ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 3
Sequential Logic Circuits

Learning Outcome: an ability to analyze and design sequential logic circuits

Learning Objectives:

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

3-8.
3-9.

3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17. i
3-18.
3-19.
3-20.

3-21.
3-22.
3-23.
3-24.
3-25.
3-26.

3-27.
3-28.
3-29.
3-30.

3-3L.

3-32.
3-33.
3-34.
3-35.
3-36.
3-37. i
3-38.

describe the difference between a combinational logic circuit and a sequential logic circuit
describe the difference between a feedback sequential circuit and a clocked synchronous state machine
define the state of a sequential circuit
define active high and active low as it pertains to clocking signals
define clock frequency and duty cycle
describe the operation of a bi-stable and analyze its behavior
define metastability and illustrate how the existence of a metastable equilibrium point can lead to a random
next state
write present state — next state (PS-NS) equations that describes the behavior of a sequential circuit
draw a state transition diagram that depicts the behavior of a sequential circuit
construct a timing chart that depicts the behavior of a sequential circuit
draw a circuit for a set-reset (“S-R”) latch and analyze its behavior
discuss what is meant by “transparent” (or “data following”) in reference to the response of a latch
draw a circuit for an edge-triggered data (“D”) flip-flop and analyze its behavior
compare the response of a latch and a flip-flop to the same set of stimuli
define setup and hold time and determine their nominal values from a timing chart
determine the frequency and duty cycle of a clocking signal
identify latch and flip-flop propagation delay paths and determine their values from a timing chart
describe the operation of a toggle (“T”) flip-flop and analyze its behavior
derive a characteristic equation for any type of latch or flip-flop
identify the key elements of a clocked synchronous state machine: next state logic, state memory (flip-flops),
and output logic
differentiate between Mealy and Moore model state machines, and draw a block diagram of each
analyze a clocked synchronous state machine realized as either a Mealy or Moore model
outline the steps required for state machine synthesis
derive an excitation table for any type of flip-flop
discuss reasons why formal state-minimization procedures are seldom used by experienced digital designers
draw block diagrams for Moore and Mealy type state machines and explain how each block can be coded in
Verilog
draw a circuit for an oscillator and calculate its frequency of operation
draw a circuit for a bounce-free switch based on an S-R latch and analyze its behavior
design a clocked synchronous state machine and verify its operation
define minimum risk and minimum cost state machine design strategies, and discuss the tradeoffs between
the two approaches
compare state assignment strategy and state machine model choice (Mealy vs. Moore) with respect to PLD
resources (P-terms and macrocells) required for realization
compare and contrast the operation of binary and shift register counters
derive the next state equations for binary “up” and “down” counters
describe the feedback necessary to make ring and Johnson counters self-correcting
compare and contrast state decoding for binary and shift register counters
describe why “glitches” occur in some state decoding strategies and discuss how to eliminate them
identify states utilized by a sequence recognizer: accepting sequence, final, and trap
determine the embedded binary sequence detected by a sequence recognizer




ECE 270 IM:PACT

Introduction to Digital System Design

Lecture Summary — Module 3-A
Bistable Elements

Reference: Digital Design Principles and Practices (4" Ed.), pp. 521-526

e Qverview

o combinational vs. sequential circuits

finite state machine
clock signal
= assertion level

O OO

= period / frequency =

= duty cycle

state of sequential circuit r

state changes occur here

CLK _jf

. frequency =1/t

0 types of sequential circuits

= feedback

= clocked synchronous

e Dbistable elements

o “simplest” sequential circuit

O O0OO0OO0Oo

stable

I":u-.ull 1 F

F metastable

e metastable behavior

F
-
Lr N

Tinl T Tomi2

no inputs (no way of controlling/changing state)
randomly powers up into one state or the other
digital analysis: two stable states
single state variable (Q)

analog analysis: additional quasi-stable state (metastable)

stable

o0 comparable to dropping ball onto smooth hill
0 speed with which ball rolls to one side or the other depends on location it “hits”
o important: if “simplest” sequential circuit is susceptible to metastable behavior, then

clearly ALL sequential circuits are(!)

duty cycle =t/

© 2019 by D. G. Meyer

P

t|3ll=.'l

Q

QL

Transfer functions (“inverter”):
Voutr = T(Vinl)

Voutz = T(Vin2)

Equilibrium points:

Vin1 = Vout2

Vin2 = Voutt

Random noise drives circuit to
stable operating point




ECE 270 IM:PACT

Introduction to Digital System Design

© 2019 by D. G. Meyer

Lecture Summary — Module 3-B
The Set-Reset (S-R) Latch

Reference: Digital Design Principles and Practices (4" Ed.), pp. 526-532

e latches and flip-flops

o flip-flop changes state based on clocking signal
o latch changes its output any time it is enabled

e set-reset (S-R) latch

o0 change bistable into latch by “adding an input” to each inverter (NOR gate)
o0 two inputs
asserting S “sets” the latch state (Q output) to 1

asserting R “resets” the latch state to 0

if both S and R are negated, circuit behaves like bistable (retains its state)

if both S and R are asserted and then negated simultaneously, random next state
e exercise: construct a timing chart for the NOR-implemented S-R latch

0 assume each gate has delay t

o0 write the next state equations for Q and QN

R

S

Q

QM

Q(t+7) =

QN(t+1) =

O create a present state — next state (PS-NS) table and state transition diagram (STD)

Present State | Present Input Next State
Q) ON®) | S® | R | At+r)  ON(T+1)
0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1




ECE 270 IM:PACT

exercise, continued...
0 construct a timing chart based on the initial conditions and given inputs

Introduction to Digital System Design

© 2019 by D. G. Meyer

S
R
Q
QN
o . o L 11 101
exercise: investigate response to the “1-1” input combination
- 00 -2 01
00, 01
10 00
R
dd
° (10)
on 00,10
Present State | Present Input Next State
QM) | ON(®) | S | R® | Q(t+r) | ON(T+7)
. . e Ly 0 0 0 0 1 1
exercise: investigate response to a “glitch 0 0 0 L 0 1
0 0 1 0 1 0
s 0 0 1 1 0 0
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 0
R 0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 0 0
Q 1 0 1 0 1 0
1 0 1 1 0 0
1 1 0 0 0 0
oN 1 1 0 1 0 0
1 1 1 0 0 0
— — 1 1 1 1 0 0

propagation delay — time for an output to respond to an input transition

0 need to specify “path”

o example: ToLH(s-Q) is the rise propagation delay of the Q output in response to assertion

of the S input

o0 note that rise and fall propagation delays are typically different
minimum pulse width requirement (see “glitch” timing chart)



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Q1. For the NOR-implemented SR latch, the
following output combination cannot occur

at any time: A .
A. Q=0, QN=0 %
Q=0, QN=1 ¢ )

B.
C. Q=1, QN=0 t;
D. Q=1, QN=1 °
E. none of the above 1:@

Q2. If the input combination $=0, R=1 is
applied to this circuit, the (steady state)

output will be: " .
. Q=0, QN=0 %
Q=0, QN=1 ; '

A

B. .

C. Q=1,QN=0 f(aa_*@g
D. Q=1, QN=1 [\
E. none of the above WH‘ ©®

Q3. If the input combination S=1, R=0 is
applied to this circuit, the (steady state)

output will be:
. Q=0, QN=0 %
Q=0, QN=1 "

A

B.

