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Lecture Summary – Module 3 

Sequential Logic Circuits 

 
Learning Outcome: an ability to analyze and design sequential logic circuits 
 
Learning Objectives: 
3-1. describe the difference between a combinational logic circuit and a sequential logic circuit 
3-2. describe the difference between a feedback sequential circuit and a clocked synchronous state machine 
3-3. define the state of a sequential circuit 
3-4. define active high and active low as it pertains to clocking signals 
3-5. define clock frequency and duty cycle 
3-6. describe the operation of a bi-stable and analyze its behavior 
3-7. define metastability and illustrate how the existence of a metastable equilibrium point can lead to a random 

next state 
3-8. write present state – next state (PS-NS) equations that describes the behavior of a sequential circuit 
3-9. draw a state transition diagram that depicts the behavior of a sequential circuit 
3-10. construct a timing chart that depicts the behavior of a sequential circuit 
3-11. draw a circuit for a set-reset (“S-R”) latch and analyze its behavior 
3-12. discuss what is meant by “transparent” (or “data following”) in reference to the response of a latch 
3-13. draw a circuit for an edge-triggered data (“D”) flip-flop and analyze its behavior 
3-14. compare the response of a latch and a flip-flop to the same set of stimuli 
3-15. define setup and hold time and determine their nominal values from a timing chart 
3-16. determine the frequency and duty cycle of a clocking signal 
3-17. identify latch and flip-flop propagation delay paths and determine their values from a timing chart 
3-18. describe the operation of a toggle (“T”) flip-flop and analyze its behavior 
3-19. derive a characteristic equation for any type of latch or flip-flop 
3-20. identify the key elements of a clocked synchronous state machine: next state logic, state memory (flip-flops), 

and output logic 
3-21. differentiate between Mealy and Moore model state machines, and draw a block diagram of each 
3-22. analyze a clocked synchronous state machine realized as either a Mealy or Moore model 
3-23. outline the steps required for state machine synthesis 
3-24. derive an excitation table for any type of flip-flop 
3-25. discuss reasons why formal state-minimization procedures are seldom used by experienced digital designers 
3-26. draw block diagrams for Moore and Mealy type state machines and explain how each block can be coded in 

Verilog 
3-27. draw a circuit for an oscillator and calculate its frequency of  operation 
3-28. draw a circuit for a bounce-free switch based on an S-R latch and analyze its behavior 
3-29. design a clocked synchronous state machine and verify its operation 
3-30. define minimum risk and minimum cost state machine design strategies, and discuss the tradeoffs between 

the two approaches 
3-31. compare state assignment strategy and state machine model choice (Mealy vs. Moore) with respect to PLD 

resources (P-terms and macrocells) required for realization  
3-32. compare and contrast the operation of binary and shift register counters 
3-33. derive the next state equations for binary “up” and “down” counters 
3-34. describe the feedback necessary to make ring and Johnson counters self-correcting 
3-35. compare and contrast state decoding for binary and shift register counters 
3-36. describe why “glitches” occur in some state decoding strategies and discuss how to eliminate them 
3-37. identify states utilized by a sequence recognizer: accepting sequence, final, and trap 
3-38. determine the embedded binary sequence detected by a sequence recognizer  
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Lecture Summary – Module 3-A 
Bistable Elements 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 521-526 
 
 overview 

o combinational vs. sequential circuits 
o state of sequential circuit 
o finite state machine 
o clock signal 

 assertion level 
 period / frequency 
 duty cycle 

o types of sequential circuits 
 feedback 
 clocked synchronous 

 
 bistable elements 

o “simplest” sequential circuit 
o no inputs (no way of controlling/changing state) 
o randomly powers up into one state or the other 
o digital analysis: two stable states 
o single state variable (Q) 
o analog analysis: additional quasi-stable state (metastable) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 metastable behavior 

o comparable to dropping ball onto smooth hill 
o speed with which ball rolls to one side or the other depends on location it “hits” 
o important: if “simplest” sequential circuit is susceptible to metastable behavior, then 

clearly ALL sequential circuits are(!) 
 
 

Transfer functions (“inverter”): 
 

Vout1 = T(Vin1) 
 

Vout2 = T(Vin2) 
 
Equilibrium points: 
 

Vin1 = Vout2 
 

Vin2 = Vout1 
 
Random noise drives circuit to 
stable operating point 
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Present State Present Input Next State
Q(t) QN(t) S(t) R(t) Q(t+) QN(T+)

0 0 0 0  
0 0 0 1  
0 0 1 0   
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1   
1 1 0 0   
1 1 0 1  
1 1 1 0  
1 1 1 1  

 

Lecture Summary – Module 3-B 
The Set-Reset (S-R) Latch 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 526-532 
 
 latches and flip-flops 

o flip-flop changes state based on clocking signal 
o latch changes its output any time it is enabled 

 set-reset (S-R) latch 
o change bistable into latch by “adding an input” to each inverter (NOR gate) 
o two inputs 

 asserting S “sets” the latch state (Q output) to 1 
 asserting R “resets” the latch state to 0 
 if both S and R are negated, circuit behaves like bistable (retains its state) 
 if both S and R are asserted and then negated simultaneously, random next state 

 exercise: construct a timing chart for the NOR-implemented S-R latch 
o assume each gate has delay  
o write the next state equations for Q and QN 

