
ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

1

Lecture Summary – Module 3

Sequential Logic Circuits

Learning Outcome: an ability to analyze and design sequential logic circuits

Learning Objectives:
3-1. describe the difference between a combinational logic circuit and a sequential logic circuit
3-2. describe the difference between a feedback sequential circuit and a clocked synchronous state machine
3-3. define the state of a sequential circuit
3-4. define active high and active low as it pertains to clocking signals
3-5. define clock frequency and duty cycle
3-6. describe the operation of a bi-stable and analyze its behavior
3-7. define metastability and illustrate how the existence of a metastable equilibrium point can lead to a random

next state
3-8. write present state – next state (PS-NS) equations that describes the behavior of a sequential circuit
3-9. draw a state transition diagram that depicts the behavior of a sequential circuit
3-10. construct a timing chart that depicts the behavior of a sequential circuit
3-11. draw a circuit for a set-reset (“S-R”) latch and analyze its behavior
3-12. discuss what is meant by “transparent” (or “data following”) in reference to the response of a latch
3-13. draw a circuit for an edge-triggered data (“D”) flip-flop and analyze its behavior
3-14. compare the response of a latch and a flip-flop to the same set of stimuli
3-15. define setup and hold time and determine their nominal values from a timing chart
3-16. determine the frequency and duty cycle of a clocking signal
3-17. identify latch and flip-flop propagation delay paths and determine their values from a timing chart
3-18. describe the operation of a toggle (“T”) flip-flop and analyze its behavior
3-19. derive a characteristic equation for any type of latch or flip-flop
3-20. identify the key elements of a clocked synchronous state machine: next state logic, state memory (flip-flops),

and output logic
3-21. differentiate between Mealy and Moore model state machines, and draw a block diagram of each
3-22. analyze a clocked synchronous state machine realized as either a Mealy or Moore model
3-23. outline the steps required for state machine synthesis
3-24. derive an excitation table for any type of flip-flop
3-25. discuss reasons why formal state-minimization procedures are seldom used by experienced digital designers
3-26. draw block diagrams for Moore and Mealy type state machines and explain how each block can be coded in

Verilog
3-27. draw a circuit for an oscillator and calculate its frequency of operation
3-28. draw a circuit for a bounce-free switch based on an S-R latch and analyze its behavior
3-29. design a clocked synchronous state machine and verify its operation
3-30. define minimum risk and minimum cost state machine design strategies, and discuss the tradeoffs between

the two approaches
3-31. compare state assignment strategy and state machine model choice (Mealy vs. Moore) with respect to PLD

resources (P-terms and macrocells) required for realization
3-32. compare and contrast the operation of binary and shift register counters
3-33. derive the next state equations for binary “up” and “down” counters
3-34. describe the feedback necessary to make ring and Johnson counters self-correcting
3-35. compare and contrast state decoding for binary and shift register counters
3-36. describe why “glitches” occur in some state decoding strategies and discuss how to eliminate them
3-37. identify states utilized by a sequence recognizer: accepting sequence, final, and trap
3-38. determine the embedded binary sequence detected by a sequence recognizer

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

2

Lecture Summary – Module 3-A
Bistable Elements

Reference: Digital Design Principles and Practices (4th Ed.), pp. 521-526

 overview

o combinational vs. sequential circuits
o state of sequential circuit
o finite state machine
o clock signal

 assertion level
 period / frequency
 duty cycle

o types of sequential circuits
 feedback
 clocked synchronous

 bistable elements

o “simplest” sequential circuit
o no inputs (no way of controlling/changing state)
o randomly powers up into one state or the other
o digital analysis: two stable states
o single state variable (Q)
o analog analysis: additional quasi-stable state (metastable)

 metastable behavior

o comparable to dropping ball onto smooth hill
o speed with which ball rolls to one side or the other depends on location it “hits”
o important: if “simplest” sequential circuit is susceptible to metastable behavior, then

clearly ALL sequential circuits are(!)

Transfer functions (“inverter”):

Vout1 = T(Vin1)

Vout2 = T(Vin2)

Equilibrium points:

Vin1 = Vout2

Vin2 = Vout1

Random noise drives circuit to
stable operating point

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

3

Present State Present Input Next State
Q(t) QN(t) S(t) R(t) Q(t+) QN(T+)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Lecture Summary – Module 3-B
The Set-Reset (S-R) Latch