C. Q=1,QN=0 ;(.,u e
D. Q=1, QN=1 [\
E. none of the above m,ﬁ? ®

e variations
o0 NAND-implemented S'-R’ latch

Q4. If the input combination $=1, R=1is
applied to this circuit, the (steady state)

output will be: A .
A. Q=0, QN=0 %
Q=0, QN=1 : "

B.

C. @=1, QN=0 ‘e,
D_ Q:‘I, QN:"I m":‘lﬂ o dd

E. none of the above m_i:@ ®

0 NAND-implemented S-R latch with ENABLE (“C”)

5

Q
C—

o]y
=

's|rR|a]q] s’ S
ojojofol alo o (a1
o[o|1]1 1 : :
lo[1]0]0 o[ otd i
o110 R’ R R’
EIRICRE

(1011

l1(1]|0|d| a'= S+RQ
11 ]1]d




ECE 270 IM:PACT

A I

—

»

Introduction to Digital System Design

X(t+1) =

)

AB

Y(t+r) =

@ @

Fresent
State

Presentinput

A(t) B{t)

At) Y(t)

00 01 10

11

00

01

Mext State

10

K[t Y(eT)

11

Q1. For the circuit shown, the following output
combination cannot occur at any time:

A. X=0, Y=0
B. X=0, Y=1
C. X=1,Y=0
D. X=1,Y=1
E

. none of the above

Q3. If the input combination A=1, B=0 is
applied to this circuit, the (steady state)

output will be:

A. X=0, Y=0
X=0, Y=1
X=1,Y=0
X=1, Y=1
unpredictable

moow

Q5. If the propagation delay of each gate is

Q2. If the input combination A=0, B=1 is
applied to this circuit, the (steady state)

output will be:
A. X=0,Y=0
N

. X=0, Y=1
Q4. If the input combination A=0, B=0 is

. X=1,Y=1

B
C. X=1,Y=0
D
E. unpredictable

applied to this circuit, followed immediately

by the input combination A=1, B=1, the
(steady state) output will be:

A. X=0,Y=0 % ; )

B. X=0, Y=1 = .

C. X=1,Y=0

D. X=1,Y=1 . 5 }—_ o
E. unpredictable

© 2019 by D. G. Meyer

10 ns, the minimum length of time that
(valid) input combinations need to be
asserted in order to prevent metastable
behavior is:

A. 10ns a
B. 20 ns

C. 30ns

D. 40 ns s
E. none of the above




ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e transparent D (“data”) latch

(0]

O O0OO0OO0Oo

(a)

just an S-R latch with an inverter between the S and R inputs

basic “memory bit”

called “transparent” (or “data following™) because that what it is (does) when “open”
retains value when enable is negated (latch “closed™)

propagation delay parameters

setup and hold times (what happens if either is violated)

Q cC D Q QM
10 0 1 —o of—
11 1 0 e olo-
oM 0 x lastQ last QN

D (b) (c)

B ,‘ 1[\\ i \ j\ \
c f \ / \ / \
(1) () (2 4 [lis)
|
Q ' L LR it
|— toHL Dy toHLico) J- |— thald
toLHicay tolHiDa) toLHipa) —— oo

Q1. A “D” latch is called transparent because its output:
is always equal to its input

is equal to its input when the latch is closed
is equal to its input when the latch is open
changes state as soon as the latch is clocked
none of the above

mo o >



ECE 270 IM:PACT

Introduction to Digital System Design

© 2019 by D. G. Meyer

Lecture Summary — Module 3-C

Data (D) and Toggle (T) Flip-Flops

Reference: Digital Design Principles and Practices (4" Ed.), pp. 532-535, 541-542

e edge-triggered D flip-flop

0 changes state (“triggers”) on clock edge
0 can be positive (rising) edge triggered or negative (falling) edge triggered
o0 created using two latches cascaded together, that open on opposite clock phases

= input latch “master”
= output latch (“slave”)

characteristic equation: Q* =D
propagation delay parameters
setup and hold times

O O0OO0oOo

° (A [\

triangle = dynamic input indicator (clock)

CLK f \

}

N L

e negative edge-triggered D flip-flop

pLHC)

e edge-triggered D flip-flop with enable

Do——

END—E
] Q

CLK O

c ¢ ofo—OoN
—AD ol—
—»ck alo- CLK
f_
]
\ AT
Lthr.nkj
pHLZ T‘selup
oo D CLE_L @ QM
ooy 0t 0 T
1 i 1 0 —D ol—
X 0 last O last QM —D:)CLK QD_
o X 1 lastQ last QN _
O EN CLK Q oM
o1 § o 1 —° =
0 Q 1 J_ ] 0 —]EN
—=cLk ol
Fc QB aN x 0 § lastQ lastQN
x x 0 lastQ lastQN
o ow 1 last O last QM




ECE 270 IM:PACT

e edge-triggered T (“toggle”) flip-flop
0 toggles state (Q*=Q’) if T inputis 1

0 stays in same state (Q*=Q) if T inputis 0

(0]

characteristic  equation:

synthesize using D flip-flop as “building block™)

— T

— ck QIO

T
Ql—
CLK

Introduction to Digital System Design

© 2019 by D. G. Meyer

T o

Q*: T@Q (Can CLK |—> CLK Q)0—1 QN

Q__

o flip-flop timing parameters

(0]

0O O O o o o

clock pulse width
clock period

clock duty cycle
nominal setup time
nominal hold time
tPLH(C—>Q) = tPLH(C>Q L)

tPHL(C—»Q) = tPHL(C>Q L)

e response of latch vs. flip-flop

3\ [

—OK afp-
5ns
D
CLK
Q
QL
D Q D Qfb— v
>CLK Q cC Q-




ECE 270 IM:PACT

Q1. The duty cycle of the clocking signal is:

