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Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2

Combinational Logic Circuits

 DISCRETE LOGIC – a circuit constructed 
using small-scale integrated (SSI) and 
medium-scale integrated (MSI) logic 
devices (NAND gates, decoders, 
multiplexers, etc.)

 PROGRAMMABLE LOGIC DEVICE (PLD) –
an integrated circuit onto which a generic 
logic circuit can be programmed (and 
subsequently erased and re-programmed)

 GENERIC ARRAY LOGIC (GAL) – a 
(legacy) flash memory based PLD, which is 
typically erased and re-programmed out-
of-circuit

 COMPLEX PLD (CPLD) – large flash 
memory based PLD that is programmable 
in-circuit

Glossary of Common Terms
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 isp (IN-SYSTEM PROGRAMMING) – prefix 
used on CPLDs that can be erased and re-
programmed in-circuit

 FIELD PROGRAMMABLE GATE ARRAY 
(FPGA) – an SRAM-based PLD that can be 
programmed in-circuit (no need to “erase” 
since SRAM-based)

 ADVANCED BOOLEAN EXPRESSION 
LANGUAGE (ABEL) – a “classic” hardware 
description language (HDL) for specifying the 
behavior of PLDs

 VHDL and VERILOG – advanced hardware 
simulation and description languages

Glossary of Common Terms
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Module 2
 Learning Outcome: “An ability to analyze and design 

combinational logic circuits”
A. Combinational Circuit Analysis and Synthesis
B. Mapping and Minimization
C. Timing Hazards
D. XOR/XNOR Functions
E. Programmable Logic Devices
F. Hardware Description Languages
G. Combinational Building Blocks: Decoders
H. Combinational Building Blocks: Encoders and Tri-State Outputs
I. Combinational Building Blocks: Multiplexers
J. Top Level Modules
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Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-A

Combinational Circuit Analysis and Synthesis

Reading Assignment:
DDPP 4th Ed. pp. 196-210, 5th Ed, pp. 100-117

Learning Objectives:
 Identify minterms (product terms) and maxterms (sum terms)

 List the standard forms for expressing a logic function and give 
an example of each: sum-of-products (SoP), product-of-sums 
(PoS), ON set, OFF set

 Analyze the functional behavior of a logic circuit by constructing 
a truth table that lists the relationship between input variable 
combinations and the output variable

 Transform a logic circuit from one set of symbols to another 
through graphical application of DeMorgan’s Law

 Realize a combinational function directly using basic gates (NOT, 
AND, OR, NAND, NOR)

6
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Outline
 Overview
 Definitions
 Minterm identification
 Maxterm identification
 ON Sets and OFF sets
 Combinational circuit analysis
 Equivalent symbols
 Combinational circuit synthesis
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Overview
 We analyze a combinational logic circuit by obtaining a 

formal description of its logic function
 Once we have a description of the logic function, we can:

– determine the behavior of the circuit for various input 
combinations

– manipulate an algebraic description to suggest 
different circuit structures

– transform an algebraic description into a standard form 
(e.g., sum-of-products for PLD implementation)

– use an algebraic description of the circuit’s functional 
behavior in the analysis of a larger system that 
includes the circuit

8

Definitions
 Definition: A combinational logic circuit is one whose 

output depend only on its current combination of input 
values (or “input combination”)

 Definition: A logic function is the assignment of “0” or 
“1” to each possible combination of its input variables

X1
X2

Xn

f  (X1,X2, … , Xn)
.
.
.
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No Feedback

f

Definitions
 Definition: A literal is a variable or the complement of 

a variable

 Definition: A product term is a single literal or a logical 
product of two or more literals 

 Definition: A sum-of-products expression is a logical 
sum of product terms 

 Definition: A sum term is a single literal or a logical 
sum of two or more literals 

 Definition: A product-of-sums expression is a logical 
product of sum terms

10

Examples

W, X, Y Literals

W  X  Z       Product Term

X  Y + W  Z    Sum of Products Expression

X + Y + Z Sum Term

(X + Y)  (W + Z)   Product of Sums Expression

11

Definitions
 Definition: A normal term is a product or sum term in which 

no variable appears more than once

 Definition: An n-variable minterm is a normal product term 
with n literals

 Definition: An n-variable maxterm is a normal sum term 
with n literals

 Definition: The canonical sum of a logic function is a sum 
of minterms corresponding to input combinations for which 
the function produces a “1” output 

 Definition: The canonical product of a logic function is a 
product of maxterms corresponding to input combinations 
for which the function produces a “0” output

12
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Minterm Identification
0 → complemented
1 → true

13

Maxterm Identification
0 → true
1 → complemented

14

ON Sets and OFF Sets
 Definition: The minterm list that “turns on” an output 

function is called the on set
 Example: X,Y,Z(0,1,2,3)

 Definition: The maxterm list that “turns off” an output 
function is called the off set

 Example: X,Y,Z(4,5,6,7)

15

Indicates “sum” (of products)

Rows of truth table that are “1”

Indicates “product” (of sums)

Rows of truth table that are “0”

Example

Based on the truth table, 
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

_______________________________________________
16

Example

Based on the truth table, 
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

_______________________________________________

X,Y,Z(0,3,6,7)

17

Example

Based on the truth table, 
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

_______________________________________________

X,Y,Z(0,3,6,7)

X,Y,Z(1,2,4,5)

18
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Example

Based on the truth table, 
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

_______________________________________________

X,Y,Z(0,3,6,7)

X,Y,Z(1,2,4,5)

X’•Y’•Z’ + X’•Y•Z + X•Y•Z’ + X•Y•Z

19

Example

Based on the truth table, 
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

_______________________________________________

X,Y,Z(0,3,6,7)

X,Y,Z(1,2,4,5)

X’•Y’•Z’ + X’•Y•Z + X•Y•Z’ + X•Y•Z

(X+Y+Z’)•(X+Y’+Z)• (X’+Y+Z)•(X’+Y+Z’)
20

Clicker Quiz

21

1. The ON set for a 3-input NAND gate 
(with inputs X, Y, and Z) is:
A. X,Y,Z(7)

B. X,Y,Z(0)

C. X,Y,Z(0,1,2,3,4,5,6)

D. X,Y,Z(1,2,3,4,5,6,7)

E. none of the above

22

X Y Z FNAND(X,Y,Z)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

2. The OFF set for a 3-input NOR gate 
(with inputs X, Y, and Z) is:
A. X,Y,Z(7)

B. X,Y,Z(0)

C. X,Y,Z(0,1,2,3,4,5,6)

D. X,Y,Z(1,2,3,4,5,6,7)

E. none of the above

23

X Y Z FNOR(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

3. If the function F(X,Y,Z) is represented by the      
ON SET X,Y,Z(0,3,5,6), then the complement
of this function F(X,Y,Z) is represented by the 
ON SET:

A. X,Y,Z(0,3,5,6)

B. X,Y,Z(1,2,4,7)

C. X,Y,Z(1,2,4,6)

D. X,Y,Z(1,3,5,7)

E. none of the above

24

X Y Z F (X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

X Y Z F (X,Y,Z)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1
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4. If the function F(X,Y,Z) is represented by the  
ON SET X,Y,Z(0,3,5,6), then the dual of this 
function FD(X,Y,Z) is represented by the ON SET:

A. X,Y,Z(0,3,5,6)

B. X,Y,Z(1,2,4,7)

C. X,Y,Z(1,2,4,6)

D. X,Y,Z(1,3,5,7)

E. none of the above

25

X Y Z F (X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

X Y Z FD (X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

DUAL truth table rule: 
“flip and complement”

Example - Combinational Analysis 

0

0
0

1 1
0

1

1
0

0

26

0

0
1

1 1
1

1

0
0

1

27

Example - Combinational Analysis

0

1
0

0 0
0

1

1
1

1

28

Example - Combinational Analysis

Example - Combinational Analysis

0

1
1

0 0
0

1

0
0

0

29

1

0
0

1 1
0

0

1
0

0

30

Example - Combinational Analysis
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1

0
1

1 1
1

0

0
0

1

31

Example - Combinational Analysis

1

1
0

0 1
0

0

1
0

0

32

Example - Combinational Analysis

1

1
1

0 1
1

0

0
0

1

33

Example - Combinational Analysis

The “on set” of this function 
is  f (X,Y,Z) = X,Y,Z(1,2,5,7)

The canonical sum of this function is  

f (X,Y,Z) = XYZ + XYZ + XYZ 
+ XYZ

Truth Table

34

Example - Combinational Analysis

The “off set” of this function 
is f (X,Y,Z) = X,Y,Z(0,3,4,6)

The canonical product of this function is 
f (X,Y,Z) = (XYZ) (XYZ)(XYZ)
(XYZ)

35

Example - Combinational Analysis

Writing the function implemented 
by this circuit “directly” yields 

f (X,Y,Z) = ((X+Y)Z) + (XYZ) =       

XZ + YZ + XYZ
36

Example - Combinational Analysis
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The expression

f (X,Y,Z) = XZ + YZ + XYZ
corresponds to a different circuit
(“two-level AND-OR”) for the 
same logic function

37

Example - Combinational Analysis Example – Equivalent Symbols

Recall that an equivalent symbol can 
be drawn for a gate by taking the dual
of the operator and complementing all 
of its inputs and outputs

38

Step 1: Starting at the “output end”, replace 
the “OR” gate with an AND gate that has its 
inputs and outputs complemented

39

Example – Equivalent Symbols

Step 2: Migrate the “inversion bubbles”, 
as appropriate, by applying involution

Note: A two-level AND-OR circuit is equivalent 
to a two-level NAND-NAND circuit!

40

Example – Equivalent Symbols

Summary
 There are numerous ways a combinational logic function 

can be represented
– truth table
– algebraic sum of minterms (sum-of-products expression)
– minterm list (ON set)
– algebraic product of maxterms (product-of-sums 

expression)
– maxterm list (OFF set)

41

Clicker Quiz

42
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1. A NOR gate is logically equivalent to:
A. an AND gate with inverted inputs

B. an OR gate with inverted inputs

C. a NAND gate with inverted inputs

D. a NOR gate with inverted inputs

E. none of the above

43

2. An OR gate is logically equivalent to:
A. an AND gate with inverted inputs

B. an OR gate with inverted inputs

C. a NAND gate with inverted inputs

D. a NOR gate with inverted inputs

E. none of the above

44

3. A circuit consisting of a level of NOR gates followed 
by a level of AND gates is logically equivalent to:
A. a multi-input OR gate

B. a multi-input AND gate

C. a multi-input NOR gate

D. a multi-input NAND gate

E. none of the above

1
2

3

1
2

3

1
2

3

45

Combinational Synthesis
 A circuit realizes (“makes real”) an expression if its 

output function equals that expression
 Such a circuit is called a realization of the function
 Typically there are many possible realizations of the 

same function
 Circuit transformations can be made algebraically

or graphically

46

Combinational Synthesis
 The starting point for designing a combinational logic 

circuit is usually a word description of a problem
 Example: Design a 4-bit prime number detector (or, 

Given a 4-bit input combination M = N3N2N1N0, 
design a function that produces a “1” output for M = 1, 
2, 3, 5, 7, 11, 13 and a “0” output for all other numbers)

f  (N3,N2,N1,N0) = N3,N2,N1,N0(1,2,3,5,7,11,13)

47

Example – Prime Number Detector

48
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Thought Questions
 How do we know if a given realization of a function is 

“best” in terms of:
– speed (propagation delay)
– cost 

• total number of gates
• total number of gate inputs (fan-in)

 Need two things:
– a way to transform a logic function to its simplest form 

(“minimization”)
– a way to calculate the “cost” of different realizations of 

a given function in order to compare them

49

? Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-B

Mapping and Minimization

Reading Assignment:  
DDPP 4th Ed. pp. 210-222, 5th Ed. pp. 117-125

Learning Objectives:
 Draw a Karnaugh Map (“K-map”) for a 2-, 3-, 4-, or 5-variable logic 

function

 List the assumptions underlying function minimization

 Identify the prime implicants (“PI”), essential PI, and non-essential PI of a 
function depicted on a K-map

 Use a K-map to minimize a logic function (including those that are 
incompletely specified) and express it in either minimal SoP or PoS form

 Use a K-map to convert a function from one standard form    to another

 Calculate and compare the cost (based on the total number   of gate 
inputs plus the number of gate outputs) of minimal SoP and PoS
realizations of a given function

 Realize a function depicted on a K-map as a two-level NAND circuit, two-
level NOR circuit, or as an open-drain NAND/wired-AND circuit

51

Outline
 Overview
 Representation of logic functions using 

K-maps
 Minimization of logic functions using   

K-maps
 NAND-Wired AND configuration
 Incompletely specified functions

– where they occur
– how to minimize them

52

Overview
 Minimization is an important step in both ASIC 

(application specific integrated circuit) design and 
in PLD-based (programmable logic device) design

 Extra gates and gate inputs require more chip area
(“real estate”) and thereby increase cost and power 
consumption

 Canonical sum and product expressions (which 
can be determined “directly” from a truth table) are 
particularly expensive because the number of 
minterms [maxterms] grows exponentially with the 
number of variables 

53

Overview
 Minimization reduces the cost of two-level AND-OR, OR-

AND, NAND-NAND, NOR-NOR circuits by:
– minimizing the number of first-level gates
– minimizing the number of inputs on each first-level gate
– minimizing the number of inputs on the second-level 

gate
 Most minimization methods are based on a generalization 

of the Combining Theorems (T10 and T10):
Expression  X + Expression  X = Expression 

54

Takeaway: The fundamental basis of logic 
minimization is the COMBINING THEOREM
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Minimization Motivation

55

4-bit               
Prime Number 

Detector

Minterm Form

Minimized Circuit 
Realization

Overview
 Limitations of minimization methods

– no restriction on fan-in is assumed (i.e., the total 
number of inputs a gate can have is assumed to be 
“infinite”)

– minimization of a function of more than 4 or 5 
variables is not practical to do “by hand” (a computer 
program must be used!)