 
 
 
 
 
 
 
 

o create a present state – next state (PS-NS) table and state transition diagram (STD) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q(t+) = 
 
 
QN(t+) = 

00 01

10 11
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Present State Present Input Next State
Q(t) QN(t) S(t) R(t) Q(t+) QN(T+)

0 0 0 0 1 1
0 0 0 1 0 1
0 0 1 0 1 0 
0 0 1 1 0 0
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 1 0
1 0 1 1 0 0 
1 1 0 0 0 0 
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0

 

 
S 

                   

 
R 

                   

 
Q 

         

 
QN 

         

 

 exercise, continued… 
o construct a timing chart based on the initial conditions and given inputs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 exercise: investigate response to the “1-1” input combination 
 
 
 
 
 
 
 
 
 
 
 
 exercise: investigate response to a “glitch” 

 
 
 
 
 
 
 
 
 
 
 
 propagation delay – time for an output to respond to an input transition 

o need to specify “path” 
o example: tpLH(SQ) is the rise propagation delay of the Q output in response to assertion 

of the S input 
o note that rise and fall propagation delays are typically different 

 minimum pulse width requirement (see “glitch” timing chart) 
 
 
 
 

 
S 

                 

 
R 

                 

 
Q 

                 

 
QN 

                 

 

 
S 

                  

 
R 

                  

 
Q 

                  

 
QN 
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 variations 

o NAND-implemented S-R latch 
o NAND-implemented S-R latch with ENABLE (“C”) 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer 

6 
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 transparent D (“data”) latch 

o just an S-R latch with an inverter between the S and R inputs 
o basic “memory bit” 
o called “transparent” (or “data following”) because that what it is (does) when “open” 
o retains value when enable is negated (latch “closed”) 
o propagation delay parameters  
o setup and hold times (what happens if either is violated) 
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Lecture Summary – Module 3-C 
Data (D) and Toggle (T) Flip-Flops 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 532-535, 541-542 
 
 edge-triggered D flip-flop 

o changes state (“triggers”) on clock edge 
o can be positive (rising) edge triggered or negative (falling) edge triggered 
o created using two latches cascaded together, that open on opposite clock phases 

 input latch “master” 
 output latch (“slave”) 

o triangle = dynamic input indicator (clock) 
o characteristic equation: Q* = D 
o propagation delay parameters  
o setup and hold times 

 
 
 
 
 
 
 
 
 
 
 
 
 
 negative edge-triggered D flip-flop 

 
 
 
 
 
 
 
 
 

 edge-triggered D flip-flop with enable 
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A 

                    

 
X 

                    

 
Y 

                    

 
C 

                    

 

Q

QT

EN

a) (

 
 edge-triggered T (“toggle”) flip-flop 

o toggles state (Q*= Q) if T input is 1  
o stays in same state (Q*= Q) if T input is 0 
o characteristic equation: Q*= TQ (can 

synthesize using D flip-flop as “building block”) 
 

 
 
 
 
 
 

 
 

 flip-flop timing parameters 

o clock pulse width 

o clock period 

o clock duty cycle 

o nominal setup time 

o nominal hold time 

o tPLH(CQ) = tPLH(CQ_L)  

o tPHL(CQ) = tPHL(CQ_L) 

 
 
 

 response of latch vs. flip-flop 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T 
 

CLK 
 

Q 

T 

CLK 
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Lecture Summary – Module 3-D 
Clocked Synchronous State Machine Structure and Analysis 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 540-553 
 
 introduction 

o state machine (sequential circuit) 
o clocked  
o synchronous (all flip flops share common clocking signal) 

 state machine basic blocks 
o next state (“excitation”) logic 
o state memory (flip flops) 
o output logic 

 state machine models 
o Moore 

 
 
 
 
 
 
 
 
 
 
 
 

o Mealy 
 
 
 
 
 
 
 
 
 
 
 
 
 

o can map a given state machine into either model 
o important: how model chosen satisfies the design requirements 

 
 state machine analysis 

o determine next state and output functions 
o construct a present state – next state / output table 
o draw state transition diagram 
o draw a timing diagram 
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PS PI NS Output
Q1  Q0 EN Q1* Q0* MAX 
0  0 0 0  0 0 
0  0 1 0  1 0 
0  1 0 0  1 0 
0  1 1 1  0 0 
1  0 0 1  0 0 
1  0 1 1  1 0 
1  1 0 1  1 0 
1  1 1 0  0 1 

 

PS PI NS Output
Q1  Q0 EN Q1* Q0* MAXS
0  0 0 0  0 0 
0  0 1 0  1 0 
0  1 0 0  1 0 
0  1 1 1  0 0 
1  0 0 1  0 0 
1  0 1 1  1 0 
1  1 0 1  1 1 
1  1 1 0  0 1 