Reference: Digital Design Principles and Practices (4th Ed.), pp. 526-532

 latches and flip-flops

o flip-flop changes state based on clocking signal
o latch changes its output any time it is enabled

 set-reset (S-R) latch
o change bistable into latch by “adding an input” to each inverter (NOR gate)
o two inputs

 asserting S “sets” the latch state (Q output) to 1
 asserting R “resets” the latch state to 0
 if both S and R are negated, circuit behaves like bistable (retains its state)
 if both S and R are asserted and then negated simultaneously, random next state

 exercise: construct a timing chart for the NOR-implemented S-R latch
o assume each gate has delay
o write the next state equations for Q and QN

o create a present state – next state (PS-NS) table and state transition diagram (STD)

Q(t+) =

QN(t+) =

00 01

10 11

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

4

Present State Present Input Next State
Q(t) QN(t) S(t) R(t) Q(t+) QN(T+)

0 0 0 0 1 1
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0

S

R

Q

QN

 exercise, continued…
o construct a timing chart based on the initial conditions and given inputs

 exercise: investigate response to the “1-1” input combination

 exercise: investigate response to a “glitch”

 propagation delay – time for an output to respond to an input transition

o need to specify “path”
o example: tpLH(SQ) is the rise propagation delay of the Q output in response to assertion

of the S input
o note that rise and fall propagation delays are typically different

 minimum pulse width requirement (see “glitch” timing chart)

S

R

Q

QN

S

R

Q

QN

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

5

 variations

o NAND-implemented S-R latch
o NAND-implemented S-R latch with ENABLE (“C”)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

6

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

7

 transparent D (“data”) latch

o just an S-R latch with an inverter between the S and R inputs
o basic “memory bit”
o called “transparent” (or “data following”) because that what it is (does) when “open”
o retains value when enable is negated (latch “closed”)
o propagation delay parameters
o setup and hold times (what happens if either is violated)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

8

Lecture Summary – Module 3-C
Data (D) and Toggle (T) Flip-Flops

Reference: Digital Design Principles and Practices (4th Ed.), pp. 532-535, 541-542

 edge-triggered D flip-flop

o changes state (“triggers”) on clock edge
o can be positive (rising) edge triggered or negative (falling) edge triggered
o created using two latches cascaded together, that open on opposite clock phases

 input latch “master”
 output latch (“slave”)

o triangle = dynamic input indicator (clock)
o characteristic equation: Q* = D
o propagation delay parameters
o setup and hold times

 negative edge-triggered D flip-flop

 edge-triggered D flip-flop with enable

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

9

A

X

Y

C

Q

QT

EN

a) (

 edge-triggered T (“toggle”) flip-flop

o toggles state (Q*= Q) if T input is 1
o stays in same state (Q*= Q) if T input is 0
o characteristic equation: Q*= TQ (can

synthesize using D flip-flop as “building block”)

 flip-flop timing parameters

o clock pulse width

o clock period

o clock duty cycle

o nominal setup time

o nominal hold time

o tPLH(CQ) = tPLH(CQ_L)

o tPHL(CQ) = tPHL(CQ_L)

 response of latch vs. flip-flop

T

CLK

Q

T

CLK

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

10

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

11

Lecture Summary – Module 3-D
Clocked Synchronous State Machine Structure and Analysis

Reference: Digital Design Principles and Practices (4th Ed.), pp. 540-553

 introduction

o state machine (sequential circuit)
o clocked
o synchronous (all flip flops share common clocking signal)

 state machine basic blocks
o next state (“excitation”) logic
o state memory (flip flops)
o output logic

 state machine models
o Moore

o Mealy

o can map a given state machine into either model
o important: how model chosen satisfies the design requirements

 state machine analysis

o determine next state and output functions
o construct a present state – next state / output table
o draw state transition diagram
o draw a timing diagram

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

12

PS PI NS Output
Q1 Q0 EN Q1* Q0* MAX
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 0 0 1

PS PI NS Output
Q1 Q0 EN Q1* Q0* MAXS
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 1

 example: Mealy machine analysis

 example: Moore machine analysis

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

13

Lecture Summary – Module 3-E
Clocked Synchronous State Machine Synthesis

Reference: Digital Design Principles and Practices (4th Ed.), pp. 553-566, 612-625, 682-689

 introduction – the creative process

o potentially imprecise description
o choose among different ways of doing things
o handle special cases
o keep track of several ideas in your head
o not an algorithm
o circuit will perform exactly as designed
o no guarantee it will work the first time

 state machine design steps

o construct PS-NS/O table and/or STD
o minimize “obvious” redundant states
o assign state variable combinations
o update PS-NS/O table and/or STD accordingly
o (choose flip-flop type) – we will use D-type for most designs
o (excitation table/equations – not needed for D-type flip flops – why?)
o derive output equations
o draw logic diagram or realize equations directly in a PLD (using edge-triggered D-type)

 derivation of excitation table for an S-R latch

 derivation of excitation table for a T flip flop

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

14

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

15

 blocking vs non-blocking

o blocking statements (out = in)
 the = symbol represents a blocking procedural assignment
 used to model combinational logic
 assignment is done immediately in a single step, new value is used by subsequent

statements
 execution flow within a procedure is blocked until the current assignment is

complete

o non-blocking statements (out <= in)
 the <= symbol represents a non-blocking procedural assignment (analogous to a

