift-Register Counters
 Definition: A shift register whose state diagram is 

cyclic is called a shift-register counter
 Unlike a binary counter, a shift-register counter does 

not count in an “up” or “down” binary sequence, but 
is useful in many “control” applications nonetheless

 The simplest shift-register counter uses an n-bit shift 
register to obtain a counter with n states, and is 
called a ring counter

 A ring counter sequence is sometimes referred to as 
“one hot”  

362

/* Simple 4-bit Ring Counter */

module ring4(CLK, R, Q);

input wire CLK, R;
output reg [3:0] Q;

reg [3:0] next_Q;

// Assertion of R causes next state of counter to be 0001

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin
next_Q[3] = ~R & Q[2];
next_Q[2] = ~R & Q[1];
next_Q[1] = ~R & Q[0];
next_Q[0] = ~R & Q[3] | R;

end

endmodule

Example  Simple 4-bit 
Ring Counter

363

/* Simple 4-bit Ring Counter */

module ring4(CLK, R, Q);

input wire CLK, R;
output reg [3:0] Q;

reg [3:0] next_Q;

// Assertion of R causes next state of counter to be 0001

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin
next_Q[3] = ~R & Q[2];
next_Q[2] = ~R & Q[1];
next_Q[1] = ~R & Q[0];
next_Q[0] = (~R&Q[3])| R;

end

endmodule
364

Example  Simple 4-bit 
Ring Counter



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 41

Self-Correcting Ring Counters
 Problem: The simple ring counter is not robust – if it 

somehow gets off the normal   4-state cycle (e.g., due to 
noise), it stays off

 Solution: A self-correcting counter is designed so that all 
“abnormal” states have transitions leading to “normal” states

– uses an n-1 input NOR function to shift in a “1” only when 
the n-1 least significant bits of an n-bit ring counter are “0” 
(i.e., shifts in a “0” until the counter reaches state d000)

– all “abnormal” states lead back into the normal n-state ring 
cycle

365

State Transition Diagrams for Simple 4-bit Ring Counter

366

/* Self-Correcting 4-bit Ring Counter */

module ring4sc(CLK, Q);

input wire CLK;
output reg [3:0] Q;

reg [3:0] next_Q;

// Uses NOR function to make sure that 
//  the next state after d0000 is 0001

always @(posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin
next_Q[3] = Q[2];
next_Q[2] = Q[1];
next_Q[1] = Q[0];
next_Q[0] = ~(Q[2]|Q[1]|Q[0]);

end

endmodule

Example  Self-Correcting 4-bit Ring Counter

367

Johnson Counters
 Definition: An n-bit shift register with the complement of 

the serial output fed back into the serial input is a counter 
with 2n states and is called a switchtail, twisted-ring, or 
Johnson counter

 Problem: A Johnson counter has the same robustness 
problem that the simple ring counter has

 Solution: Make it self-correcting by using appropriate 
feedback, here to load “0001” as the next state whenever 
the current state is “0dd0” (or, for an n-bit counter, when 
the current state is 0d…d0)

368

Example  Simple 4-bit Johnson (“Switchtail”) Counter

0000

1111

0011 1100

0001

0111

1000

1110

Normal Sequence 
After RESET

RESET

0010

1101

1011 0100

0101

0110

1001

1010

“Misfiring” Due 
to Noise

bit error due to 
noise

369 370

module john4sc(CLK, Q);

input wire CLK; 
output reg [3:0] Q; 

wire R;

// Match 0dd0
assign R = ~Q[3] & ~Q[0];

// Loads 0001 as next state
// when current state is 0dd0
always @ (posedge CLK) begin

Q[3] <= ~R & Q[2];
Q[2] <= ~R & Q[1];
Q[1] <= ~R & Q[0];
Q[0] <= (~R & ~Q[3]) | R;

end

endmodule

Example  Self-Correcting 
4-bit Johnson Counter

0000

1111

0011 1100

0001

0111

1000

1110

1011

0010

0110

0101

1001

1010

0100

1101



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 42

371

State Decoding
 What is needed to decode the states of an n-bit (n state) 

ring counter?

Nothing – just use state variables directly 

372

Ring Counter State Decoding

S1 = Q0

S2 = Q1

S3 = Q2

S4 = Q3 

373

State Decoding
 What is needed to decode the states of an n-bit (n state) 

ring counter?