– both true and complemented versions of all input 
variables are assumed to be readily available (i.e., the 
cost of input inverters is not considered)

This latter assumption is very appropriate for 
PLD-based design, but often violated in gate-level
and ASIC-based design 

56

Karnaugh Maps
 A Karnaugh map (or “K-map”) is a graphical representation 

of a logic function’s truth table

 The map for an n-variable logic function is an array with 2n

cells, one for each possible input combination (minterm)

57

Karnaugh Maps
 Several things to note concerning K-maps:

– the small number in the corner of each square 
indicates the minterm number

– the entries in the squares correspond to the “on set”
of the function

– the labels are placed in such a way that the minterms
on any pair of adjacent squares differ by only one 
literal

– the sides of the map are considered to be contiguous
– adjacent, like squares may be combined in groups of 

2k to reduce the number of product terms in an 
expression (a grouping of 2k squares will eliminate k
variables)

58

Karnaugh Maps
 An alternate drawing for a 2-variable K-map

0 2

1 3

X X

Y

Y

59

Karnaugh Maps
 Example:  f (X,Y) = X+ Y

0 2

1 3

X X

Y

Y

01

1 1

60
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Karnaugh Maps
 An alternate drawing for a 3-variable K-map

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

61

Karnaugh Maps
 Example:  f (X,Y,Z) = XY+  YZ

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

62

Karnaugh Maps
 Example:  f (X,Y,Z) = XY +  YZ

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

1

1

63

Karnaugh Maps
 Example:  f (X,Y,Z) = XY +  YZ

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

1

1 1 1

64

Karnaugh Maps
 Example:  f (X,Y,Z) = XY +  YZ

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

1

1 1 1

00 0

0

65

Karnaugh Maps
 Drawing for a 4-variable K-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

66
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Karnaugh Maps
 Example: f (W,X,Y,Z) = XZ+  WZ  +  WX

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

67

Karnaugh Maps
 Example: f (W,X,Y,Z) = XZ +  WZ  +  WX

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

68

Karnaugh Maps
 Example: f (W,X,Y,Z) = XZ +  WZ +  WX

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 1

1 1

1

1

1

1

0

0

0

0

69

Minimization
 Definition: A minimal sum of a logic function f is a 

sum-of-products expression for f such that no sum-
of-products expression for f has fewer product terms, 
and any sum-of-products expression with the same 
number of  product terms has at least as many literals

Translation: The minimal sum has the fewest possible 
product terms (first-level gates / second-level gate inputs) 
and the fewest possible literals (first-level gate inputs)

70

Minimization
 Definition: A logic function p implies a logic function

f if for every input combination such that p = 1, then 
f = 1 also (i.e., if p implies f , then f is 1 for every 
input combination that p is 1,  and maybe some more 
– or “f covers p ”) 

 Definition: A prime implicant of an n-variable logic 
function f is a normal product term P that implies f , 
such that if any literal is removed from P, then the 
resulting product term does not imply f

71

Minimization
 Translation: A prime implicant is the largest possible 

grouping of size 2k adjacent, like squares

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 1

1 1

1

1

1

1

0

0

0

0
Prime 

Implicant

NOT a Prime 
Implicant

72
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Minimization
 Prime Implicant Theorem:  A minimal sum is a sum of 

prime implicants (i.e., to find a minimal sum, we need not 
consider any product terms that are not prime implicants)

 Definition: An essential prime implicant has at least one 
square in the grouping not shared by another prime 
implicant, i.e., it has at least one “unique” square, called a 
distinguished 1-cell

 Definition: A non-essential prime implicant is a grouping 
with no unique squares

 Definition: The cost criterion we will use is that gate inputs 
and outputs are of equal cost

COST = No. of Gate Inputs + No. of Gate Outputs
73

Minimization Procedure
 STEP 1: Circle all the prime implicants

74

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1

Minimization Procedure
 STEP 2: Note the essential prime implicants

75

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10
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X XX

Y

Y

Z

Z

Z
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00

0 0
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1

1
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0

0

0

1

1

Minimization Procedure
 STEP 2: Note the essential prime implicants
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0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10
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X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1

Minimization Procedure
 STEP 2: Note the essential prime implicants

77

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1

Minimization Procedure
 STEP 3: If there are still any uncovered squares, 

include non-essential prime implicants

78

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1
One 

Possibility
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Minimization Procedure
 STEP 3: If there are still any uncovered squares, 

include non-essential prime implicants

79

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1
f  (W,X,Y,Z) = WXZ
+ WXZ + WYZ
+ XYZ
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One possible circuit implementation (AND-OR):

COST is 16 inputs + 5 outputs = 21
80

EQUIVALENT circuit implementation, 
obtained through graphical application of 

DeMorgan’s Law 

Note: AND-OR  NAND-NAND

COST is 16 inputs + 5 outputs = 21 (same)
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Minimization Procedure
 REVISIT STEP 3: If there are still any uncovered squares, 

include non-essential prime implicants
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Another 
Possibility
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Minimization Procedure
 REVISIT STEP 3: If there are still any uncovered squares, 

include non-essential prime implicants
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f  (W,X,Y,Z) = WXZ
+ WXZ + WYZ
+ WXY

Clicker Quiz

84
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1. The number of prime implicants is:
A. 1

B. 2

C. 3

D. 4

E. 5

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X
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2. The number of essential prime 
implicants is:
A. 1

B. 2

C. 3

D. 4

E. 5

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X
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3. The number of non-essential prime 
implicants is:
A. 1

B. 2

C. 3

D. 4

E. 5

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X
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4. The number of product terms in the 
minimal sum is:
A. 1

B. 2

C. 3

D. 4

E. 5

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X
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5. The ON SET for this function:
A. W,X,Y,Z(2,4,5,6,9,10,11,12)

B. W,X,Y,Z(3,4,5,7,9,13,14,15)

C. W,X,Y,Z(3,4,5,7,9,10,11,13)

D. W,X,Y,Z(2,4,5,6,9,13,14,15)

E. none of the above

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X
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Minimization: Another Example
 Exercise: Find a minimal sum-of-products expression 

for the function mapped below
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Minimization Procedure
 Exercise: Find a minimal sum-of-products expression 

for the function mapped below

prime 
implicants

91
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Minimization Procedure
 Exercise: Find a minimal sum-of-products expression 

for the function mapped below

essential prime 
implicants
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Minimization Procedure
 Exercise: Find a minimal sum-of-products expression 

for the function mapped below

essential prime 
implicants
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Minimization Procedure
 Exercise: Find a minimal sum-of-products expression 

for the function mapped below

essential prime 
implicants
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Minimization Procedure
 Exercise: Find a minimal sum-of-products expression 

for the function mapped below

essential prime 
implicants
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Minimization Procedure
 Exercise: Find a minimal sum-of-products expression 

for the function mapped below
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to cover function
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Minimization Procedure
 Exercise: Find a minimal sum-of-products expression 

for the function mapped below
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f  (W,X,Y,Z) =

WY + XY + 
WXZ + WXY 

+ YZ

Minimization: Product-of-Sums
 Question: How could a minimal product-of-sums 

expression for this function be found?