A. 20% B. 33% C. 40% D. 67%
E. none of the above

Introduction to Digital System Design

© 2019 by D. G. Meyer

Q2. The nominal setup time provided for the
D flip-flop is:
A. 5ns B. 10ns C. 15ns D. 20ns

E. none of the above

Q3. The nominal hold time provided for the
D flip-flop is:

A. 5ns B. 10ns C. 15ns D. 20ns
E. none of the above

Q5. The tg yc,q) Of the D flip-flop is:

A. 5ns B. 10ns C. 15ns D. 20ns
E. none of the above

Q7. Metastable behavior of an edge-triggered D flip-flop

can be caused by:

A. violating its minimum setup time

requirement

B. violating its minimum hold time requirement
C. violating its minimum clock pulse width

requirement
D. all of the above
. none of the above

Q6. The tpy cq) Of the D flip-flop is:

Q4. The clock pulse width provided for the
D flip-flop is:

A. 5ns B. 10ns C. 15ns D. 20ns
E. none of the above

A. 5ns B. 10ns C. 15ns D. 20ns
E. none of the above

10



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 3-D
Clocked Synchronous State Machine Structure and Analysis

Reference: Digital Design Principles and Practices (4" Ed.), pp. 540-553

e introduction

0 state machine (sequential circuit)

o clocked

o synchronous (all flip flops share common clocking signal)
e state machine basic blocks

O next state (“excitation”) logic

o state memory (flip flops)

0 output logic
e state machine models

o Moore

inputs —————>| Next-state | excitation State current state Output

Logic S Memory > Logic —> outputs
—| G
clock input
clock
signal
0 Mealy
e—
inputs — ——— Next—sftate excitation State current atate Output
Legic  |— Mermary |— —— Logic | ———" cutputs
— F G
clock input
'_3|':'3|“'~ Copyright © 2000 by Prentice Hall, Inc.
signal

I:u._p'.-‘li I'.i-.“.-'::u‘- Principles and Practices, 3

O can map a given state machine into either model
o0 important: how model chosen satisfies the design requirements

e state machine analysis
0 determine next state and output functions
O construct a present state — next state / output table
O draw state transition diagram
0 draw atiming diagram

11



ECE 270 IM:PACT

Introduction to Digital System Design

© 2019 by D. G. Meyer

o example: Mealy machine analysis PS |PI| NS [Output
. Q1 QOJEN|Q1* Q0*] MAX
O 0|00 O 0
O O0l1]0 1 0
O 1100 1 0
O 1|11 O 0
1 0jJ0f1 O 0
1 Of(1(1 1 0
1 1101 1 0
1 1]1({0 O 1
EN_
MAX
9 0
cock [ LT Lf LI L [ O R W A FO
R Y ST G
Q1 ( \ { i
— 1
MAX . g /- -\}_/_\l [\ . 0 .
0 0
0 0
STATE A A B C Cc Cc D D D A A
 example: Moore machine analysis PS_|PI{ NS |Output
o Q1 QO|EN[QI* Q0*| MAXS
utput 0O 0jO0OfO O 0
i R \( e ﬂ ks 0 0|10 1 0
e —_ / 0 100 1 O©
l—[>e | T e b | [ N 0 1|11 0| O
| T 0|01 O] O
@ | 1 0[1[1 1] 0
% - \ ’ . 1 1|01 1 1
| o o 1 11110 O 1
- clk alo—

/
ck— R, 0 |
v

cock [T 1§ Lf LI L
EN / \
g / (‘)

- ) ¥




ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 3-E
Clocked Synchronous State Machine Synthesis

Reference: Digital Design Principles and Practices (4" Ed.), pp. 553-566, 612-625, 682-689

introduction - the creative process

(0}

O O0OO0O0OO0OO0

potentially imprecise description

choose among different ways of doing things
handle special cases

keep track of several ideas in your head

not an algorithm

circuit will perform exactly as designed

no guarantee it will work the first time

state machine design steps

O O

O O0O0O00O0

construct PS-NS/O table and/or STD

minimize “obvious” redundant states

assign state variable combinations

update PS-NS/O table and/or STD accordingly

(choose flip-flop type) — we will use D-type for most designs
(excitation table/equations — not needed for D-type flip flops — why?)
derive output equations

draw logic diagram or realize equations directly in a PLD (using edge-triggered D-type)

derivation of excitation table for an S-R latch

s|rR|ala
3322 ala /s R
APRTEK 0 0 0 d
ot e 0 1.1 0
o015 1.0 01
171 d o
1ol ——
1/1]0]d
11114

derivation of excitation table for a T flip flop

T|a @ QlQ| T
0/0 0O 0/0 0
o111 o111
101\'1'0'1'
1010 o

13



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Q1. Identify which statement concerning state machine
models is true:

A.  Mealy and Moore models that represent equivalent state machines will
always have the same number of states

B. Mealy and Moore models that represent equivalent state machines will
always have a different number of states

C. any Mealy model can be transformed into an equivalent Moore
model, and vice-versa

D. Mealy and Moore models that represent equivalent state machines,
when realized, will exhibit the same observable behavior (i.e., if
placed in a “black box”, their observable behavior would be
indistinguishable)

E.  none of the above

Q2. An FSM design has 212 states; to reduce the number
of flip-flops required by one, you would have to identify
and eliminate redundant state(s).

A 1
8. 2
C. 44
D. 84
E

. none of the above

Q3. Formal state-minimization procedures are seldom used
by most digital designers because:

A there are situations where increasingthe number of states may simplify
the design or reduce its cost

B. the designer can do more to simplify a state machine [than using formal
state-minimization procedures] during the state-assignment phase of the
design

C. by carefully matching state meanings to the requirements of the problem,
experienced digital designers can produce state tables with a minimal or
near-minimal number of states

D. all ofthe above

E. none of the above

Reference: DDPP p. 559 (4= Ed.), p. 461 (5= Ed.)

14



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e blocking vs non-blocking
0 Dblocking statements (out = in)
= the = symbol represents a blocking procedural assignment
= used to model combinational logic
= assignment is done immediately in a single step, new value is used by subsequent

statements
= execution flow within a procedure is blocked until the current assignment is
complete
D Ql, Q2

D Q

CLK
— Pk

0 non-blocking statements (out <= in)

= the <= symbol represents a non-blocking procedural assignment (analogous to a
“clocked operator™)

= used to model sequential logic

= assignment is done in a two steps:
1. the RHS is evaluated immediately
2. the assignment to LHS is postponed until all other evaluations in the current

time step are complete

L 5 g

CLK

—PCLK —P»CLK

e Verilog design guidelines
0 do not mix blocking and non-blocking statements in the same block or procedure
o combinational blocks — use blocking statements
o sequential blocks (registers) — use non-blocking statements

e state machines in Verilog

0 to specify a state machine in Verilog, an always block triggered on edges of the clock and
other asynchronous signals (such as reset) is used.