 

 example: Mealy machine analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 example: Moore machine analysis 
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Lecture Summary – Module 3-E 
Clocked Synchronous State Machine Synthesis 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 553-566, 612-625, 682-689 
 
 introduction – the creative process 

o potentially imprecise description 
o choose among different ways of doing things 
o handle special cases 
o keep track of several ideas in your head 
o not an algorithm 
o circuit will perform exactly as designed 
o no guarantee it will work the first time 

 
 state machine design steps 

o construct PS-NS/O table and/or STD 
o minimize “obvious” redundant states 
o assign state variable combinations 
o update PS-NS/O table and/or STD accordingly 
o (choose flip-flop type) – we will use D-type for most designs 
o (excitation table/equations – not needed for D-type flip flops – why?) 
o derive output equations 
o draw logic diagram or realize equations directly in a PLD (using edge-triggered D-type) 

 
 derivation of excitation table for an S-R latch 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 derivation of excitation table for a T flip flop 
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 blocking vs non-blocking 

o blocking statements (out = in) 
 the = symbol represents a blocking procedural assignment  
 used to model combinational logic 
 assignment is done immediately in a single step, new value is used by subsequent 

statements 
 execution flow within a procedure is blocked until the current assignment is 

complete 
 

  
 

o non-blocking statements (out <= in)  
 the <= symbol represents a non-blocking procedural assignment (analogous to a 

“clocked operator”) 
 used to model sequential logic 
 assignment is done in a two steps: 

1. the RHS is evaluated immediately  
2. the assignment to LHS is postponed until all other evaluations in the current 

time step are complete 
 

 
 

 Verilog design guidelines 
o do not mix blocking and non-blocking statements in the same block or procedure 
o combinational blocks – use blocking statements 
o sequential blocks (registers) – use non-blocking statements 

 
  state machines in Verilog 

o to specify a state machine in Verilog, an always block triggered on edges of the clock and 
other asynchronous signals (such as reset) is used.  

o registers are assigned next-state values with non-blocking statements 
o next-state values themselves are evaluated in a separate combinational always block or a 

dataflow assignment  
o differences in macrocell architecture will determine the complexity of state machine that 

can be implemented with a given PLD 
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 differences in macrocell architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
  
 

 
 periodic clock generation circuits 

o typically based on  crystal or R-C time constant  
o issues of interest 

 frequency 
 duty cycle 
 transition time (slew rate) 
 ringing (undershoot / overshoot) 
 stability (drift / jitter) 
 driving capability 
 skew (based on different physical path lengths) 

 
o CMOS “ring” oscillator and crystal oscillator circuits 
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 ispMach 4000ZE internal oscillator setup/use 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 timing diagrams and specifications 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

module OscTest(RST, CLK_out); 
input wire RST; 
output reg CLK_out; 
 
wire osc_dis, tmr_rst, osc_out, tmr_out; 
assign osc_dis = 1'b0; 
assign tmr_rst = 1'b0; 
 
defparam I1.TIMER_DIV = "1048576"; 
OSCTIMER I1 (.DYNOSCDIS(osc_dis),.TIMERRES(tmr_rst),.OSCOUT(osc_out), 
.TIMEROUT(tmr_out)); 
 
always @(posedge tmr_out, posedge RST) 
begin 
  if (RST == 1'b1) begin 
    CLK_out <= 0; 
  end  
  else begin 
    CLK_out <= !CLK_out;  
  end 
end  
 
endmodule 



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer 

18 
 

 
 

 event clock generation circuits 
o examples of events 

 pushing button 
 sensor firing 

o problem: contact bounce                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Solution: “bounce-free” (or “bounce-less”) switch 
implemented using a S.P.D.T. (single pole, double 
throw pushbutton and an SR latch 

/* SR latch for use in switch debouncer on small PLD */ 
 
module SR_LATCH(RN, SN, Q, QN); 
  input wire RN;    // active low reset 
  input wire SN;    // active low set  
  output wire Q;    // active high output  
  output wire QN;   // active low output 
  
  assign QN = (~RN | ~Q); 
  assign Q  = (~SN | ~QN); 
 
endmodule 
 WARNING: This method is only 

intended for use on a small 
PLD such as a 22V10 device 
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/* D flip flop used as bounce-free switch in Verilog */ 
module DFF_BF(CLK, AR, AP, D, BFC); 
  input wire CLK;   // Clock input for DFF 
  input wire AR,AP; // Asynchronous Reset and Preset  
  input wire D;     // Data input for DFF  
  output reg BFC;   // Bounce Free Switch output   
always @ (posedge CLK, posedge AR, posedge AP) begin 
    if (AR == 1’b1) 
      BFC <= 0; 
    else if (AP == 1’b1) 
      BFC <= 1; 
    else 
      BFC <= D; 
  end 
endmodule 
 
/* For a Bounce-Free Switch, these are the changes in DFF:  
   CLK = 0 and D = 0 as we use AR and AP to control the switch 
   AR = NC -> AR connected to Normally Closed switch contact  
   AP = NO -> AP to Normally Open switch contact   
*/ 
    