Group zeroes to get a 
minimum sum-of-products
expression for f
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Minimization: Product-of-Sums
 Group zeroes to get a minimum sum-of-products 

expression for f
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Find essential prime 
implicants of f

Minimization: Product-of-Sums
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Find essential prime 
implicants of f

 Group zeroes to get a minimum sum-of-products 
expression for f

Minimization: Product-of-Sums
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 Group zeroes to get a minimum sum-of-products 
expression for f

Find essential prime 
implicants of f

Minimization: Product-of-Sums
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Function is completely covered 
using only the essential prime 
implicants  the non-essential 
prime implicant YZ is not needed

 Group zeroes to get a minimum sum-of-products 
expression for f

Find essential prime 
implicants of f
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Minimization: Product-of-Sums

103
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1 f = WY + XY + WXZ

Apply DeMorgan’s Law

f   = (W+Y)(X+Y)(W+X+Z)

 Group zeroes to get a minimum sum-of-products 
expression for f

One possible circuit implementation (OR-AND):

COST is 10 inputs + 4 outputs = 14

Y'

1
2
3
4

X

W

1
2

3Y'

Z

W'

X'

1
2

3

1
2
3
4

104

EQUIVALENT circuit implementation, obtained through 
graphical application of DeMorgan’s Law 

Note: OR-AND  NOR-NOR

COST is 10 inputs + 4 outputs = 14 (same)
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More Minimization Examples

Assuming that only true variables are available, 
realize the function represented by 
X,Y,Z(0,2,3,6) two different ways:

(a) using a single 7400 (quad 2-input NAND)
plus  a single 7410 (triple 3-input NAND)

(b) using a single 7403 (quad 2-input open-
drain NAND)

Key to Solution: The “NAND-Wired AND”
configuration realizes the complement of the 
NAND-NAND configuration  implement F
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Solution to (a)
  

X X 

Z 1 1 1 0 

Z 0 1 0 0 

 
Y Y Y 

Given: X,Y,Z(0,2,3,6)
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Solution to (b)
  

X X 

Z 1 1 1 0 

Z 0 1 0 0 

 
Y Y Y 

Given: X,Y,Z(0,2,3,6)
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“Conversion” Example

Express the complement of the following 
function in minimal product-of-sums form:  

F(X,Y,Z) = (X + Y) · (X + Y + Z) · (X + Y + Z) 

 F(X,Y,Z) = __________________  Map ______ 

F(X,Y,Z) = ________  

F(X,Y,Z) in minimal POS form

= ___________________

109

“Conversion” Example

Express the complement of the following 
function in minimal product-of-sums form:  

F(X,Y,Z) = (X + Y) · (X + Y + Z) · (X + Y + Z) 

 F(X,Y,Z) = X·Y + X·Y·Z + X·Y·Z  Map zeroes 

 
X X 

Z 0 1 1 0 

Z 0 1 1 1 

 
Y Y Y 

F(X,Y,Z) = ________  

F(X,Y,Z) in minimal POS form

= ___________________

110

“Conversion” Example

Express the complement of the following 
function in minimal product-of-sums form:  

F(X,Y,Z) = (X + Y) · (X + Y + Z) · (X + Y + Z) 

 F(X,Y,Z) = X·Y + X·Y·Z + X·Y·Z  Map zeroes 

 
X X 

Z 0 1 1 0 

Z 0 1 1 1 

 
Y Y Y 

F(X,Y,Z) = Y + X•Z  

F(X,Y,Z) in minimal POS form

= Y • (X + Z)

111

Incompletely Specified Functions
 There are some logic functions that do not assign a 

specific binary output value (0/1) to each of the 2n

input combinations

 Since there are essentially some unused 
combinations, these functions are referred to as 
incompletely specified functions 

 The unused combinations are often called don’t cares
or the d-set

 Example: Binary Coded Decimal (BCD), where 4 binary 
digits are used to represent a decimal digit (0 - 9)10 –
here there are 6 unused combinations (1010 - 1111)2

112

Incompletely Specified Functions
 Application: Determine a logic function that will be “1” 

if the BCD digit input satisfies the following inequality:
1 < N10 < 9

F = W,X,Y,Z (2,3,4,5,6,7,8) + d(10,11,12,13,14,15)

On Set d-Set

113

BCD Inequality Detector Example
N10 W X Y Z F(W,X,Y,Z)

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 0

114
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Incompletely Specified Functions
 To minimize an incompletely specified function, we 

modify the procedure for circling sets of 1’s (prime 
implicants) as follows:

– allow d’s to be included when circling sets of 1’s, 
to make the sets as large as possible

– do not circle any sets that contain only d’s

– look for distinguished 1-cells only, not 
distinguished d-cells

Most hardware description languages (HDL) provide 
a means for the designer to specify don’t care inputs

115

BCD Inequality Detector Example: SOP

Minimum SP: f (W,X,Y,Z) = X + Y +  WZ
Cost:  5 gate inputs + 2 gate outputs = 7

116
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BCD Inequality Detector Example: POS

Minimum PS:

f (W,X,Y,Z) =

WZ + WXY
 f (W,X,Y,Z) = 

(W + Z)  (W + X + Y)

Cost: 7 gate inputs
+ 3 gate outputs = 10

Conclusion: The SP implementation costs less
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Incompletely Specified Functions
 Example: Find a minimal sum-of-products expression 

for the function mapped below
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f  (W,X,Y,Z) = WX+ WY
Cost:  6 gate inputs + 

3 gate outputs
= 9 cost units

Incompletely Specified Functions
 Example: Find a minimal product-of-sums expression 

for the function mapped below
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f  (W,X,Y,Z) = W + XY
f  (W,X,Y,Z) = W (X+Y)
Cost:  4 gate inputs + 

2 gate outputs
= 6 cost units

Clicker Quiz
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1.  The cost of a minimal sum of products realization of this function 
(assuming both true and complemented variables are available) is:

A. 9    B. 10    C. 11    D. 12    E. none of the above

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

121

2. The cost of a minimal products of sum realization of this function 
(assuming both true and complemented variables are available) is:

A. 9    B. 10    C. 11    D. 12    E. none of the above

122

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

3. Assuming the availability of only true input variables, the fewest number of 
2-input NAND gates that are needed to realize this function is:

A. 6     B. 7     C. 8     D. 9     E. none of the above

123

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

4. Assuming the availability of only true input variables, the fewest number of  
2-input NOR gates that are needed to realize this function is:

A. 6     B. 7     C. 8     D. 9     E. none of the above

124

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

5. Assuming the availability of only true input variables, the fewest number of 
2-input open-drain NAND gates that are needed to realize this function is:

A. 6     B. 7     C. 8     D. 9     E. none of the above

125

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

6. The number of pull-up resistors required for realizing this function using 
only 2-input open drain NAND gates (assuming the availability of only 
true input variables) is:

A. 1     B. 2     C. 3     D. 4     E. none of the above
126

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y
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Introduction to Digital System Design

Purdue IM:PACT* Spring 2018 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-C

Timing Hazards

Reading Assignment:   
DDPP 4th Ed. pp. 224-229, 5th Ed. pp. 122-126

Learning Objectives:
 Define and identify static-0, static-1, and dynamic hazards
 Describe how a static hazard can be eliminated using 

consensus terms
 Describe a circuit that takes advantage of the existence of 

hazards and analyze its behavior
 Draw a timing chart that depicts the input-output relationship 

of a combinational circuit

128

Outline
 Timing hazards

– Static
– Dynamic

 Elimination of timing hazards
 Clever utilization of timing hazards
 Designing hazard-free circuits

129

Timing Hazards
 The combinational circuit analysis methods 

described thus far ignore propagation delay and 
predict only the steady state behavior

 Gate propagation delay may cause the transient 
behavior of logic circuit to differ from that predicted 
by steady state analysis

 A circuit’s output may produce a short pulse (often 
called a glitch) at time when steady state analysis 
predicts the output should not change