“clocked operator”)
 used to model sequential logic
 assignment is done in a two steps:

1. the RHS is evaluated immediately
2. the assignment to LHS is postponed until all other evaluations in the current

time step are complete

 Verilog design guidelines
o do not mix blocking and non-blocking statements in the same block or procedure
o combinational blocks – use blocking statements
o sequential blocks (registers) – use non-blocking statements

 state machines in Verilog

o to specify a state machine in Verilog, an always block triggered on edges of the clock and
other asynchronous signals (such as reset) is used.

o registers are assigned next-state values with non-blocking statements
o next-state values themselves are evaluated in a separate combinational always block or a

dataflow assignment
o differences in macrocell architecture will determine the complexity of state machine that

can be implemented with a given PLD

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

16

 differences in macrocell architecture

 periodic clock generation circuits

o typically based on crystal or R-C time constant
o issues of interest

 frequency
 duty cycle
 transition time (slew rate)
 ringing (undershoot / overshoot)
 stability (drift / jitter)
 driving capability
 skew (based on different physical path lengths)

o CMOS “ring” oscillator and crystal oscillator circuits

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

17

 ispMach 4000ZE internal oscillator setup/use

 timing diagrams and specifications

module OscTest(RST, CLK_out);
input wire RST;
output reg CLK_out;

wire osc_dis, tmr_rst, osc_out, tmr_out;
assign osc_dis = 1'b0;
assign tmr_rst = 1'b0;

defparam I1.TIMER_DIV = "1048576";
OSCTIMER I1 (.DYNOSCDIS(osc_dis),.TIMERRES(tmr_rst),.OSCOUT(osc_out),
.TIMEROUT(tmr_out));

always @(posedge tmr_out, posedge RST)
begin
 if (RST == 1'b1) begin
 CLK_out <= 0;
 end
 else begin
 CLK_out <= !CLK_out;
 end
end

endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

18

 event clock generation circuits
o examples of events

 pushing button
 sensor firing

o problem: contact bounce

Solution: “bounce-free” (or “bounce-less”) switch
implemented using a S.P.D.T. (single pole, double
throw pushbutton and an SR latch

/* SR latch for use in switch debouncer on small PLD */

module SR_LATCH(RN, SN, Q, QN);
 input wire RN; // active low reset
 input wire SN; // active low set
 output wire Q; // active high output
 output wire QN; // active low output

 assign QN = (~RN | ~Q);
 assign Q = (~SN | ~QN);

endmodule
 WARNING: This method is only

intended for use on a small
PLD such as a 22V10 device

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

19

/* D flip flop used as bounce-free switch in Verilog */
module DFF_BF(CLK, AR, AP, D, BFC);
 input wire CLK; // Clock input for DFF
 input wire AR,AP; // Asynchronous Reset and Preset
 input wire D; // Data input for DFF
 output reg BFC; // Bounce Free Switch output
always @ (posedge CLK, posedge AR, posedge AP) begin
 if (AR == 1’b1)
 BFC <= 0;
 else if (AP == 1’b1)
 BFC <= 1;
 else
 BFC <= D;
 end
endmodule

/* For a Bounce-Free Switch, these are the changes in DFF:
 CLK = 0 and D = 0 as we use AR and AP to control the switch
 AR = NC -> AR connected to Normally Closed switch contact
 AP = NO -> AP to Normally Open switch contact
*/

/* Below is a sample instance of BF1:

 DFF_BF BF1 (.CLK(1’b0),.AR(NC),.AP(NO),.D(1’b0),.BFC(out));
*/

WARNING: This method only works
for a CPLD, not a small PLD

Here, we are using the D flip-flop as an S-R
latch by asserting asynchronous reset (AR) and
asynchronous preset (AP)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