/* Below is a sample instance of BF1:  
 
     DFF_BF  BF1 (.CLK(1’b0),.AR(NC),.AP(NO),.D(1’b0),.BFC(out)); 
*/ 

WARNING: This method only works 
for a CPLD, not a small PLD  

Here, we are using the D flip-flop as an S-R 
latch by asserting asynchronous reset (AR) and 
asynchronous preset (AP)  
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Lecture Summary – Module 3-F 
State Machine Design Examples: Sequence Generators 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 566-576 
 
 a sequence generator state machine produces a (periodic) series of output signal assertions that 

constitute a pre-defined pattern 
 two different design strategies 

o minimum cost (don’t cares in next states are allowed) 
o minimum risk (unused states explicitly assigned a next state) 

 character sequence display – displays AbC or CbS on a 7-segment display (Moore model) 
  

module tv_disp(CLK, M, Q, nL);
  input wire CLK; 
  input wire M; // Mode control 
  output reg [1:0] Q; 
  output wire [6:0] nL; 
  reg [6:0] L; // L[6] = LA, L[5] = LB, .. L[0] = LG 
  reg [1:0] next_Q; 
  assign nL = ~L; // Active-low outputs on L 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  always @ (Q, M) begin 
    case({Q,M}) 
      3'b000:  next_Q = 2'b01; 
      3'b001:  next_Q = 2'b10; 
      3'b010:  next_Q = 2'b10; 
      3'b011:  next_Q = 2'b11; 
      3'b100:  next_Q = 2'b00; 
      3'b101:  next_Q = 2'b01; 
      3'b110:  next_Q = 2'b00; 
      3'b111:  next_Q = 2'b10; 
    endcase 
     
    case (Q) 
      2'b00:  L = 7'b1110111; // Character A 
      2'b01:  L = 7'b0011111; // Character b 
      2'b10:  L = 7'b1001110; // Character C   
      2'b11:  L = 7'b1011011; // Character S 
    endcase 
  end 
endmodule 
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PS 
Q2   Q1   Q0 

PI 
M1   M0 

NS 
Q2*  Q1*  Q0* 

PO
L2   L1   L0 

    0      0      0 0      0 
0      1 
1      0 
1      1 

0      0      1 
0      1      1 
0      0      1 
0      1      1 

0     0    0

    0      0      1 0      0 
0      1 
1      0 
1      1 

0      1      0 
0      0      0 
1      0      0 
0      0      0 

1     0     0

    0      1      0 0      0 
0      1 
1      0 
1      1 

0      1      1 
0      0      1 
0      0      0 
0      0      0 

0     1     0

    0      1      1 0      0 
0      1 
1      0 
1      1 

0      0      0 
0      1      0 
0      0      0 
1      1      0 

0     0     1

    1      0      0 0      0 
0      1 
1      0 
1      1 

0     0     0 
0     0     0 
1     0     1 
0     0     0 

1     1     0

    1      0      1 0      0 
0      1 
1      0 
1      1 

0     0     0 
0     0     0 
0     0     0 
0     0     0 

1     1     1

    1      1      0 0      0 
0      1 
1      0 
1      1 

0     0     0 
0     0     0 
0     0     0 
1     0     1 

0    1     1

    1      1      1 0      0 
0      1 
1      0 
1      1 

0     0     0 
0     0     0 
0     0     0 
0     0     0 

0     0     0

 4-mode light sequencer – Moore model 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

module moorelsA(CLK, M, Q, L); 
  input wire CLK;     // Input clock 
  input wire [1:0] M; // Mode select 
  output reg [2:0] L; 
  output reg [2:0] Q; 
  reg [2:0] next_Q; 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  always @ (Q, M) begin 
    case ({Q,M}) 
      5'b00000:  next_Q = 3'b001; 
      5'b00001:  next_Q = 3'b011; 
      5'b00010:  next_Q = 3'b001; 
      5'b00011:  next_Q = 3'b011;  
      5'b00100:  next_Q = 3'b010; 
      5'b00101:  next_Q = 3'b000; 
      5'b00110:  next_Q = 3'b100; 
      5'b00111:  next_Q = 3'b000;  
      5'b01000:  next_Q = 3'b011; 
      5'b01001:  next_Q = 3'b001; 
      5'b01010:  next_Q = 3'b000; 
      5'b01011:  next_Q = 3'b000;  
      5'b01100:  next_Q = 3'b000; 
      5'b01101:  next_Q = 3'b010; 
      5'b01110:  next_Q = 3'b000; 
      5'b01111:  next_Q = 3'b110; 
      5'b10000:  next_Q = 3'b000; 
      5'b10001:  next_Q = 3'b000; 
      5'b10010:  next_Q = 3'b101; 
      5'b10011:  next_Q = 3'b000; 
      5'b10100:  next_Q = 3'b000; 
      5'b10101:  next_Q = 3'b000; 
      5'b10110:  next_Q = 3'b000; 
      5'b10111:  next_Q = 3'b000; 
      5'b11000:  next_Q = 3'b000; 
      5'b11001:  next_Q = 3'b000; 
      5'b11010:  next_Q = 3'b000; 
      5'b11011:  next_Q = 3'b101; 
      5'b11100:  next_Q = 3'b000; 
      5'b11101:  next_Q = 3'b000; 
      5'b11110:  next_Q = 3'b000; 
      5'b11111:  next_Q = 3'b000; 
    endcase 
  end 
  always @ (Q) begin 
    case(Q) 
      3'b000:  L = 3'b000; 
      3'b001:  L = 3'b100; 
      3'b010:  L = 3'b010; 
      3'b011:  L = 3'b001; 
      3'b100:  L = 3'b110; 
      3'b101:  L = 3'b111; 
      3'b110:  L = 3'b011; 
      3'b111:  L = 3'b000; 
    endcase 
  end 
endmodule 