 A hazard is said to exist when a circuit has the 
possibility of producing such a glitch

130

Timing Hazards: Static 1
 Definition: A static-1 hazard is a pair of input 

combinations that: (a) differ in only one input variable
and (b) both produce a “1” output, such that it is 
possible for a momentary “0” output to occur during 
a transition in the differing input variable

1

1

1 0

131

Timing Hazards: Static 0
 Definition: A static-0 hazard is a pair of input 

combinations that: (a) differ in only one input variable
and (b) both produce a “0” output, such that it is 
possible for a momentary “1” output to occur during a 
transition in the differing input variable

A static-0 hazard is just the dual of a static-1 hazard
132
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Timing Hazards
 A K-map can be used to detect static hazards in a two-

level sum-of-products or product-of-sums circuit
 Important: The existence or nonexistence of static 

hazards depends on the circuit design (i.e., realization) 
of a logic function

 A properly designed two-level sum-of-products (AND-
OR) circuit has no static-0 hazards but may have 
static-1 hazards

 Existence of static-1 hazards can be predicted from a 
K-map

133

Timing Hazards
 Using a K-map to graphically detect the possibility 

of a static-1 hazard:
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1 3 7 5

X X

Y Y

Z

Z

Y

0

0 1 1

10 1

0
f  (X,Y,Z) = XZ+YZ

Note: It is possible for the output to momentarily 
glitch to “0” if the AND gate that covers one of the 
combinations goes to “0” before the AND gate 
covering the other input combination goes to “1” 
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Timing Hazards
 Solution: Include an extra product term (AND gate) 

to cover the hazardous input pair

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

0

0 1 1

10 1

0

f  (X,Y,Z) = XZ+YZ
+ XY

The extra product term is the consensus of the 
two original terms – in general, consensus terms
must be added to eliminate hazards

135

Timing Hazards
 A dynamic hazard is the possibility of an output 

changing more than once as the result of a single 
input transition

 Multiple output transitions can occur if there are 
multiple paths with different delays from the changing 
input to the changing output

136

Timing Hazards
 Important: Not all hazards are hazardous – in fact, 

some can be quite useful!  Consider the case in 
which we would like to detect a low-to-high 
transition (the “leading edge”) of a logic signal

TPLHTPHL

137

Designing Hazard-Free Circuits
 Very few practical applications require the design of 

hazard-free combinational circuits (e.g., feedback 
sequential circuits)

 Techniques for finding hazards in arbitrary circuits 
are difficult to use

 If cost is not a problem, then a “brute force” method 
of obtaining a hazard-free realization is to use the 
complete sum   (i.e., all prime implicants)

 Functions that have non-adjacent product terms are 
inherently hazardous when subjected to 
simultaneous input changes

138
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Clicker Quiz

139

1. Steady state analysis of this circuit would 
predict that its output will always be:
A. 0

B. 1

C. 50% of VCC

D. Les Déplorables

E. none of the above
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3

X
Y
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2.  This circuit exhibits the following type of 
hazard when its input, X, transitions from 
low-to-high:
A. static-0

B. static-1

C. dynamic

D. Les Déplorables

E. none of the above

12
1
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3

X
Y
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3.  This circuit exhibits the following type of 
hazard when its input, X, transitions from 
high-to-low:
A. static-0

B. static-1

C. dynamic

D. Les Déplorables

E. none of the above

12
1

2

3

X
Y
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4.  Steady-state analysis of the function realized by this 
circuit for the input waveforms shown predicts that the 
output F(X,Y) should:
A. should always be low

B. should always be high

C. should be identical to the input

D. should be the complement of the input

E. none of the above
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3
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2

3

12X

Y
F

12

143

1 ms

5. Dynamic analysis of the output F(X,Y) reveals that:
A. a static “0” hazard will be generated in response to 

low-to-high transitions of the input waveform
B.a static “1” hazard will be generated in response to 

low-to-high transitions of the input waveform
C.a static “0” hazard will be generated in response to 

high-to-low transitions of the input waveform
D.a static “1” hazard will be generated in response to 

high-to-low transitions of the input waveform
E. none of the above

1
2

3

1
2

3

1
2

3

12X

Y
F

12

144

1 ms
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Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-D

XOR/XNOR Functions

Reading Assignment:  
DDPP 4th Ed. pp. 447-448, 5th Ed. pp. 320-322

Learning Objectives:
 Identify properties of XOR/XNOR functions

 Simplify an otherwise non-minimizable function by 
expressing it in terms of XOR/XNOR operators

146

Outline
 XOR and XNOR functions

 XOR operator properties

 XOR “checkerboard” K-map

 XOR N-variable functions

 Realization of “non-reducible” functions using 
XOR/XNOR gates

147

XOR/XNOR Functions
 An Exclusive-OR (XOR) gate is a 2-input gate whose 

output is “1” if exactly one of its inputs is “1” (or, an 
XOR gate produces an output of “1” if its inputs are 
different)

 An Exclusive-NOR (XNOR) gate is the complement of 
an XOR gate – it produces an output of “1” if its 
inputs are the same

 An XNOR gate is also referred to as an Equivalence
(or XAND) gate

 Although XOR is not one of the basic functions of 
switching algebra, discrete XOR gates are commonly 
used in practice 148

XOR/XNOR Functions
 The “ring sum” operator  is often used to denote the 

XOR function:  XY = X•Y + X•Y
 The XNOR function can be thought of as either the dual

or the complement of the XOR function

149

(XY) = (XY)D = X•Y + X•Y

X Y XY (XY)
0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

XOR Operator  Properties
 X  X = X•X + X•X = 0 + 0 = 0

 X  X = X•X + X•X = 0 + 0 = 0

 X  1 = X •1 + X•0 = X
 X  1 = X•1 + X•0 = X

 (X  Y) = X  Y  1

 X  Y = Y  X             

 X  (Y  Z) = (X  Y)  Z

 X•(Y  Z) = (X•Y)  (X•Z)

150

XOR and XNOR 
Equivalent Symbols
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XOR K-Map
 K-map of 2-variable XOR function

X  Y = X´•Y + X•Y´

Leads to a “checkerboard” K-map, that cannot 
be reduced (in either SoP or PoS form)

0 2

1 3

X X

Y

Y

10

1 0

151

XOR N-Variable Functions
 The XOR (or XNOR) of N variables can be realized 

with tree or cascade circuits

152

- tree XOR circuit (N is a power of 2)

- cascade XOR circuit

The output of an n-variable XOR function is 
1 if an odd number of inputs are 1

The output of an n-variable XNOR function 
is 1 if an even number of inputs are 1

Realization of an n-variable XOR or XNOR
function will require 2n-1 P-terms

Non-Reducible Functions
 Functions that cannot be significantly reduced using 

conventional minimization techniques can sometimes be 
simplified by implementing them with XOR/XNOR gates

 Candidate functions that may be simplified this way have 
K-maps with “diagonal 1’s”

 Technique: Write out function in SoP form, and “factor 
out” XOR/XNOR expressions

153

Example – “Diagonal” K-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0

01

0 0

1 0

1

0

0

0

0

0

0

0

154

1

0 4 12 8 

1 5 13 9 

3 7 15 11 

2 6 14 10 

 

 