20

Lecture Summary – Module 3-F
State Machine Design Examples: Sequence Generators

Reference: Digital Design Principles and Practices (4th Ed.), pp. 566-576

 a sequence generator state machine produces a (periodic) series of output signal assertions that

constitute a pre-defined pattern
 two different design strategies

o minimum cost (don’t cares in next states are allowed)
o minimum risk (unused states explicitly assigned a next state)

 character sequence display – displays AbC or CbS on a 7-segment display (Moore model)

module tv_disp(CLK, M, Q, nL);
 input wire CLK;
 input wire M; // Mode control
 output reg [1:0] Q;
 output wire [6:0] nL;
 reg [6:0] L; // L[6] = LA, L[5] = LB, .. L[0] = LG
 reg [1:0] next_Q;
 assign nL = ~L; // Active-low outputs on L
 always @ (posedge CLK) begin
 Q <= next_Q;
 end
 always @ (Q, M) begin
 case({Q,M})
 3'b000: next_Q = 2'b01;
 3'b001: next_Q = 2'b10;
 3'b010: next_Q = 2'b10;
 3'b011: next_Q = 2'b11;
 3'b100: next_Q = 2'b00;
 3'b101: next_Q = 2'b01;
 3'b110: next_Q = 2'b00;
 3'b111: next_Q = 2'b10;
 endcase

 case (Q)
 2'b00: L = 7'b1110111; // Character A
 2'b01: L = 7'b0011111; // Character b
 2'b10: L = 7'b1001110; // Character C
 2'b11: L = 7'b1011011; // Character S
 endcase
 end
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

21

PS
Q2 Q1 Q0

PI
M1 M0

NS
Q2* Q1* Q0*

PO
L2 L1 L0

 0 0 0 0 0
0 1
1 0
1 1

0 0 1
0 1 1
0 0 1
0 1 1

0 0 0

 0 0 1 0 0
0 1
1 0
1 1

0 1 0
0 0 0
1 0 0
0 0 0

1 0 0

 0 1 0 0 0
0 1
1 0
1 1

0 1 1
0 0 1
0 0 0
0 0 0

0 1 0

 0 1 1 0 0
0 1
1 0
1 1

0 0 0
0 1 0
0 0 0
1 1 0

0 0 1

 1 0 0 0 0
0 1
1 0
1 1

0 0 0
0 0 0
1 0 1
0 0 0

1 1 0

 1 0 1 0 0
0 1
1 0
1 1

0 0 0
0 0 0
0 0 0
0 0 0

1 1 1

 1 1 0 0 0
0 1
1 0
1 1

0 0 0
0 0 0
0 0 0
1 0 1

0 1 1

 1 1 1 0 0
0 1
1 0
1 1

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0

 4-mode light sequencer – Moore model

module moorelsA(CLK, M, Q, L);
 input wire CLK; // Input clock
 input wire [1:0] M; // Mode select
 output reg [2:0] L;
 output reg [2:0] Q;
 reg [2:0] next_Q;
 always @ (posedge CLK) begin
 Q <= next_Q;
 end
 always @ (Q, M) begin
 case ({Q,M})
 5'b00000: next_Q = 3'b001;
 5'b00001: next_Q = 3'b011;
 5'b00010: next_Q = 3'b001;
 5'b00011: next_Q = 3'b011;
 5'b00100: next_Q = 3'b010;
 5'b00101: next_Q = 3'b000;
 5'b00110: next_Q = 3'b100;
 5'b00111: next_Q = 3'b000;
 5'b01000: next_Q = 3'b011;
 5'b01001: next_Q = 3'b001;
 5'b01010: next_Q = 3'b000;
 5'b01011: next_Q = 3'b000;
 5'b01100: next_Q = 3'b000;
 5'b01101: next_Q = 3'b010;
 5'b01110: next_Q = 3'b000;
 5'b01111: next_Q = 3'b110;
 5'b10000: next_Q = 3'b000;
 5'b10001: next_Q = 3'b000;
 5'b10010: next_Q = 3'b101;
 5'b10011: next_Q = 3'b000;
 5'b10100: next_Q = 3'b000;
 5'b10101: next_Q = 3'b000;
 5'b10110: next_Q = 3'b000;
 5'b10111: next_Q = 3'b000;
 5'b11000: next_Q = 3'b000;
 5'b11001: next_Q = 3'b000;
 5'b11010: next_Q = 3'b000;
 5'b11011: next_Q = 3'b101;
 5'b11100: next_Q = 3'b000;
 5'b11101: next_Q = 3'b000;
 5'b11110: next_Q = 3'b000;
 5'b11111: next_Q = 3'b000;
 endcase
 end
 always @ (Q) begin
 case(Q)
 3'b000: L = 3'b000;
 3'b001: L = 3'b100;
 3'b010: L = 3'b010;
 3'b011: L = 3'b001;
 3'b100: L = 3'b110;
 3'b101: L = 3'b111;
 3'b110: L = 3'b011;
 3'b111: L = 3'b000;
 endcase
 end
endmodule