This realization uses 6 macrocells 
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 check alternate state/output assignments (where output functions are the state variables) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

module moorelsB(CLK, M, Q); 
  input wire CLK;   // Input clock 
  input wire [1:0] M; // Mode select 
  output reg [2:0] Q; // serve as L2 L1 L0 
  reg [2:0] next_Q; 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  
    always @ (Q, M) begin 
      case({Q,M}) 
        5'b00000:   next_Q = 3'b100; 
        5'b00001: next_Q = 3'b001; 
        5'b00010: next_Q = 3'b100; 
        5'b00011: next_Q = 3'b001; 
        5'b00100: next_Q = 3'b000; 
        5'b00101: next_Q = 3'b010; 
        5'b00110: next_Q = 3'b000; 
        5'b00111: next_Q = 3'b011; 
        5'b01000: next_Q = 3'b001; 
        5'b01001: next_Q = 3'b100; 
        5'b01010: next_Q = 3'b000; 
        5'b01011: next_Q = 3'b000; 
        5'b01100: next_Q = 3'b000; 
        5'b01101: next_Q = 3'b000; 
        5'b01110: next_Q = 3'b000; 
        5'b01111: next_Q = 3'b111; 
        5'b10000: next_Q = 3'b010; 
        5'b10001: next_Q = 3'b000; 
        5'b10010: next_Q = 3'b110; 
        5'b10011: next_Q = 3'b000; 
        5'b10100: next_Q = 3'b000; 
        5'b10101: next_Q = 3'b000; 
        5'b10110: next_Q = 3'b000; 
        5'b10111: next_Q = 3'b000; 
        5'b11000: next_Q = 3'b000; 
        5'b11001: next_Q = 3'b000; 
        5'b11010: next_Q = 3'b111; 
        5'b11011: next_Q = 3'b000; 
        5'b11100: next_Q = 3'b000; 
        5'b11101: next_Q = 3'b000; 
        5'b11110: next_Q = 3'b000; 
        5'b11111: next_Q = 3'b000; 
      endcase 
    end 
endmodule 

module moorelsB_sd(CLK, M, Q); 
  input wire CLK;    // Input clock 
  input wire [1:0] M;  // Mode select 
  output reg [2:0] Q; 
  reg [2:0] next_Q; 
  // State decalarations 
  localparam A0 = 3'b000; 
  localparam A1 = 3'b001; 
  localparam A2 = 3'b010; 
  localparam A3 = 3'b011; 
  localparam A4 = 3'b100; 
  localparam A5 = 3'b101; 
  localparam A6 = 3'b110; 
  localparam A7 = 3'b111; 
  
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  always @ (Q) begin 
    case (Q) 
      A0: begin 
          if (M == 2'b00)       next_Q = A4; 
          else if (M == 2’b01)  next_Q = A1; 
          else if (M == 2'b10)  next_Q = A4; 
          else if (M == 2'b11)  next_Q = A1; 
          end 
      A1: begin 
          if (M == 2’b00)       next_Q = A0; 
          else if (M == 2’b01)  next_Q = A2; 
          else if (M == 2’b10)  next_Q = A0; 
          else if (M == 2’b11)  next_Q = A3; 
 end 
      A2: begin 
          if (M == 2'b00)       next_Q = A1; 
 else if (M == 2’b01)  next_Q = A4; 
 else if (M == 2’b10)  next_Q = A0; 
 else if (M == 2’b11)  next_Q = A0; 
 end 
      A3: begin 
          if (M == 2'b00)       next_Q = 
A0; 
 else if (M == 2'b01)  next_Q = A0; 
 else if (M == 2'b10)  next_Q = A0; 
 else if (M == 2'b11)  next_Q = A7; 
 end 
      A4: begin 
 if (M == 2'b00)       next_Q = A2; 
 else if (M == 2'b01)  next_Q = A0; 
 else if (M == 2'b10)  next_Q = A6; 
 else if (M == 2'b11)  next_Q = A0; 
 end 
      A5: next_Q = A0; 
      A6: begin 
 if (M == 2'b00)   next_Q = A0; 
 else if (M == 2'b01)  next_Q = A0; 
 else if (M == 2'b10)  next_Q = A7; 
 else if (M == 2'b11)  next_Q = A0; 
 end 
      A7: next_Q = A0; 
    endcase 
  end 
endmodule 