W W

X XX

Y

Y

Z

Z

Z

0 1

01

0 0

1 0

1

0

0

0

0

0

0

0

F(W,X,Y,Z) = 
W•X•Y•Z + W•X•Y•Z
+ W•X•Y•Z + W•X•Y•Z 

155

Example – “Diagonal” K-map
 Minimize function to the extent possible

1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

01

0 0

1 0

1

0

0

0

0

0

0

0

F(W,X,Y,Z) = 
W•X•Y•Z + W•X•Y•Z
+ W•X•Y•Z + W•X•Y•Z 

= X•Z • (W•Y + W•Y) 
+ X•Z • (W•Y + W•Y)

156

Example – “Diagonal” K-map
 Factor out XOR/XNOR expressions
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 Factor out XOR/XNOR expressions

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

01

0 0

1 0

1

0

0

0

0

0

0

0

F(W,X,Y,Z) = 
W•X•Y•Z + W•X•Y•Z
+ W•X•Y•Z + W•X•Y•Z 

= X•Z • (W•Y + W•Y) 
+ X•Z • (W•Y + W•Y)

= (X•Z +X•Z)•(W•Y+W•Y)

157

Example – “Diagonal” K-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

01

0 0

1 0

1

0

0

0

0

0

0

0

F(W,X,Y,Z) = 
W•X•Y•Z + W•X•Y•Z
+ W•X•Y•Z + W•X•Y•Z 

= X•Z • (W•Y + W•Y) 
+ X•Z • (W•Y + W•Y)

= (X•Z +X•Z)•(W•Y+W•Y)

= (X  Z) • (W  Y)

158

Example – “Diagonal” K-map
 Write function in terms of XOR/XNOR operators

 Realize using XOR/XNOR gates

COST = 6 inputs + 3 outputs = 9 159

Example – “Diagonal” K-map

COST = 20 inputs + 5 outputs = 25
160

Example – “Diagonal” K-map
 Compare with minimal SoP realization

Example – “X”-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 0

1 0

1

1

0

0

0

0

0

0

161

 Minimize function to the extent possible

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 0

1 0

1

1

0

0

0

0

0

0

F(W,X,Y,Z) = 
X•Z + X•Z

162

Example – “X”-map
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 Write function in terms of XOR/XNOR operators

F(W,X,Y,Z) = 
X•Z + X•Z
= (X  Z)

163

Example – “X”-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 0

1 0

1

1

0

0

0

0

0

0

 Compare costs

F(W,X,Y,Z) = 
X•Z + X•Z    Cost=9
= (X  Z) Cost=3

164

Example – “X”-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 0

1 0

1

1

0

0

0

0

0

0

Clicker Quiz

165

1. The function realized by this circuit is a:
A. 2-input XOR

B. 2-input XNOR

C. 2-input AND

D. 2-input OR

E. none of the above

1
2

3

1
2

3

1
2

3

12X

Y
F

12

166

2. The ON set of the function realized by this circuit is:
A. X,Y(0,2)

B. X,Y(0,3)

C. X,Y(1,2)

D. X,Y(1,3)

E. none of the above

X'
Y

X
Y'

OD

OD

1

2
3

7403

4

5
6

7403

VCC

167

3. The ON set of the function realized by this circuit is:
A. X,Y,Z(0,3,4,7)

B. X,Y,Z(1,2,5,6)

C. X,Y,Z(0,3,5,6)

D. X,Y,Z(1,2,4,7)

E. none of the above

1
2

3

1
2

3

X
Y

Z
F

168
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4. The XOR property listed below that is NOT true is:
A. X  0 = X
B. X  1 = X
C. X  X = X
D. X  X = 1
E. none of the above

169

5. The following is NOT an equivalent symbol 
for an XOR gate:

A.

B.

C.

D.

E.  none of the above
170

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-E

Programmable Logic Devices

Reading Assignment:  
DDPP 4th Ed. pp. 370-383, 840-859; 5th Ed. pp. 246-252 

Learning Objectives:

 Describe the genesis of programmable logic devices
 List the differences between complex programmable logic 

devices (CPLDs) and field programmable gate arrays 
(FPGAs) and describe the basic organization of each

172

Outline
 Overview
 Programmable Logic Arrays (PLAs)
 Programmable Array Logic (PALs)
 Generic Array Logic (GALs)
 Complex PLDs
 Field Programmable Gate Arrays (FPGAs)
 Summary

173

Overview
 The first programmable logic devices (PLDs) were 

programmable logic arrays (PLAs)
 PLAs are combinational, two-level AND-OR devices that can 

be programmed to realize and sum-of-products expression
 Limitations

– number of inputs (n)
– number of outputs (m)
– number of product (“P”) terms (p)

Such a device might be described as 
an n x m PLA with p product terms

174

PLD

PLA
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Programmable Logic Array
 4 x 3 PLA with 6 product terms

Potential connections indicated by “X”
175

Overview

 Each input is connected to a buffer that produces both a true and a 
complemented version of the signal for use in the array

 Connections are made by fuses, which are actual fusible links (one-
time programmable devices) or non-volatile memory cells (erasable, 
re-programmable devices)

176

Overview

177

 Each AND gate’s inputs can be any subset of the primary input 
signals and their complements

 Each OR gate’s inputs can be any subset of the AND gate outputs

Programmable Logic Array
 Compact view of 4 x 3 PLA with 6 P-terms

178

Programmable Logic Array
 4 x 3 PLA programmed to implement three logic equations

I1•I2 + I1•I2•I3•I4

I1•I3 + I1•I3•I4 + I2

I1•I2 + I1•I3 + I1•I2•I4
179

Programmable Array Logic
 A special case of PLA is the programmable array logic (PAL) 
 Unlike a PLA, a PAL device has a fixed OR array 

(i.e. AND gates can not be shared)
 Each output has an individual tri-state enable, 

controlled by a dedicated AND gate
 There is an inverter between the output

of the OR gate and the external pin
 Some of the output pins may also be 

used as inputs (called “I/O pins”)
– tri-state buffer OFF, input only
– tri-state buffer ON, either 

output-only, output cascaded to 
another function input, or 
feedback to create a sequential 
circuit

180

PLD

PAL

PLA
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Generic Array Logic
 Generic Array Logic (GAL) devices can be configured to emulate the 

AND-OR, register (flip-flop), and output structure of combinational 
and sequential PAL devices

 An output logic macrocell (“OLMC”) is associated with each I/O pin to 
provide configuration control

 OLMCs include output polarity control (important because it allows 
minimization software to “choose” either the SoP or PoS realization 
of a given function)

 Erasable/reprogrammable GAL devices use floating gate technology 
(flash memory) for “fuses” and are non-volatile (i.e., retain 
programming without power)

 GAL devices require a “universal programmer” to erase and 
reprogram their so-called “fuse maps” (means that they must be 
removed for reprogramming and subsequently reinstalled – requires 
a socket)

 A legacy GAL device (22V10) is included in your digital parts kit to 
provide an introduction to PLDs 181

GAL Combinational Macrocell

182

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated 
inputs

tri-state enable 
selector (4:1 mux)

output 
polarity 
control

P-term router 
(1:2 demux)

“fuse” matrix

dedicated output 
enable (OE) pin

product terms 
(P-terms)

GAL Combinational Macrocell

183

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated 
inputs

tri-state enable 
selector (4:1 mux)

output 
polarity 
control

P-term router 
(1:2 demux)