O registers are assigned next-state values with non-blocking statements

0 next-state values themselves are evaluated in a separate combinational always block or a
dataflow assignment

o differences in macrocell architecture will determine the complexity of state machine that
can be implemented with a given PLD

15



ECE 270 IM:PACT

e differences in macrocell architecture

GAL22V10 Output Logic Macrocell (“OLMC™)

AR
{[[e]
B pin
4 ] 47101 —<3
MU X
cLK—T> 5]
5P
— <
MU X
Note: Flip-flops are used to
create sequential circuits

All OLMC edge-triggered D flip-flops utilize common clock (CLK),

asynchronous reset (AR),

and asynchronous preset (SP) signals

1ISpMACH 4000ZE Macrocell

Shared PT Initialization -
PT o

Power-up
Inftialization

ot aj—

PT E
From Logic ‘I'
e
1~
L2 |
r - -} |
L~ ?I — L 1CE
= —1
Single PT Block GLKD —t ™
Block CLK1
Block CLK2 ———— >
Block CLK3

PT Clock (opticnal) ——s——|

Shared PT Clock ————

e periodic clock

o0 typically based on crystal or R-C time constant

L

—
-

generation circuits

o issues of interest

frequency

duty cycle

transition time (slew rate)
ringing (undershoot / overshoot)
stability (drift / jitter)

driving capability

Introduction to Digital System Design

© 2019 by D. G. Meyer

GAL22V 10 Output Logic Macrocell ("OLMC™)

—

Note: Tri-state

buffer is turned
off to use 11O
AR pinas an input
' 1o
e ] B
/ 4701 |
s Q
MU X
cCLk—P Q

MUX

2:1 multiplexer selects (routes) true/complemented I/O pin or
true/complemented registered feedback to the P-term array

From VO C

|
L—» ToGRP

iIspMACH 4000ZE 1/0O Cell

GOEO—
GOE 1 —
GOE2—
GOE3 —
S 1 1O Bus Maintenance
From ORP
- | . vCCO
vee —  / e
— E(‘_h."_':
v )
»> - - s
From ORP -
Power Guard
Q)
To Macrocell 1
e

é 0 Power Guard Disable Fuse (PGDF)

Block Input Enable (BIE)
{From Block PT)

QUTPUT

For a 1 MHz oscillator, use R1 = 22 M,
R2=22 K, C1=20pF,and C2=10 pF

= skew (based on different physical path lengths) ; 2 I s l I - SUTRUT
o CMOS “ring” oscillator and crystal oscillator circuits T -
Rl RZ

f=(2C(0.4R,, + 0.7R,))" where R,, = (R,R,)/(R:+R,)

16



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

¢ ispMach 4000ZE internal oscillator setup/use

module OscTest(RST, CLK out);
input wire RST;
output reg CLK out;

wire osc_dis, tmr_rst, osc_out, tmr_out;
assign osc_dis 1°bO;
assign tmr_rst 1°bO;

defparam I1.TIMER_DIV = '1048576";
OSCTIMER 11 (.DYNOSCDIS(osc_dis), -TIMERRES(tmr_rst), .OSCOUT(osc_out),
-TIMEROUT(tmr_out));

always @(posedge tmr_out, posedge RST)
begin
if (RST == 1"bl) begin
CLK _out <= 0;
end
else begin
CLK _out <= ICLK out;
end
end

endmodule

e timing diagrams and specifications

clock frequency (f) = 1/t duty cycle =t /(t *t)

CLOCK _/ | .}' : 17

time - time

F

high — low

)| SE—))

, ~ clock
aia period
:ombinational | v0'.r“'“'.!.'0'.'.'.'.'“'. XXXXXX
oulputﬁ AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
timing margin < A -, comb output prop delay

(AAAAKARAARAAL)
flip-flop ==tup and hold times —= ] o ] ....\..

‘Afll]jllllllt‘lll.ill;'ll ‘setup "haold

flip-flop ~ '
Inputs

17



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e event clock generation circuits N . -
Solution: “bounce-free” (or “bounce-less™) switch

o examples of events > . )
implemented using a S.P.D.T. (single pole, double

* pushing button
. Eensor?iring throw pushbutton and an S'R’ latch

0 problem: contact bounce
- *5" Pushbutton Pressed
& (S-R latch set)
b9 g s Yo swu L R J4LS00 DSW )
push *5V
;’%
L SWDL
+5V Pushbutton Bouncing
(S-R latch stays in
JaLsoo SAMe state)
SWU_L R'
H DSW L
push 5V
f E’
[}
N.O.
H | swoL %

/* SR latch for use in switch debouncer on small PLD */

module SR_LATCH(RN, SN, Q, QN);
input wire RN; // active low reset
input wire SN; // active low set
output wire Q; // active high output
output wire QN; // active low output

assign QN = (RN | ~Q);
assign Q = (SN | ~ON);
endmodule

WARNING: This method is only
intended for use on a small

PLD such as a 22V10 device

18



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

/* D flip flop used as bounce-free switch in Verilog */
module DFF_BF(CLK, AR, AP, D, BFC):

input wire CLK; // Clock input for DFF

input wire AR,AP; // Asynchronous Reset and Preset

input wire D; // Data input for DFF

output reg BFC; // Bounce Free Switch output
always @ (posedge CLK, posedge AR, posedge AP) begin

if (AR == 17bl)

eIEZCi;_(gﬁ —= 1°b1) WARNING: This method only works
A for a CPLD, not a small PLD
BFC <= 1;
else
BFC <= D; Here, we are using the D flip-flop as an S-R
end latch by asserting asynchronous reset (AR) and
endmodule asynchronous preset (AP)

/* For a Bounce-Free Switch, these are the changes in DFF:
CLK = 0 and D = 0 as we use AR and AP to control the switch
AR NC -> AR connected to Normally Closed switch contact
AP NO -> AP to Normally Open switch contact

*/

/* Below 1s a sample instance of BFl:

DFF_BF BF1 (.CLK(17b0),.AR(NC),.AP(NO), .D(1’b0), .BFC(out));
*/

Q1. The following passive components can be used as
timing reference to generate a periodic clocking signal:

A. resistor and capacitor combination
ceramic resonator

crystal

all of the above

none of the above

moow

A o
(Ej; 1 < e
: C—"Ki/ N .