This realization uses 6 macrocells

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

22

 check alternate state/output assignments (where output functions are the state variables)

module moorelsB(CLK, M, Q);
 input wire CLK; // Input clock
 input wire [1:0] M; // Mode select
 output reg [2:0] Q; // serve as L2 L1 L0
 reg [2:0] next_Q;
 always @ (posedge CLK) begin
 Q <= next_Q;
 end

 always @ (Q, M) begin
 case({Q,M})
 5'b00000: next_Q = 3'b100;
 5'b00001: next_Q = 3'b001;
 5'b00010: next_Q = 3'b100;
 5'b00011: next_Q = 3'b001;
 5'b00100: next_Q = 3'b000;
 5'b00101: next_Q = 3'b010;
 5'b00110: next_Q = 3'b000;
 5'b00111: next_Q = 3'b011;
 5'b01000: next_Q = 3'b001;
 5'b01001: next_Q = 3'b100;
 5'b01010: next_Q = 3'b000;
 5'b01011: next_Q = 3'b000;
 5'b01100: next_Q = 3'b000;
 5'b01101: next_Q = 3'b000;
 5'b01110: next_Q = 3'b000;
 5'b01111: next_Q = 3'b111;
 5'b10000: next_Q = 3'b010;
 5'b10001: next_Q = 3'b000;
 5'b10010: next_Q = 3'b110;
 5'b10011: next_Q = 3'b000;
 5'b10100: next_Q = 3'b000;
 5'b10101: next_Q = 3'b000;
 5'b10110: next_Q = 3'b000;
 5'b10111: next_Q = 3'b000;
 5'b11000: next_Q = 3'b000;
 5'b11001: next_Q = 3'b000;
 5'b11010: next_Q = 3'b111;
 5'b11011: next_Q = 3'b000;
 5'b11100: next_Q = 3'b000;
 5'b11101: next_Q = 3'b000;
 5'b11110: next_Q = 3'b000;
 5'b11111: next_Q = 3'b000;
 endcase
 end
endmodule

module moorelsB_sd(CLK, M, Q);
 input wire CLK; // Input clock
 input wire [1:0] M; // Mode select
 output reg [2:0] Q;
 reg [2:0] next_Q;
 // State decalarations
 localparam A0 = 3'b000;
 localparam A1 = 3'b001;
 localparam A2 = 3'b010;
 localparam A3 = 3'b011;
 localparam A4 = 3'b100;
 localparam A5 = 3'b101;
 localparam A6 = 3'b110;
 localparam A7 = 3'b111;

 always @ (posedge CLK) begin
 Q <= next_Q;
 end
 always @ (Q) begin
 case (Q)
 A0: begin
 if (M == 2'b00) next_Q = A4;
 else if (M == 2’b01) next_Q = A1;
 else if (M == 2'b10) next_Q = A4;
 else if (M == 2'b11) next_Q = A1;
 end
 A1: begin
 if (M == 2’b00) next_Q = A0;
 else if (M == 2’b01) next_Q = A2;
 else if (M == 2’b10) next_Q = A0;
 else if (M == 2’b11) next_Q = A3;
 end
 A2: begin
 if (M == 2'b00) next_Q = A1;
 else if (M == 2’b01) next_Q = A4;
 else if (M == 2’b10) next_Q = A0;
 else if (M == 2’b11) next_Q = A0;
 end
 A3: begin
 if (M == 2'b00) next_Q =
A0;
 else if (M == 2'b01) next_Q = A0;
 else if (M == 2'b10) next_Q = A0;
 else if (M == 2'b11) next_Q = A7;
 end
 A4: begin
 if (M == 2'b00) next_Q = A2;
 else if (M == 2'b01) next_Q = A0;
 else if (M == 2'b10) next_Q = A6;
 else if (M == 2'b11) next_Q = A0;
 end
 A5: next_Q = A0;
 A6: begin
 if (M == 2'b00) next_Q = A0;
 else if (M == 2'b01) next_Q = A0;
 else if (M == 2'b10) next_Q = A7;
 else if (M == 2'b11) next_Q = A0;
 end
 A7: next_Q = A0;
 endcase
 end
endmodule