Nothing – just use state variables directly

 What is needed to decode the states of an n-bit (2n state) 
Johnson counter?

2n 2-input AND or NAND gates

374

Johnson Counter State Decoding

S1 = Q0• Q3
S2 = Q0 • Q1
S3 = Q1 • Q2
S4 = Q2 • Q3

S5 = Q0 • Q3

S6 = Q0• Q1

S7 = Q1• Q2

S8 = Q2• Q3 

375

/* Self-correcting 4-bit Johnson counter with decoded output */ 

module john4scd(CLK, S);

input wire CLK;
output reg [7:0] S; // Decoded output

wire R;
reg [3:0] Q, next_Q; 

assign R = ~Q[3] & ~Q[0]; // Match 0xx0

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin
next_Q[3] = ~R & Q[2];
next_Q[2] = ~R & Q[1];
next_Q[1] = ~R & Q[0];
next_Q[0] = (~R & ~Q[3]) | R;

S[0] = ~Q[3] & ~Q[0];
S[1] = ~Q[1] &  Q[0];
S[2] = ~Q[2] &  Q[1];
S[3] = ~Q[3] &  Q[2];
S[4] = Q[3] &  Q[0];
S[5] =  Q[1] & ~Q[0];
S[6] =  Q[2] & ~Q[1];
S[7] =  Q[3] & ~Q[2];

end

endmodule

state decoding

376

State Decoding
 What is needed to decode the states of an n-bit (n state) 

ring counter?

Nothing – just use state variables directly

 What is needed to decode the states of an n-bit (2n state) 
Johnson counter?

2n 2-input AND or NAND gates

 How does this compare with decoding the states of an 
n-bit (2n state) binary counter?

Need 2n n-input AND or NAND gates, where n is the 
number of state variables (or, an n-to-2n decoder)



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 43

377

State Decoding
 Problem: Because more than one bit position changes 

simultaneously in a binary count sequence, there will be 
“glitches” in the decoded outputs

 Solution: Connect the decoder outputs to a register that 
samples the stable decoded outputs on the next clock edge

378

Decoded Outputs of a 3-bit Binary Counter

379

Thought Questions

 Given that 8 glitch-free decoded outputs are required 
for a given application, which solution would be best: 
a 3-bit binary counter, decoder, and de-glitching
register; or a 4-bit self-correcting Johnson counter?

Johnson counter

 Give an example of an application where state decoding 
glitches can cause problems

When decoded outputs are used as “clocking” signals

380

Thought Questions
 Is it possible to construct an n-bit counter with 2n states 

that can be decoded in a glitch-free fashion?  

YES – a Gray-code counter

 If so, what property should the count sequence possess?

Each successive combination should differ in only 
a single bit position

381

Thought Questions
 Where have we seen this before?

On K-maps!

0 2 6 4

1 3 7 5

Q2 Q2

Q1 Q1

Q0

Q0

Q1

000
010
110
100
101
111
011
001

382

Summary
 Counters are a common building block used in sequential 

circuit design, particularly with sequence generator state 
machines

 There are two basic types of counters
– binary
– shift register (types differ based on feedback)

 Counter states can be decoded different ways (some are 
glitch-free, others are not)
– binary: standard decoders, not glitch-free
– Gray-code: n-input AND gates, glitch-free
– Johnson: 2-input AND gates, glitch-free
– ring: nothing (use flip-flop outputs directly), glitch-free 

(sometimes called “one hot”)



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 44

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 3-H
State Machine Design Examples: Sequence Recognizers

Reading Assignment:  
DDPP 4th Ed. pp. 580-587, DDPP 5th Ed. pp. 642-648

Learning Objective:
 Identify states utilized by a sequence recognizer: 

accepting sequence, final, and trap
 Determine the embedded binary sequence detected 

by a sequence recognizer 

384

Outline
 Overview
 Simple pattern recognizer
 Digital lock
 Summary

385

Overview
 A sequence recognizer state machine responds to a pre-defined 

input pattern of signal assertions and produces corresponding 
output signal assertions
– digital lock / access code control
– bit sequence detector

 Use of Moore models to design sequencer recognizer is generally 
preferred, because you typically don’t want any output signals to 
change (based on input signal changes) until the machine is clocked 
to the next state (i.e., the outputs should only be a function of the 
state variables)