Both realizations (clocked operator table and state diagram) use 3 macrocells 
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 Mealy model 
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        1      1 
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1    0 

0   0   1 
0   0   1 
1   1   1 
0   0   1 

module mealy1sa(CLK, M, Q, L);
 
  input wire CLK;   // Clock input 
  input wire [1:0] M; // Mode select 
  output wire [2:0] L; 
  output reg [1:0] Q; 
 
  wire [1:0] next_Q; 
  reg [4:0] nQL; // vector of 
{next_Q,L} 
 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  End 
 
  assign next_Q = nQL[4:3]; 
  assign L      = nQL[2:0]; 
 
  always @ (Q, M) begin 
    case ({Q,M}) 
      4'b0000: nQL = {2'b01,3'b000}; 
      4'b0001: nQL = {2'b11,3'b000}; 
      4'b0010: nQL = {2'b01,3'b000}; 
      4'b0011: nQL = {2'b11,3'b000}; 

      4'b0100: nQL = {2'b10,3'b100}; 
      4'b0101: nQL = {2'b00,3'b100}; 
      4'b0110: nQL = {2'b10,3'b100}; 
      4'b0111: nQL = {2'b00,3'b111}; 
 
      4'b1000: nQL = {2'b11,3'b010}; 
      4'b1001: nQL = {2'b01,3'b010}; 
      4'b1010: nQL = {2'b11,3'b110}; 
      4'b1011: nQL = {2'b01,3'b001}; 
 
      4'b1100: nQL = {2'b00,3'b001}; 
      4'b1101: nQL = {2'b10,3'b001}; 
      4'b1110: nQL = {2'b00,3'b111}; 
      4'b1111: nQL = {2'b10,3'b001}; 
    endcase 
  end 
 
endmodule 
 

This realization uses 5 macrocells 
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 check alternate Mealy state/output assignments 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 conclusions 

o choosing the “right” state variable assignment and machine model can make a significant 
difference in the PLD resources consumed and the amount of work required 

o the only formal way to find the “best” assignment is to try all of the assignments 
o experience is needed to do this well (see text for guidelines) 
o there is no substitute for practice (developing “applied intuition”) 

module mealylsb(CLK, M, L); 
 
  input wire CLK; // Clock input 
  input wire [1:0] M; // Mode select 
  output wire [2:0] L; 
 
  reg [1:0] Q; 
  wire [1:0] next_Q; 
 
  // vector of {next_Q,L} 
  reg [4:0] nQL;  
 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
 
  assign next_Q = nQL[4:3]; 
  assign L      = nQL[2:0];  
 
  always @ (Q, M) begin 
    case ({Q,M}) 
      4'b0000: nQL = {2'b01,3'b000}; 
      4'b0001: nQL = {2'b01,3'b000}; 
      4'b0010: nQL = {2'b01,3'b000}; 
      4'b0011: nQL = {2'b01,3'b000}; 
      4'b0100: nQL = {2'b10,3'b100}; 
      4'b0101: nQL = {2'b10,3'b001}; 
      4'b0110: nQL = {2'b10,3'b100}; 
      4'b0111: nQL = {2'b10,3'b001}; 
      4'b1000: nQL = {2'b11,3'b010}; 
      4'b1001: nQL = {2'b11,3'b010}; 
      4'b1010: nQL = {2'b11,3'b110}; 
      4'b1011: nQL = {2'b11,3'b011}; 
      4'b1100: nQL = {2'b00,3'b001}; 
      4'b1101: nQL = {2'b00,3'b100}; 
      4'b1110: nQL = {2'b00,3'b111}; 
      4'b1111: nQL = {2'b00,3'b111}; 
    endcase 
  end 
 
endmodule 
 

module mealylsb_sd(CLK, M, L, Q); 
 
  input wire CLK; // Clock input 
  input wire [1:0] M; // Mode select 
  output reg [2:0] L; 
  output reg [1:0] Q; 
 
  reg [1:0] next_Q; 
 
  // State declarations 
  localparam A0 = 2'b00; 
  localparam A1 = 2'b01; 
  localparam A2 = 2'b10; 
  localparam A3 = 2'b11; 
 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  always @ (Q) begin 
    case (Q) 
      A0: next_Q = A1; 
      A1: next_Q = A2; 
      A2: next_Q = A3; 
      A3: next_Q = A0; 
    endcase 
  end 
  always @ (Q, M) begin 
    case ({Q,M}) 
      4'b0000: L = 3'b000; 
      4'b0001: L = 3'b000; 
      4'b0010: L = 3'b000; 
      4'b0011: L = 3'b000; 
      4'b0100: L = 3'b100; 
      4'b0101: L = 3'b001; 
      4'b0110: L = 3'b100; 
      4'b0111: L = 3'b001; 
      4'b1000: L = 3'b010; 
      4'b1001: L = 3'b010; 
      4'b1010: L = 3'b110; 
      4'b1011: L = 3'b011; 
      4'b1100: L = 3'b001; 
      4'b1101: L = 3'b100; 
      4'b1110: L = 3'b111; 
      4'b1111: L = 3'b111; 
    endcase 
  end 
 