Both realizations (clocked operator table and state diagram) use 3 macrocells

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

23

 Mealy model

PS
Q1 Q0

PI
M1 M0

N S
Q1* Q0*

PO
L2 L1 L0

 0 0 0 0
 0 1
 1 0
 1 1

0 1
1 1
0 1
1 1

0 0 0
0 0 0
0 0 0
0 0 0

 0 1 0 0
 0 1
 1 0
 1 1

1 0
0 0
1 0
0 0

1 0 0
1 0 0
1 0 0
1 1 1

 1 0 0 0
 0 1
 1 0
 1 1

1 1
0 1
1 1
0 1

0 1 0
0 1 0
1 1 0
0 1 1

 1 1 0 0
 0 1
 1 0
 1 1

0 0
1 0
0 0
1 0

0 0 1
0 0 1
1 1 1
0 0 1

module mealy1sa(CLK, M, Q, L);

 input wire CLK; // Clock input
 input wire [1:0] M; // Mode select
 output wire [2:0] L;
 output reg [1:0] Q;

 wire [1:0] next_Q;
 reg [4:0] nQL; // vector of
{next_Q,L}

 always @ (posedge CLK) begin
 Q <= next_Q;
 End

 assign next_Q = nQL[4:3];
 assign L = nQL[2:0];

 always @ (Q, M) begin
 case ({Q,M})
 4'b0000: nQL = {2'b01,3'b000};
 4'b0001: nQL = {2'b11,3'b000};
 4'b0010: nQL = {2'b01,3'b000};
 4'b0011: nQL = {2'b11,3'b000};

 4'b0100: nQL = {2'b10,3'b100};
 4'b0101: nQL = {2'b00,3'b100};
 4'b0110: nQL = {2'b10,3'b100};
 4'b0111: nQL = {2'b00,3'b111};

 4'b1000: nQL = {2'b11,3'b010};
 4'b1001: nQL = {2'b01,3'b010};
 4'b1010: nQL = {2'b11,3'b110};
 4'b1011: nQL = {2'b01,3'b001};

 4'b1100: nQL = {2'b00,3'b001};
 4'b1101: nQL = {2'b10,3'b001};
 4'b1110: nQL = {2'b00,3'b111};
 4'b1111: nQL = {2'b10,3'b001};
 endcase
 end

endmodule

This realization uses 5 macrocells

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

24

 check alternate Mealy state/output assignments

 conclusions

o choosing the “right” state variable assignment and machine model can make a significant
difference in the PLD resources consumed and the amount of work required

o the only formal way to find the “best” assignment is to try all of the assignments
o experience is needed to do this well (see text for guidelines)
o there is no substitute for practice (developing “applied intuition”)

module mealylsb(CLK, M, L);

 input wire CLK; // Clock input
 input wire [1:0] M; // Mode select
 output wire [2:0] L;

 reg [1:0] Q;
 wire [1:0] next_Q;

 // vector of {next_Q,L}
 reg [4:0] nQL;

 always @ (posedge CLK) begin
 Q <= next_Q;
 end

 assign next_Q = nQL[4:3];
 assign L = nQL[2:0];

 always @ (Q, M) begin
 case ({Q,M})
 4'b0000: nQL = {2'b01,3'b000};
 4'b0001: nQL = {2'b01,3'b000};
 4'b0010: nQL = {2'b01,3'b000};
 4'b0011: nQL = {2'b01,3'b000};
 4'b0100: nQL = {2'b10,3'b100};
 4'b0101: nQL = {2'b10,3'b001};
 4'b0110: nQL = {2'b10,3'b100};
 4'b0111: nQL = {2'b10,3'b001};
 4'b1000: nQL = {2'b11,3'b010};
 4'b1001: nQL = {2'b11,3'b010};
 4'b1010: nQL = {2'b11,3'b110};
 4'b1011: nQL = {2'b11,3'b011};
 4'b1100: nQL = {2'b00,3'b001};
 4'b1101: nQL = {2'b00,3'b100};
 4'b1110: nQL = {2'b00,3'b111};
 4'b1111: nQL = {2'b00,3'b111};
 endcase
 end

endmodule

module mealylsb_sd(CLK, M, L, Q);

 input wire CLK; // Clock input
 input wire [1:0] M; // Mode select
 output reg [2:0] L;
 output reg [1:0] Q;

 reg [1:0] next_Q;

 // State declarations
 localparam A0 = 2'b00;
 localparam A1 = 2'b01;
 localparam A2 = 2'b10;
 localparam A3 = 2'b11;

 always @ (posedge CLK) begin
 Q <= next_Q;
 end
 always @ (Q) begin
 case (Q)
 A0: next_Q = A1;
 A1: next_Q = A2;
 A2: next_Q = A3;
 A3: next_Q = A0;
 endcase
 end
 always @ (Q, M) begin
 case ({Q,M})
 4'b0000: L = 3'b000;
 4'b0001: L = 3'b000;
 4'b0010: L = 3'b000;
 4'b0011: L = 3'b000;
 4'b0100: L = 3'b100;
 4'b0101: L = 3'b001;
 4'b0110: L = 3'b100;
 4'b0111: L = 3'b001;
 4'b1000: L = 3'b010;
 4'b1001: L = 3'b010;
 4'b1010: L = 3'b110;
 4'b1011: L = 3'b011;
 4'b1100: L = 3'b001;
 4'b1101: L = 3'b100;
 4'b1110: L = 3'b111;
 4'b1111: L = 3'b111;
 endcase
 end