 Because “actions” (output signal assertions) occur in response to a 
pre-defined pattern, a sequence recognizer has different kinds of 
“final states” (denoted with concentric circles on ST diagram):
– final state of accepting sequence (e.g., “unlock”)
– trap state (e.g., “alarm”)

386

Example – Simple Pattern Recognizer
 Assuming the state machine is initialized to state 00, 

determine the output sequence generated in response 
to the following input sequence: 1 1 0 1 0 0 0 1 0 0

387

0 0 0 0 1 0 0 0 1 0

final state in pattern 
accepting sequence

Example – Simple Pattern Recognizer
 Assuming the state machine is initialized to state 00, 

determine the output sequence generated in response 
to the following input sequence: 1 1 0 1 0 0 0 1 0 0

 Determine the embedded binary sequence recognized 
by this state machine: 0 1 0

388

0 0 0 0 1 0 0 0 1 0



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 3
Spring 2019 Edition

© 2019 by D. G. Meyer 45

Example - Digital Combination Lock
 Design a digital combination lock 

– unlocks when a fixed combination (binary sequence) 
is entered: 101110

– has three inputs:
• X – combination data
• R – relock / reset
• RESET – asynchronous reset

– has three output signals:
• LOCKED 
• UNLOCKED
• ALARM

389

 Implement using Moore model
– will need an initial “locked” state
– will need six states to accept digits of combination 

(the last is “unlocked”)
– will need an “alarm” state
– total number of states is eight; therefore, can 

implement with three state variables
 Types of states

– accepting sequence (entering combination)
– final state (sequence correctly entered)
– trap state (error made while entering combination)

390

Example - Digital Combination Lock

A0
100

A1
000

A2
000

A3
000

A4
000

A5
000

A6
010

A7
001

01 00 01

01

0100

Combination: 101110

1d
1d 1d 1d

1d1d1d

0d

dd

00 01 00 00

0001

395

/* Digital Combination Lock */

module dcl(CLK, RST, X, R, LOCKED, UNLOCKED, ALARM);

input wire CLK, RST, X, R; // X =  combination data input, R = relock input
output wire LOCKED, UNLOCKED, ALARM;

reg [2:0] Q, next_Q;

localparam A0 = 3'b000; // Locked
localparam A1 = 3'b001;
localparam A2 = 3'b010;
localparam A3 = 3'b011;
localparam A4 = 3'b100;
localparam A5 = 3'b101;
localparam A6 = 3'b110; // Unlocked
localparam A7 = 3'b111; // Alarm

always @ (posedge CLK, posedge RST) begin
if (RST == 1’b1)

Q <= 3'b000;
else

Q <= next_Q;
end

always @ (R, X) begin
case (Q)

A0: if (R==1) next_Q = A0;
else if ((R==0)&(X==0))   next_Q = A7;
else if ((R==0)&(X==1))   next_Q = A1;

A1: if (R==1) next_Q = A0;
else if ((R==0) & (X==0)) next_Q = A2;
else if ((R==0) & (X==1)) next_Q = A7;

A2: if (R==1) next_Q = A0;
else if ((R==0) & (X==0)) next_Q = A7;
else if ((R==0) & (X==1)) next_Q = A3;

A3: if (R==1) next_Q = A0;
else if ((R==0) & (X==0)) next_Q = A7;
else if ((R==0) & (X==1)) next_Q = A4;

A4: if (R==1) next_Q = A0;
else if ((R==0) & (X==0)) next_Q = A7;
else if ((R==0) & (X==1)) next_Q = A5;

A5: if (R==1) next_Q = A0;
else if ((R==0) & (X==0)) next_Q = A6;
else if ((R==0) & (X==1)) next_Q = A7;

A6: if (R==1) next_Q = A0;
else if (R==0) next_Q = A6;

A7: next_Q = A7;
endcase

end

assign LOCKED   = ~Q[2] & ~Q[1] & ~Q[0];
assign UNLOCKED =  Q[2] &  Q[1] & ~Q[0];
assign ALARM    =  Q[2] &  Q[1] &  Q[0];

endmodule

396

Summary
 A sequence recognizer is a state machine that produces 

output signal assertions in response to an input pattern

 Output signal assertions typically occur when the 
machine enters a “final state” associated with the 
accepting sequence

 Sequence recognizers are typically realized with Moore 
models, to prevent “spurious” behavior that might occur 
if the machine’s outputs could potentially change in 
response to an input signal change without clocking it

397