Q2. The next state equation represented by
the following state transition diagram is:

A. X* = A"X"+A-X

B. X*=A"X+A-X
C.X¥*=A+X

D. X*=A-X

E. none of the above

19



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 3-F
State Machine Design Examples: Sequence Generators

Reference: Digital Design Principles and Practices (4" Ed.), pp. 566-576

e asequence generator state machine produces a (periodic) series of output signal assertions that
constitute a pre-defined pattern
e two different design strategies
0 minimum cost (don’t cares in next states are allowed)
o minimum risk (unused states explicitly assigned a next state)
e character sequence display — displays AbC or CbS on a 7-segment display (Moore model)

Q Q A=1110110 b =0011111

CJr]IS, 11 - 10
HEEd 4 S=1011011 / 1 ~\ €=1001110
states v \—/

module tv_disp(CLK, M, Q, nL);
input wire CLK;
input wire M; // Mode control
output reg [1:0] Q;
output wire [6:0] nL;
reg [6:0] L; // L[6] = LA, L[5] = LB, .. L[O] = LG
reg [1:0] next Q;
assign nL = ~L; // Active-low outputs on L
always @ (posedge CLK) begin
Q <= next_Q;
end
always @ (Q, M) begin
case({Q.M})

3"b000: next Q = 2"b01;
3"b001: next Q = 2"b10;
3"b010: next Q = 2"b10;
3"b011: next Q = 2"b11;
3"b100: next Q = 2"b00;
3"b101: next Q = 2"b01;
3"b110: next Q = 2"b00;
3"b111: next Q = 2"b10;

endcase

case (Q)
2"b00: L = 7"b1110111; // Character A
2"b01: L = 7"b0011111; // Character b
2"b10: L = 7"b1001110; // Character C
2"b11: L = 7"b1011011; // Character S

endcase

end
endmodule

20



ECE 270 IM:PACT

e 4-mode light sequencer — Moore model

Introduction to Digital System Design

01,11

© 2019 by D. G. Meyer

module moorelsA(CLK, M, Q, L);

input wire CLK;
input wire [1:0] M; // Mode select

// Input clock

(A4 |
110
A4
100 110
PS PI NS PO
Q2 Q1 Q0 | M1 MO | Q2* Q1* QO* | L2 L1 LO
0 0 O 0 0 0 0 1 0 0 0
0o 1 0o 1 1
1 0 0o 0 1
1 1 0o 1 1
0 0 1 0 o0 0 1 o0 1 0 0
0o 1 0 0 0
1 0 1 0 0
1 1 0 0 0
0 1 0 0 0 0 1 1 0 1 0
0o 1 0o 0 1
1 0 0 0 0
1 1 0 0 O
0 1 1 0 0 0 0 O 0 0 1
0o 1 0 1 o0
1 0 0 0 0
1 1 1 1 0
1 0 o0 0 o0 0 0 O 1 1 0
0o 1 0 0 O
1 0 1 0 1
1 1 0 0 O
1 0 1 0 0 0 0 O 1 1 1
0o 1 0 0 O
1 0 0 0 O
1 1 0 0 O
1 1 0 0 0 0 0 O 0 1 1
0o 1 0 0 O
1 0 0 0 O
1 1 1 0 1
1 1 1 0 o0 0 0 O 0 0 O
0o 1 0 0 O
1 0 0 0 O
1 1 0 0 O

output reg [2:0] L;
output reg [2:0] Q;
reg [2:0] next_Q;
always @ (posedge CLK) begin
Q <= next_Q;
end
always @ (Q, M) begin
case ({Q,M}
5"b00000: next_Q = 3"b001;
5°b00001: next Q = 3"b011;
5"b00010: next_Q = 3"b001;
5"b00011: next_Q = 3"b011;
5"b00100: next_Q = 3"b010;
5°b00101: next_Q = 3"b000;
5"b00110: next_Q = 3"b100;
5"b00111: next_Q = 3"b000;
5"b01000: next_Q = 3"b011;
5"b01001: next_Q = 3"b001;
5°b01010: next_Q = 3"b000;
5"b01011: next_Q = 3"b000;
5"b01100: next_Q = 3"b000;
5"b01101: next_Q = 3"b010;
5°b01110: next_Q = 3"b000;
5"b01111: next_Q = 3"bl110;
5"b10000: next_Q = 3"b000;
5"b10001: next_Q = 3"b000;
5"b10010: next_Q = 3"b101;
5"b10011: next_Q = 3"b000;
5"b10100: next_Q = 3"b000;
5"b10101: next_Q = 3"b000;
5"b10110: next_Q = 3"b000;
5"b10111: next_Q = 3"b000;
5"b11000: next_Q = 3"b000;
5"b11001: next_Q = 3"b000;
5"b11010: next_Q = 3"b000;
5"b11011: next Q = 3"b1l01;
5"b11100: next_Q = 3"b000;
5"b11101: next_Q = 3"b000;
5"b11110: next_Q = 3"b000;
5%"b11111: next_Q = 3"b000;
endcase
end
always @ (Q) begin
case(Q)
3"b000: L = 3"b000;
3"b001: L = 3"b100;
3"b010: L = 3"b010;
3"b011: L = 3"b001;
3"b100: L = 3"b110;
3"b101: L = 3"b111;
3"b110: L = 3"b011;
3"b111: L = 3"b000;
endcase
end
endmodule

This realization uses 6 macrocells

21




ECE 270 IM:PACT

Introduction to Digital System Design

© 2019 by D. G. Meyer

e check alternate state/output assignments (where output functions are the state variables)

module moorelsB(CLK, M, Q);
input wire CLK; // Input clock
input wire [1:0] M; // Mode select
output reg [2:0] Q; // serve as L2
reg [2:0] next_Q;
always @ (posedge CLK) begin

Q <= next_Q;

end

always @ (Q, M) begin
case({Q,M}P)