0
“fuse” matrix

dedicated output 
enable (OE) pin

product terms 
(P-terms)

GAL Combinational Macrocell
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INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated 
inputs

tri-state enable 
selector (4:1 mux)

output 
polarity 
control

P-term router 
(1:2 demux)

“fuse” matrix

dedicated output 
enable (OE) pin

product terms 
(P-terms)

P-term router 
(1:2 demux)

1

GAL Combinational Macrocell
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INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated 
inputs

tri-state enable 
selector (4:1 mux)

output 
polarity 
control

P-term router 
(1:2 demux)

“fuse” matrix

dedicated output 
enable (OE) pin

product terms 
(P-terms)

0
0

GAL Combinational Macrocell
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INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated 
inputs

tri-state enable 
selector (4:1 mux)

output 
polarity 
control

P-term router 
(1:2 demux)

“fuse” matrix

dedicated output 
enable (OE) pin

product terms 
(P-terms)

0
1
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GAL Combinational Macrocell

187

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated 
inputs

tri-state enable 
selector (4:1 mux)

output 
polarity 
control

P-term router 
(1:2 demux)

“fuse” matrix

dedicated output 
enable (OE) pin

product terms 
(P-terms)

1
0

GAL Combinational Macrocell
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INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated 
inputs

tri-state enable 
selector (4:1 mux)

output 
polarity 
control

P-term router 
(1:2 demux)

“fuse” matrix

dedicated output 
enable (OE) pin

product terms 
(P-terms)

1
1

GAL22V10 Block Diagram
number of AND 

array inputs

number of macrocells and associated I/O pins
189

GAL22V10 AND Array (“Fuse Matrix”)

190

GAL22V10 Output Logic Macrocell (“OLMC”)

191

Number of P-terms per OLMC ranges from 8 to 16

I/O 
pin

GAL22V10 Output Logic Macrocell (“OLMC”)

192
Single P-term per OLMC dedicated to tri-state buffer enable

I/O 
pin
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GAL22V10 Output Logic Macrocell (“OLMC”)

193

All OLMC edge-triggered D flip-flops utilize common clock (CLK) , 
asynchronous reset (AR), and asynchronous preset (SP) signals

I/O 
pin

Note: Flip-flops are used to 
create sequential circuits

GAL22V10 Output Logic Macrocell (“OLMC”)

194

4:1 multiplexer selects (routes) true/complemented combinational 
or true/complemented registered function to the I/O pin

I/O 
pin

GAL22V10 Output Logic Macrocell (“OLMC”)

195

2:1 multiplexer selects (routes) true/complemented I/O pin or
true/complemented registered feedback to the P-term array

I/O 
pin

Note: Tri-state 
buffer is turned 
off to use I/O 
pin as an input

GAL22V10 Pinout

macrocell
I/O pins 

(inputs or 
outputs)

data 
inputs

196

clock or 
data input

data input

Complex PLDs (CPLDs)

 Modern complex PLDs (CPLDs) contain hundreds of macrocells
and I/O pins, and are designed to be erased/reprogrammed 
in-circuit (called “isp”)

 Because CPLDs typically contain significantly more macrocells
than I/O pins, capability is provided to use macrocell resources 
“internally” (called a node)

 Example: The Lattice ispMACH 4000 series CPLDs feature 
36-input, 16-macrocell GLBs

 A “breakout board” utilizing an ispMACH 4256ZE device (with 256 
macrocells and 144 pins) will be used for the second half of the lab 
experiments

197

 A global routing pool (GRP) is used to connect generic logic 
blocks (GLBs)

 Output routing pools (ORPs) connect the GLBs to the I/O blocks 
(IOBs), which contain multiple I/O cells 198

ispMACH 4000ZE Block Diagram



School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 34

ispMACH 4000ZE Generic Logic Block

199

ispMACH 4000ZE 36-Input AND Array

200

ispMACH 4000ZE Macrocell

201

Field Programmable Gate Arrays
 A field programmable gate array (FPGA) is “kind of like a CPLD 

turned inside-out”
 Logic is broken into a large number of programmable blocks 

called look-up tables (LUTs) or configurable logic blocks (CLBs)
 Programming configuration is stored in SRAM-based memory 

cells and is therefore volatile, meaning the FPGA configuration is 
lost when power is removed

 Programming information must therefore be loaded into an 
FPGA (typically from an external ROM chip) each time it is 
powered up (“initialization/boot” cycle)

 LUTs/CLBs are inherently less capable than PLD macrocells, but 
many more of them will fit on a comparably sized FPGA (than 
macrocells on a CPLD)

202

Summary
 There are currently two types of programmable logic devices in 

common use:
– CPLDs

• in-circuit programmable
• non-volatile (retains configuration information when powered 

down)
• “instant on” (no external configuration ROM or boot sequence 

required)
• less dense (fewer programmable logic blocks) than comparably 

sized FPGA
– FPGAs

• in-circuit programmable
• volatile (loses configuration when powered down)
• requires external configuration ROM and “boot” sequence to 

initialize
• more dense (greater number programmable logic blocks) than 

comparably sized CPLD 203

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-F

Hardware Description Languages
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Reading Assignment:  
DDPP 4th Ed. pp. 237-243, 290-335; 5th Ed. pp. 177-233

Learning Objectives:
 List the basic features and capabilities of a hardware 

description language
 List the syntactic elements of a Verilog module
 Identify operators and keywords used to create Verilog 

modules
 Write equations using Verilog dataflow syntax
 Define functional behavior by creating truth tables with the 
casez construct in Verilog

205

Outline
 Overview
 Verilog and ispLeverTM

 Verilog coding semantics
 Verilog module structure
 Verilog symbols for logical operations
 Sample Verilog modules
 Structural code in Verilog

206

Overview
 Hardware description languages (HDLs) are the most common way to 

describe the programming configuration of a CPLD or an FPGA

 The first HDL to enjoy widespread use was PALASM (“PAL Assembler”) 
from Monolithic Memories, Inc. (inventors of the PAL device) 

 Early HDLs only supported equation entry

 Next generation languages such as CUPL (Compiler Universal for 
Programmable Logic) and ABEL (Advanced Boolean Expression 
Language) added more advanced capabilities:

– truth tables and clocked operator tables

– logic minimization

– high-level constructs such as when-else-then and state diagram

– test vectors

– timing analysis
207

Overview
 Both VHDL and Verilog started out as simulation languages (later 

developments in these languages allowed actual hardware design)

 Both languages support modular, hierarchical coding and support 
a wide variety of high-level programming constructs  represents 
a higher level of abstraction
– arrays
– procedures
– function calls
– conditional and iterative statements

 Potential Pitfall – Because VHDL and Verilog have their genesis as 
simulation languages, it is possible to create non-synthesizable 
HDL code using them (i.e., code that can simulate a digital system, 
but not actually realize it)

 Advantage – VHDL and Verilog are much better adapted to large 
scale system design Verilog has become the most common 
language for IC design and verification. 