endmodule 

Both realizations (clocked operator table and state diagram) use 5 macrocells 
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/* Multi-Color LED Light Machine */ 
module mcleds(CLK, M, R, G, Y, B); 
  input wire CLK; 
  input wire M; 
  output wire R, G, B, Y; 
  reg [1:0] Q, next_Q; 
  reg [5:0] nQRGYB; 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  assign next_Q    = nQRGYB[5:4] 
  assign {R,G,Y,B} = nQRGYB[3:0]; 
  always @ (Q, M) begin 
    case ({Q,M}) 
      3'b000: nQRGYB = {2'b10,4'b1000}; 
      3'b001: nQRGYB = {2'b11,4'b1000}; 
      3'b010: nQRGYB = {2'b11,4'b0010}; 
      3'b011: nQRGYB = {2'b00,4'b1111}; 
      3'b100: nQRGYB = {2'b01,4'b0100}; 
      3'b101: nQRGYB = {2'b01,4'b1110}; 
      3'b110: nQRGYB = {2'b00,4'b0001}; 
      3'b111: nQRGYB = {2'b10,4'b1100}; 
    endcase 
  end 
endmodule 
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Lecture Summary – Module 3-G 
State Machine Design Examples: Counters and Shift Registers 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 710-721, 727-736 
 
 the term counter is used for any clocked sequential circuit whose state diagram contains a 

single cycle 
o the modulus of a counter is the number of states in the cycle – a counter with M states is 

called a modulo-M counter (or sometimes a divide-by-M counter) 
o a synchronous counter connects all of its flip-flop clock inputs to the same common 

CLOCK signal, so that all the flip-flop outputs change state simultaneously 
o UP counter Kth bit next state: QK* = QK  (QK-1 • QK-2 • … • Q1 • Q0)  
o DOWN counter Kth bit next state:  QK* = QK  (QK-1 • QK-2 • … • Q1 • Q0)  
o Verilog program for 8-bit UP/DOWN counter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o Verilog program for 8-bit resettable UP counter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

module count8u(CLK, Q); 
 
  input wire CLK; 
  output reg [7:0] Q; 
 
  reg [7:0] next_Q; 
 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
 
  always @ (Q) begin 
    next_Q[0] = ~Q[0]; 
    next_Q[1] =  Q[1] ^  Q[0]; 
    next_Q[2] =  Q[2] ^ (Q[1] & Q[0]); 
    next_Q[3] =  Q[3] ^ (Q[2] & Q[1] & Q[0]); 
    next_Q[4] =  Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]); 
    next_Q[5] =  Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]); 
    next_Q[6] =  Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]); 
    next_Q[7] =  Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]); 
  end 
endmodule 

module rcnt8U(CLK, R, Q); 
  input wire CLK; 
  input wire R;      // Synchronous Reset 
  output reg [7:0] Q; 
  reg [7:0] next_Q; 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  
  // If R  = 1, counter resets to 0 on the next clock edge 
  always @ (Q) begin 
    if (R == 1’b1) begin 
      next_Q = 8'b00000000; 
    end  
    else begin  
      next_Q[0] = ~Q[0]; 
      next_Q[1] =  Q[1] ^  Q[0]; 
      next_Q[2] =  Q[2] ^ (Q[1] & Q[0]); 
      next_Q[3] =  Q[3] ^ (Q[2] & Q[1] & Q[0]); 
      next_Q[4] =  Q[4] ^ (Q[3] & Q[2] & Q[1] & Q[0]); 
      next_Q[5] =  Q[5] ^ (Q[4] & Q[3] & Q[2] & Q[1] & Q[0]); 
      next_Q[6] =  Q[6] ^ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]); 
      next_Q[7] =  Q[7] ^ (Q[6] & Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]); 
    end  
  end 
endmodule 
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/* Program (A) */ 
module CQ(CLK, M, Q); 

  input wire CLK, M; 
  output reg [2:0] Q; 

  reg [2:0] next_Q; 

  always @ (posedge CLK) begin 
    Q <= next_Q; 

  end 

  always @ (Q, M) begin 
   next_Q[0] = ~Q[0]; 

   next_Q[1] = ~Q[1] ^ (~M&~Q[0] | M&Q[0]); 

   next_Q[2] = ~Q[2] ^ (~M&~Q[1]&~Q[0] |       
                    M& Q[1]& Q[0]); 

  end 
endmodule 

/* Program (B) */ 
module CQ(CLK, M, Q); 
  input wire CLK, M; 
  output reg [2:0] Q; 
  reg [2:0] next_Q; 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  always @ (Q, M) begin 
   next_Q[0] = ~Q[0]; 
   next_Q[1] =  Q[1] ^ (~M&Q[0] | M&~Q[0]); 
   next_Q[2] =  Q[2] ^ (~M& Q[1]& Q[0] | 
       M&~Q[1]&~Q[0]);     
  