5"b00000: next_Q = 3"b100;
5"b00001: next_Q = 3"b001;
5"b00010: next_Q = 3"b100;
5"b00011: next_Q = 3"b001;
5"b00100: next_Q = 3"b000;
5"b00101: next_Q = 3"b010;
5"b00110: next_Q = 3"b000;
5"b00111: next_Q = 3"b011;
5"b01000: next_Q = 3"b001;
5"b01001: next_Q = 3"b100;
5"b01010: next_Q = 3"b000;
5"b01011: next_Q = 3"b000;
5"b01100: next_Q = 3"b000;
5"b01101: next_Q = 3"b000;
5"b01110: next_Q = 3"b000;
5"b01111: next_Q = 3"b111;
5"b10000: next_Q = 3"b010;
5"b10001: next_Q = 3"b000;
5"b10010: next_Q = 3"b110;
5"b10011: next_Q = 3"b000;
5"b10100: next_Q = 3"b000;
5"b10101: next_Q = 3"b000;
5"b10110: next_Q = 3"b000;
5"b10111: next_Q = 3"b000;
5"b11000: next_Q = 3"b000;
5"b11001: next_Q = 3"b000;
5"b11010: next_Q = 3"b111;
5"b11011: next_Q = 3"b000;
5"b11100: next_Q = 3"b000;
5"b11101: next_Q = 3"b000;
5"b11110: next_Q = 3"b000;
5"b11111: next_Q = 3"b000;
endcase
end
endmodule

L1 LO

module moorelsB_sd(CLK, M, Q);
// Input clock

input wire CLK;
input wire [1:0] M
output reg [2:0] Q;
reg [2:0] next Q;

// State decalarations

localparam A0 = 3"b000;
localparam A1 = 3"b001;
localparam A2 = 3"b010;
localparam A3 = 3"b011;
localparam A4 = 3"b100;
localparam A5 = 3"b101;
localparam A6 = 3"b110;
localparam A7 = 3"b111;

// Mode select

always @ (posedge CLK) begin

AO;

en

Q <= next_Q;
end
always @ (Q) begin
case (Q)
AO: begin
if (M == 2"b00) next Q = A4;
else if (M == 2°b01) next Q = Al;
else if (M == 2"b10) next Q = A4;
else If (M == 2"b11) next Q = Al;
end
Al: begin
it (M == 27b00) next_Q = AO;
else if (M == 2°b01) next Q = A2;
else if (M == 2’b10) next _Q = AO;
else if (M == 2°b11l) next Q = A3;
end
A2: begin
it (M == 27b00) next_Q = Al;
else if (M == 2°b01) next_Q = A4;
else if (M == 2°b10) next_Q = AO;
else if (M == 2°b11) next Q = AO;
end
A3: begin
if (M == 2"b00) next Q =
else if (M == 2°b01) next_Q = AO;
else if (M == 2"b10) next_Q = AO;
else if (M == 2"b11) next_Q = A7;
end
A4: begin
if (M == 2"b00) next Q = A2;
else if (M == 2°b01) next _Q = AO;
else if (M == 2°b10) next _Q = A6;
else if (M == 2"b11) next_Q = AO;
end
A5: next_Q = AO;
A6: begin
if (M == 2"b00) next Q = AO;
else if (M == 2"b01) next Q = AO;
else if (M == 2°b10) next_Q = A7;
else if (M == 2"b11) next_Q = AO;
end
AT7: next_Q = AO;
endcase
end
dmodule

Both realizations (clocked operator table and state diagram) use 3 macrocells

22




ECE 270 IM:PACT

e Mealy model

Introduction to Digital System Design

© 2019 by D. G. Meyer

PS Pl NS PO
at Q1 QO M1 MO Q1* QO* L2 L1 LO
000 0 0 0 o0 0 1 0 0 o
0 1 0 0 0
000 1 0 0 1 0 0 0
1 1 0 0 0
wr / \ o1 R S I
_— 0 1 1 0 0
100 111 1 0 1 0 1 0 0
1 1 1 1 1
1 0 0 0 1 1 0 1 0
001 d 0o 1 0o 1 o0
1 1 1 1 0
0;\\:3\\ l///:;° i 2 o 1 1
1 1 0 0 0 0 0 0 1
010’ 110 o 1 o o0 1
1 0 0 0 1 1 1
&, 1 1 o o0 1
010 011
module mealylsa(CLK, M, Q, L); 4*p0100: nQL = {2"b10,3"b100};
4*p0101: nQL = {2"b00,3"b100};
input wire CLK; // Clock input 4"b0110: nQL = {2"b10,3"b100};
input Wire [%QO%]Mi // Mode select 4"pb0111: nQL = {2"b00,3"b111};
output wire :
output reg [1:0] Q; 4"b1000: nQL = {2"b11,3"b010};
wire [1:0] rext 0: 47b1001: nQL = {2°b01,3"b010};
- Xt_N- 4"p1010: nQL = {2"b11,3"b110};
{ngig 54L§] nQL; /7 vector of 4"b1011: nQL = {2"b01,3"b001};
i, 4*p1100: nQL = {2"b00,3"b001};
a'gaZ§ geigog?dge CLK) begin 47b1101: nQL = {27b10,3"b001};
End -7 4*p1110: nQL = {2"b00,3"b111};
4*pb1111: nQL = {2"b10,3"b001};
assign next_Q = nQL[4:3]; endcase
assign L = nQL[2:0]; end
always @ (Q, M) begin endmodule
case ({Q,.MP
4"b0000: nQL = {2"b01,3"b000};
4*b0001: nQL = {2"b11l,3"b000};
4"b0010: nQL = {2"b01,3"b000};
4"b0011: nQL = {2"b11l,3"b000};
This realization uses 5 macrocells

23




ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

e check alternate Mealy state/output assignments 00 » dd
module mealylsb(CLK, M, L); 1d 000
100 111
input wire CLK; // Clock input

input wire [1:0] M; // Mode select

output wire [2:0] L;

dD,d1
reg [1:0] Q; 100 001
wire [1:0] next_Q; od 10 11 10

010~ 110 011
// vector of {next Q,L}
reg [4.0] nQL' module mealylsb_sd(CLK, M, L, Q);
input wire CLK; // Clock input
i input wire [1:0] M; // Mode select
alwazf ge(gos?dge CLK) begin i e T
Q - X __Q’ output reg [1:0] Q;
end
reg [1:0] next_Q;
assign next_Q = nQL[4:3]; // State declarations
assign L = nQL[Z:O]; localparam AO = 2"b00;
localparam Al = 2°b01;
_ localparam A2 = 2"b10;
always @ (Q, M) begin localparam A3 = 2°bll;

case ({Q,M})
4"b0000: nQL
4*b0001: nQL
4*b0010: nQL

{2'b01,3'b000}; alga)(li g)e)((gig?dge CLK) begin

{2"b01,3"b000}; end
{2"b01,3"b000}; always @ (Q) begin

4°b0011: nOL = {27b01.3"b000}: o s ) o (e
4*p0100: nQL = {2"b10,3"b100}; ﬁg mmg% =£?