endmodule

Both realizations (clocked operator table and state diagram) use 5 macrocells

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

25

/* Multi-Color LED Light Machine */
module mcleds(CLK, M, R, G, Y, B);
 input wire CLK;
 input wire M;
 output wire R, G, B, Y;
 reg [1:0] Q, next_Q;
 reg [5:0] nQRGYB;
 always @ (posedge CLK) begin
 Q <= next_Q;
 end
 assign next_Q = nQRGYB[5:4]
 assign {R,G,Y,B} = nQRGYB[3:0];
 always @ (Q, M) begin
 case ({Q,M})
 3'b000: nQRGYB = {2'b10,4'b1000};
 3'b001: nQRGYB = {2'b11,4'b1000};
 3'b010: nQRGYB = {2'b11,4'b0010};
 3'b011: nQRGYB = {2'b00,4'b1111};
 3'b100: nQRGYB = {2'b01,4'b0100};
 3'b101: nQRGYB = {2'b01,4'b1110};
 3'b110: nQRGYB = {2'b00,4'b0001};
 3'b111: nQRGYB = {2'b10,4'b1100};
 endcase
 end
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

26

Lecture Summary – Module 3-G
State Machine Design Examples: Counters and Shift Registers

Reference: Digital Design Principles and Practices (4th Ed.), pp. 710-721, 727-736

 the term counter is used for any clocked sequential circuit whose state diagram contains a

single cycle
o the modulus of a counter is the number of states in the cycle – a counter with M states is

called a modulo-M counter (or sometimes a divide-by-M counter)
o a synchronous counter connects all of its flip-flop clock inputs to the same common

CLOCK signal, so that all the flip-flop outputs change state simultaneously
o UP counter Kth bit next state: QK* = QK (QK-1 • QK-2 • … • Q1 • Q0)
o DOWN counter Kth bit next state: QK* = QK (QK-1 • QK-2 • … • Q1 • Q0)
o Verilog program for 8-bit UP/DOWN counter

o Verilog program for 8-bit resettable UP counter

module count8u(CLK, Q);

 input wire CLK;
 output reg [7:0] Q;

 reg [7:0] next_Q;

 always @ (posedge CLK) begin
 Q <= next_Q;
 end

 always @ (Q) begin
 next_Q[0] = ~Q[0];
 next_Q[1] = Q[1] ^ Q[0];
 next_Q[2] = Q[2] ^ (Q[1] & Q[0]);
 next_Q[3] = Q[3] ^ (Q[2] & Q[1] & Q[0]);
 next_Q[4] = Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]);
 next_Q[5] = Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
 next_Q[6] = Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
 next_Q[7] = Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
 end
endmodule

module rcnt8U(CLK, R, Q);
 input wire CLK;
 input wire R; // Synchronous Reset
 output reg [7:0] Q;
 reg [7:0] next_Q;
 always @ (posedge CLK) begin
 Q <= next_Q;
 end

 // If R = 1, counter resets to 0 on the next clock edge
 always @ (Q) begin
 if (R == 1’b1) begin
 next_Q = 8'b00000000;
 end
 else begin
 next_Q[0] = ~Q[0];
 next_Q[1] = Q[1] ^ Q[0];
 next_Q[2] = Q[2] ^ (Q[1] & Q[0]);
 next_Q[3] = Q[3] ^ (Q[2] & Q[1] & Q[0]);
 next_Q[4] = Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]);
 next_Q[5] = Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
 next_Q[6] = Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
 next_Q[7] = Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
 end
 end
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

27

000 001 010 011

111 110 101 100

0 0 0

0

000

0

1 1 1

1

111

1

/* Program (A) */
module CQ(CLK, M, Q);

 input wire CLK, M;
 output reg [2:0] Q;

 reg [2:0] next_Q;

 always @ (posedge CLK) begin
 Q <= next_Q;

 end

 always @ (Q, M) begin
 next_Q[0] = ~Q[0];

 next_Q[1] = ~Q[1] ^ (~M&~Q[0] | M&Q[0]);

 next_Q[2] = ~Q[2] ^ (~M&~Q[1]&~Q[0] |
 M& Q[1]& Q[0]);

 end
endmodule

/* Program (B) */
module CQ(CLK, M, Q);
 input wire CLK, M;
 output reg [2:0] Q;
 reg [2:0] next_Q;
 always @ (posedge CLK) begin
 Q <= next_Q;
 end
 always @ (Q, M) begin
 next_Q[0] = ~Q[0];
 next_Q[1] = Q[1] ^ (~M&Q[0] | M&~Q[0]);
 next_Q[2] = Q[2] ^ (~M& Q[1]& Q[0] |
 M&~Q[1]&~Q[0]);