  end 
endmodule 

/* Program (C) */ 
module CQ(CLK, M, Q); 
  input wire CLK, M; 
  output reg [2:0] Q; 
  reg [2:0] next_Q; 
  always @ (posedge CLK) begin 
    Q <= next_Q; 
  end 
  always @ (Q, M) begin 
   next_Q[0] = ~Q[0]; 
   next_Q[1] =  Q[1] ^ (~M&~Q[0] |       
               M& Q[0]); 
   next_Q[2] =  Q[2] ^ (~M&~Q[1]&~Q[0] 
|                    M& Q[1]& Q[0])
           
  end 
endmodule

/* Program (D) */ 
module CQ(CLK, M, Q); 
  input wire CLK, M; 
  output reg [2:0] Q; 
  reg [2:0] next_Q; 
  always @ (posedge CLK) begin 
    Q <= Q + 1; 
  end 
endmodule

(E) none of the above 

Which Verilog program realizes this state machine? 
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 a shift register whose state diagram is cyclic is called a shift-register counter (i.e., does not count 

“up” or “down”) 
o self-correcting ring counter 

 

 
 

o self-correcting Johnson counter  
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 state decoding 
o ring – none (“one hot”), glitch-free 

 
 
 
 
 
 
 
 
 
 
 

o Johnson – 2n two-input AND or NAND gates, glitch-free 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o comparison with binary counter state decoding – not glitch-free 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o n-bit counter with 2n states that can be decoded glitch-free: Gray-code 
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Lecture Summary – Module 3-H 
State Machine Design Examples: Sequence Recognizers 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 580-587 
 
 a sequence recognizer state machine responds to a pre-defined input pattern of signal assertions 

and produces corresponding output signal assertions 
 use of Moore model generally preferred 
 special states 

o final state of accepting sequence (pattern being recognized) 
o trap state 

 
 simple embedded sequence recognizer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 digital combination lock 

o fixed (“hard wired”) combination 
o three input signals 

 X – combination data 
 R – (synchronous) relock 
 RESET – asynchronous reset (only way out of trap state) 

o three output signals 
 LOCKED 
 UNLOCKED 
 ALARM 

o Moore model 
 (initial) “locked” state 
 six states to accept combo 
 “alarm” state 
 total states needed: 8 

o types of states 
 accepting sequence (entering combination) 
 final state (sequence correctly entered) 
 trap state (error made while entering combination) 
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module dcl(CLK,RST,X,R,LOCKED,UNLOCKED,ALARM); 
   
  input wire CLK, RST, X, R;  
  // X = lock combination data input 
  // R = relock input 
   
  output wire LOCKED, UNLOCKED, ALARM; 
  
  reg [2:0] Q, next_Q; 
  localparam A0 = 3'b000; // Locked 
  localparam A1 = 3'b001; 
  localparam A2 = 3'b010; 
  localparam A3 = 3'b011; 
  localparam A4 = 3'b100; 
  localparam A5 = 3'b101; 
  localparam A6 = 3'b110; // Unlocked 
  localparam A7 = 3'b111; // Alarm 
   
  always @ (posedge CLK, posedge RST) begin 
    if (RST == 1’b1) 
      Q <= 3'b000; 
    else 
      Q <= next_Q; 
  end 

 
  assign LOCKED   = ~Q[2] & ~Q[1] & ~Q[0]; 
  assign UNLOCKED =  Q[2] &  Q[1] & ~Q[0]; 
  assign ALARM    =  Q[2] &  Q[1] &  Q[0]; 
 

 

always @ (R, X) begin 
    case (Q) 
      A0:   if (R==1)       next_Q = A0; 
   else if ((R==0)&(X==0))   next_Q = A7; 
       else if ((R==0)&(X==1))   next_Q = A1; 
    
      A1:   if (R==1)       next_Q = A0; 
 else if ((R==0)&(X==0))   next_Q = A2; 
 else if ((R==0)&(X==1))   next_Q = A7; 
    
      A2:   if (R==1)       next_Q = A0; 
 else if ((R==0)&(X==0))   next_Q = A7; 
 else if ((R==0)&(X==1))   next_Q = A3; 
 
      A3:   if (R==1)            next_Q = A0; 
       else if ((R==0)&(X==0))   next_Q = A7; 
       else if ((R==0)&(X==1))   next_Q = A4; 
    
      A4:   if (R==1)            next_Q = A0; 
       else if ((R==0)&(X==0))   next_Q = A7; 
       else if ((R==0)&(X==1))   next_Q = A5; 
    
      A5:   if (R==1)            next_Q = A0; 
       else if ((R==0)&(X==0))   next_Q = A6; 
       else if ((R==0)&(X==1))   next_Q = A7; 
    
      A6:   if (R==1)       next_Q = A0; 
       else if (R==0)       next_Q = A6; 
    
      A7: next_Q = A7; 
    endcase 
  end 
endmodule 
 