- - — - - - . hex = 5
4"p0101: nQL = {2"b10,3"b001}; far et o = nor
4*p0110: nQL = {2"b10,3"b100}; endcase
4*pb0111: nQL = {2"b10,3"b001}; e?d W bedi
4"H1000: nOL = {2°b11,3"b010}: alvaye %QM})) =g
4*p1001: nQL = {2"b11,3"b010}; 47b0000: L = 37b000;
4"b1010: nQL = {2"b11,3"b110}; 47b0001: L = 37b000;
47b1011: nQL = {2°b11,3"b011}; 4°b011: L = 3+b000:
4"b1100: nQL = {2"b00,3"b001}; 47b0100: L = 37b100;
47b1101: nQL = {2°b00,3"b100}; Ao110: [ = 3bags:
4"b1110: nQL = {2"b00,3"b111}; 4"b0111: L = 37b001:
4"pb1111: nQL = {2"b00,3"b111}; j:ﬁﬁg% tf gxgi&

endcase 47b1010: L = 37b110:
end 47b1011: L = 37b0O11;
4"p1100: L = 3"b001;
4"b1101: L = 3"b100;
endmodule 4"p1110: L = 3"blll;
4"p1111: L = 3"b111;
endcase
end
endmodule

Both realizations (clocked operator table and state diagram) use 5 macrocells

e conclusions
0 choosing the “right” state variable assignment and machine model can make a significant
difference in the PLD resources consumed and the amount of work required
o0 the only formal way to find the “best” assignment is to try all of the assignments
0 experience is needed to do this well (see text for guidelines)
0 there is no substitute for practice (developing “applied intuition™)

24



ECE 270 IM:PACT

Q1. When M=0, the
(repeating) colored LED
sequence produced will be:

A.

moow

Introduction to Digital System Design

input wire CLK;
input wire M;

reg [5:0] nQRGYB;

Q <= next_Q;
end
assign next_Q
assign {R,G,Y,B}

case ({Q.M})

3"b010: nQRGYB
3"b011: nQRGYB
3"b100: nQRGYB
3"b101: nQRGYB

endcase
end
endmodule

/* Multi-Color LED Light Machine */
module mcleds(CLK, M, R, G, Y, B);

output wire R, G, B, Y;
reg [1:0] Q, next_Q;

always @ (posedge CLK) begin

NQRGYB[5:4]
NQRGYB[3:0];
always @ (Q, M) begin

3"b000: nQRGYB = {2°b10,4"b1000};
3"b001: nQRGYB = {2"b11,4"b1000};
{2"b11,4"b0010};
{2"b00,4"b1111};
{2"b01,4"b0100};
{2"b01,4"b1110};
3"b110: nQRGYB = {2"b00,4"b0001};
3"b111: nQRGYB = {2"b10,4"b1100};

R->G-H» /—»>B-...
R—> /—»>G-H>B-...
B> /—»>G-HoR-...
B->G—-> /—>R-H...
none of the above

Q2. When M=1, the
(repeating) colored LED
sequence produced will be:

A.

B.
C.
D
E

R->RG 'BH5RG '->RG—..
R->RG-RG '-5RG /B-...
RG 'B5RG '-5RG-HR—...
R->RG '5RG-H-RG /B-...

none of the above

© 2019 by D. G. Meyer

25



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 3-G
State Machine Design Examples: Counters and Shift Registers

Reference: Digital Design Principles and Practices (41" Ed.), pp. 710-721, 727-736

e the term counter is used for any clocked sequential circuit whose state diagram contains a
single cycle

0 the modulus of a counter is the number of states in the cycle — a counter with M states is
called a modulo-M counter (or sometimes a divide-by-M counter)

o asynchronous counter connects all of its flip-flop clock inputs to the same common
CLOCK signal, so that all the flip-flop outputs change state simultaneously

o UP counter K" bit next state: Qx* = Qk @ (Qk-1 * Qk-2°... * Q1 * Qo)

o DOWN counter K" bit next state: Qk* = Qx ® (Q'k-1* Q'k-2°... * Q"1 * Q'o)

o Verilog program for 8-bit UP/DOWN counter

module count8u(CLK, Q);

input wire CLK;
output reg [7:0] Q

reg [7:0] next_Q;

always @ (posedge CLK) begin
Q <= next_Q;

end

always @ (Q) begin

next_Q[0] = ~Q[0O];
next_Q[1] = Q[1] ~ Q[O];
next_Q[2] = Q[2] ~ (Q[1] & Q[OD);
next_Q[3] = Q[3] ~ (Q[2] & Q[1] & Q[OD);
next_Q[4] = Q[4] ~ (Q[3] & Q[2] & Q[1] & Q[OD);
next_Q[5] = Q[5] ~ (Q[4] & Q[3] & Q[2] & Q[1] & Q[O]);
next_Q[6] = Q[6] ~ (Q[5] & Q[4] & Q[3] & Q[2] & Q[1] & Q[0]);
gext_Q[7] = Q[71 ~ (QL6] & QI5] & Q[4] & QI31 & Q[2]1 & Q[11 & QLOI1):;
en
endmodule

o Verilog program for 8-bit resettable UP counter

module rcnt8U(CLK, R, Q);
input wire CLK;
input wire R; // Synchronous Reset
output reg [7:0] Q;
reg [7:0] next_Q;
always @ (posedge CLK) begin
Q <= next_Q;
end

// If R =1, counter resets to O on the next clock edge
always @ (Q) begin
if (R == 1°bl) begin
next_Q = 8"b00000000;

end
else begin
next_Q[0] = ~Q[O0];
next_Q[1] = Q[1] ~ Q[O]:
next_Q[2] = Q[2] ~ (Q[1] & Q[01):
next_Q[3] = Q[3] ~ (Q[2] & Q[1] & Q[OD):;
next_Q[4] = Q[4]1 ~ (QI[3] & Q[2] & Q[1] & Q[O1);
next_Q[5] = Q[5] ~ (QI[4] & Q[3] & Q[2] & Q[1] & Q[O1);
next_Q[6] = Q[6] ~ (QI5]1 & Q[4] & Q3] & Q[2] & Q[1] & Q[O]):
gext_Q[7] = Q[71 ~ (QI&] & QI5] & Q41 & QI3] & Q[2] & Q[1] & QI[OD;
en
end