 end
endmodule

/* Program (C) */
module CQ(CLK, M, Q);
 input wire CLK, M;
 output reg [2:0] Q;
 reg [2:0] next_Q;
 always @ (posedge CLK) begin
 Q <= next_Q;
 end
 always @ (Q, M) begin
 next_Q[0] = ~Q[0];
 next_Q[1] = Q[1] ^ (~M&~Q[0] |
 M& Q[0]);
 next_Q[2] = Q[2] ^ (~M&~Q[1]&~Q[0]
| M& Q[1]& Q[0])

 end
endmodule

/* Program (D) */
module CQ(CLK, M, Q);
 input wire CLK, M;
 output reg [2:0] Q;
 reg [2:0] next_Q;
 always @ (posedge CLK) begin
 Q <= Q + 1;
 end
endmodule

(E) none of the above

Which Verilog program realizes this state machine?

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

28

 a shift register whose state diagram is cyclic is called a shift-register counter (i.e., does not count

“up” or “down”)
o self-correcting ring counter

o self-correcting Johnson counter

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

29

 state decoding
o ring – none (“one hot”), glitch-free

o Johnson – 2n two-input AND or NAND gates, glitch-free

o comparison with binary counter state decoding – not glitch-free

o n-bit counter with 2n states that can be decoded glitch-free: Gray-code

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

30

Lecture Summary – Module 3-H
State Machine Design Examples: Sequence Recognizers

Reference: Digital Design Principles and Practices (4th Ed.), pp. 580-587

 a sequence recognizer state machine responds to a pre-defined input pattern of signal assertions

and produces corresponding output signal assertions
 use of Moore model generally preferred
 special states

o final state of accepting sequence (pattern being recognized)
o trap state

 simple embedded sequence recognizer

 digital combination lock

o fixed (“hard wired”) combination
o three input signals

 X – combination data
 R – (synchronous) relock
 RESET – asynchronous reset (only way out of trap state)

o three output signals
 LOCKED
 UNLOCKED
 ALARM

o Moore model
 (initial) “locked” state
 six states to accept combo
 “alarm” state
 total states needed: 8

o types of states
 accepting sequence (entering combination)
 final state (sequence correctly entered)
 trap state (error made while entering combination)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

31

module dcl(CLK,RST,X,R,LOCKED,UNLOCKED,ALARM);

 input wire CLK, RST, X, R;
 // X = lock combination data input
 // R = relock input

 output wire LOCKED, UNLOCKED, ALARM;

 reg [2:0] Q, next_Q;
 localparam A0 = 3'b000; // Locked
 localparam A1 = 3'b001;
 localparam A2 = 3'b010;
 localparam A3 = 3'b011;
 localparam A4 = 3'b100;
 localparam A5 = 3'b101;
 localparam A6 = 3'b110; // Unlocked
 localparam A7 = 3'b111; // Alarm

 always @ (posedge CLK, posedge RST) begin
 if (RST == 1’b1)
 Q <= 3'b000;
 else
 Q <= next_Q;
 end

 assign LOCKED = ~Q[2] & ~Q[1] & ~Q[0];
 assign UNLOCKED = Q[2] & Q[1] & ~Q[0];
 assign ALARM = Q[2] & Q[1] & Q[0];

always @ (R, X) begin
 case (Q)
 A0: if (R==1) next_Q = A0;
 else if ((R==0)&(X==0)) next_Q = A7;
 else if ((R==0)&(X==1)) next_Q = A1;

 A1: if (R==1) next_Q = A0;
 else if ((R==0)&(X==0)) next_Q = A2;
 else if ((R==0)&(X==1)) next_Q = A7;

 A2: if (R==1) next_Q = A0;
 else if ((R==0)&(X==0)) next_Q = A7;
 else if ((R==0)&(X==1)) next_Q = A3;

 A3: if (R==1) next_Q = A0;
 else if ((R==0)&(X==0)) next_Q = A7;
 else if ((R==0)&(X==1)) next_Q = A4;

 A4: if (R==1) next_Q = A0;
 else if ((R==0)&(X==0)) next_Q = A7;
 else if ((R==0)&(X==1)) next_Q = A5;

 A5: if (R==1) next_Q = A0;
 else if ((R==0)&(X==0)) next_Q = A6;
 else if ((R==0)&(X==1)) next_Q = A7;

 A6: if (R==1) next_Q = A0;
 else if (R==0) next_Q = A6;

 A7: next_Q = A7;
 endcase
 end
endmodule