endmodule 26




ECE 270 IM:PACT

Introduction to Digital System Design

© 2019 by D. G. Meyer

0
Which Verilog program realizes this state machine?
/* Program (A) */ /* Program (C) */
module CQ(CLK, M, Q); module CQ(CLK, M, Q);
input wire CLK, M; input wire CLK, M;
output reg [2:0] Q; output reg [2:0] Q;
reg [2:0] next_Q; reg [2:0] next Q; )
always @ (posedge CLK) begin always @ (posedge CLK) begin
Q <= next_Q; 8 <= next Q;
- en
end _
_ alwa @ (Q, M) begin
next_ =~ ; t Q[1] = Q1] ~ (~M&~Q[O
next_Q[1] = ~Q[1] ™ (~M&-Q[0] | M&Q[O1); next-QLi] L« M& QIIEO%)!
t Q[2] = ~Q[2] ~ (~M&~Q[1]1&~Q[O next Q[2] = Q[2] ~ (~M&-Q[1]&~Q[O]
nextol2l oLzl =« M& 8%1%& 8%0%)! M& Q[1]& QLOD)
end end
endmodule endmodule

/* Program (B) */
module CQ(CLK, M, Q);
input wire CLK, M;
output reg [2:0] Q;
reg [2:0] next Q;
always @ (posedge CLK) begin

Q <= next_Q;
end
always @ (Q, M) begin
next_Q[0] = ~Q[O];
next Q[1] = Q[1] ™ (~M&[O] | M&~Q[O]);
next_Q[2] = Q[2] ™ (-M& Q[1]& Q[O] |
M&~Q[1]1&~Q[01);
end
endmodule

/* Program (D) */
module CQ(CLK, M, Q);
input wire CLK, M;
output reg [2:0] Q;
reg [2:0] next_Q;
always @ (posedge CLK) begin
Q <= Q + 1;
end
endmodule

(E) none of the above

27




ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

¢ ashift register whose state diagram is cyclic is called a shift-register counter (i.e., does not count
l‘upll Or “dOWn")
o self-correcting ring counter

o self-correcting Johnson counter

28



ECE 270 IM:PACT

e state decoding
0 ring —none (“one hot”), glitch-free

Introduction to Digital System Design

© 2019 by D. G. Meyer

CLOCK | | |
Qo
Q1 \
Q2
Q3
STATE S1 S2 i

5S4

|

S1

0 Johnson - 2n two-input AND or NAND gates, glitch-free

b

Qo / \ ! "

Q1 / : \ 1

/ T\

Q3 _ / :
S1=Q0’* Q3' S5=Q0 * Q3
S$2=Q0 - Q1’ S6=Q0" Q1
S3=Q1+ Q2 S7=Q1'* Q2

0 comparison with binary counter state decoding — not glitch-free

CLOCK_L

L

L

SO_L ¥

53

seL ¥
S7.L /
COUNT 0 1 2 3 4

0 n-bit counter with 2" states that can be decoded glitch-free: Gray-code

29



ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

Lecture Summary — Module 3-H
State Machine Design Examples: Sequence Recognizers

Reference: Digital Design Principles and Practices (4" Ed.), pp. 580-587

e asequence recognizer state machine responds to a pre-defined input pattern of signal assertions
and produces corresponding output signal assertions
e use of Moore model generally preferred

e special states
o final state of accepting sequence (pattern being recognized)
o trap state

e simple embedded sequence recognizer
ﬁssuming the state machine is initialized to state 00\
determine the ot t seqt e generated in response

to the following mput sequence 1 1 0 1 0 0 0 1 0 O

Determine the embedded binary sequence recognized
w this state machine: 010 /

digital combination lock
o fixed (*hard wired”) combination
o three input signals
= X - combination data
= R - (synchronous) relock
= RESET -asynchronous reset (only way out of trap state)
0 three output signals

= LOCKED
= UNLOCKED
= ALARM

o Moore model

= (initial) “locked” state

six states to accept combo
“alarm” state
total states needed: 8

O types of states

accepting sequence (entering combination)
final state (sequence correctly entered)
trap state (error made while entering combination)

30



ECE 270 IM:PACT

Introduction to Digital System Design

Combination: 101110

F

1d
06;\\00J/Er

' 1d 1

1d
01,011

Od

_ 10
000 000 ) 0?2//
91 00 J/bo 01
01 00!
110, /101 700
010 / oo\ 000 /“ 01\ 000
1d T1d 1d

© 2019 by D. G. Meyer

module dcl(CLK,RST,X,R,LOCKED,UNLOCKED,ALARM) ;

input wire CLK,
// X
// R

RST, X, R;

lock combination data input
relock input

output wire LOCKED, UNLOCKED, ALARM;

reg [2:0] Q, next_Q;

localparam AO = 3"b000; // Locked
localparam Al = 3"b001;

localparam A2 = 3"b010;

localparam A3 = 3"b011;

localparam A4 = 3"b100;

localparam A5 = 3"b101;

localparam A6 = 3"b110; // Unlocked
localparam A7 = 3"b111; // Alarm

always @ (posedge CLK, posedge RST) begin
if (RST == 1°bl)

Q <= 3"b000;
else
Q <= next_Q;
end

assign LOCKED
assign UNLOCKED
assign ALARM

~Q[2] & ~Q[1] & ~Q[O];
Q[2] & Q[1] & ~Q[O];
Q[2] & Q1] & Q[O];

always @ (R, X) begin

case (Q)
AO:

else
else

Al:
else
else

A2:
else
else

A3:
else
else

A4:
else
else

A5:
else
else

A6:
else

if (R==1)
if ((R==0)&(X==0))
if ((R==0)&(X==1))

if (R==1)
if ((R==0)&(X==0))
if ((R==0)&(X==1))

if

(R==1)

if ((R==0)&(X==0))
if ((R==0)&(X==1))

if
if
if

if
if
if
if
if
if
if
if

(R==1)
((R==0)&(X==0))
((R==0)&(X==1))

(R==1)
((R==0)&(X==0))
((R==0)&(X==1))

(R==1)
((R==0)&(x==0))
(R==0)&(x==1))

(R==1)
(R==0)

A7: next_Q = A7;

endcase
end
endmodule

next_Q = AO;
next_Q = A7;
next Q = Al;
next_ Q = AO;
next_Q = A2;
next Q = A7;
next_Q = AO;
next_Q = A7;
next_Q = A3;
next_Q = AO;
next_Q = A7;
next_Q = A4;
next_Q = AO;
next Q = A7;
next_Q = A5;
next_Q = AO;
next Q = AG6;
next_Q = A7;

next_Q = AO;
next Q = A6;

31