208

“Deep into levels of 
abstraction, your 
descent will be”

Verilog and ispLeverTM

 Because Verilog is so commonly used in industry and you will 
need it in future classes, you will be introduced to Verilog in 
this course

 You will use Verilog to program legacy PLDs (like the 22V10) as 
well as current generation CPLDs (like the ispMACH 4256ZE)

 We will use the Lattice ispLever Classic 1.8 software package in 
lab, which includes support for ABEL, Verilog, and VHDL as 
well as schematic entry

 You can obtain your own free copy of this software from the 
Lattice Semiconductor web site (www.latticesemi.com)

209

Verilog and ispLeverTM

 A Verilog module is a text file containing:

– documentation (program name, comments)

– declarations that identify the inputs and outputs of the logic 
functions to be performed

– statements that specify the logic functions to be performed

 Because you need to be able to program a PLD or CPLD, your 
Verilog code must be strictly limited to syntax that translates neatly 
into logic circuitry

 Verilog source files are transformed into a fuse map file by the 
compiler integrated into ispLever

 A universal programmer is used to burn the fuse map file into a 
legacy PLD device (an isp device can be programmed directly from 
the integrated ispVM tool via a USB cable)

210
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Verilog Program Semantics
 identifiers (module names, signal/variable names) must begin with a 

letter or underscore _ and can include digits and dollar signs ($)

 identifiers are case sensitive

 single line comments begin with //

 /* comments can also be done this way */

 input and output declarations tell the compiler about symbolic names 
associated with the external pins of the device

 each assign statement describes a small piece of logic circuitry

 Constant values can be described as n’bxxxx where n is the bit-width 
of the signal and x is 0 or 1

211

Verilog WIRE Type

212

• wire is a basic data type in Verilog

• Similar to an actual wire, these variables cannot store 
logic values and are used to connect signals between 
inputs, outputs and logic elements such as gates

• wire is used to model combinational logic 

• wire can take on four basic values 

 0 – logical zero

 1 – logical one

 X – unknown value

 Z – high-impedance state

Verilog BITWISE Operators

213

& and

| or

~ not

^ exclusive or

~^ or ^~ exclusive nor

You will learn about logical vs. bitwise operators later 
(similar to C)

ispLEVER Operators

214

Reports generated by ispLever use a different notation 
for some of the bitwise operators

Logical 
operation

Verilog ispLEVER

AND & &

OR | #

NOT ~ !

XOR ^ $

Verilog ASSIGN Statements

215

assign statements are used to continuously assign the value 
of the expression on the right of the = to the signal on the left

wire [2:0] A,B,X,Y; 

assign A = 3’b110;

assign B = 3’b101;

assign X = A & B;

assign Y = A | B;

3‐bit wires A, B, X, and Y

A is assigned the constant 3‐bit value of 110

B is assigned the constant 3‐bit value of 101

wire X is assigned the value of A bitwise 
AND‐ed with B i.e. 100

wire Y is assigned the value of A bitwise OR‐
ed with B i.e. 111

Verilog MODULE Structure (Example 1)

216

// comments start with double slash, keywords highlighted in red

/* or they can be bounded with slash star as in C */

module nand_nor(Sel,A,B,Y);

input wire Sel, A, B; 

output wire Y;

wire Y1, Y2, Y3, Y4; 

assign Y = Y3 | Y4;

assign Y1 = A & B ;

assign Y2 = A | B;

assign Y3 = (~Y1) & Sel;

assign Y4 = (~Y2) & (~Sel);

endmodule

Describes a circuit called nand_nor
with inputs Sel, A, B, and output Y

4 individual wire names Y1 .. Y4

Each assign statement describes a 
separate piece of logic with the output 
on the left and operations on inputs on 
the right
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Verilog MODULE Structure (Example 1)

217

module nand_nor(Sel,A,B,Y);

input wire Sel, A, B /* synthesis loc=4,5,6 */; 

output wire Y /* synthesis loc=7 */;

wire Y1, Y2, Y3, Y4; 

assign Y = Y3 | Y4;

assign Y1 = A & B ;

assign Y2 = A | B;

assign Y3 = (~Y1) & Sel;

assign Y4 = (~Y2) & (~Sel);

endmodule

wire is one of several signal  variable 
types you will learn to use

assign statements are not the only 
way of describing your logic, but they 
are the simplest for very small 
combinational logic designs

synthesis loc is a compiler directive 
that tells ispLever to connect Sel, A, 
B, and Y to pins 4, 5, 6, and 7 
(respectively) on the PLD

Verilog MODULE Structure (Example 1)

218

module nand_nor(Sel,A,B,Y);

input wire Sel, A, B /* synthesis loc=4,5,6 */; 

output wire [1:0] Y /* synthesis loc=7,8 */;

wire Y1, Y2, Y3,Y4;

assign Y = {Y3,Y4};

assign Y1 = A & B ;

assign Y2 = A | B;

assign Y3 = (~Y1) & Sel;

assign Y4 = (~Y2) & (~Sel);

endmodule

The index range [1:0] makes Y into a 2-bit vector

Y[1] assigned to pin 7, Y[0] pin 8

The concatenation operator { } makes 
a bit vector out of multiple wires

Verilog BIT Literals

219

wire a,b;

wire [2:0] Y;

assign a = 1'b0;

assign b = 1'b1;

assign Y = 3'b100;

1 bit equal to binary 0

1 bit equal to binary 1 

3 bits equal to 
Y[2]=1’b1   Y[1]=1’b0 Y[0]=1’b0

/* Verilog Combinational Example for GAL22V10 */

module verilog_exA(A,B,C,D,X,Y,Z);

input A,B,C,D /* synthesis loc="2,3,4,5" */;
output X,Y,Z  /* synthesis loc="14,15,16" */;

// dataflow style logic equations
assign X = (A & B) | ~(C & D);
assign Y = ~(B & D) | ~(A & B & D);
assign Z = A & ~(B & C & ~D);
// use parenthesis for readability
// and to make sure order of operations
// (precedence) are as intended

endmodule

220

Example Verilog Module #1A

Note: Explicit pin declarations can be 
omitted and automatically assigned by 
the “fitter” program (part of ispLever)

/* Verilog Combinational Example for GAL22V10
with active low inputs */

// "n" prefix is just a naming convention
module verilog_exA(nA,nB,nC,nD,X,Y,Z); 
input nA,nB,nC,nD /* synthesis loc="2,3,4,5" */;
output X,Y,Z     /* synthesis loc="14,15,16" */;

wire A,B,C,D;
assign A = ~nA;  // to treat inputs as
assign B = ~nB;  // active low, you must
assign C = ~nC;  // invert them
assign D = ~nD;

assign X = (A & B) | ~(C & D);
assign Y = ~(B & D) | ~(A & B & D);
assign Z = A & ~(B & C & ~D);

endmodule

221

Example Verilog Module #1B
/* Verilog Combinational Example for GAL22V10

with active low inputs and outputs */

module verilog_exA(nA,nB,nC,nD,nX,nY,nZ); 
input nA,nB,nC,nD /* synthesis loc="2,3,4,5" */;
output nX,nY,nZ /* synthesis loc="14,15,16" */;

wire A,B,C,D;
assign A = ~nA;  // to treat inputs as
assign B = ~nB;  // active low, you must
assign C = ~nC;  // invert them
assign D = ~nD;

// to make outputs active low, invert the 
// value assigned to the output
assign nX = ~( (A & B) | ~(C & D) );
assign nY = ~( ~(B & D) | ~(A & B & D) );
assign nZ = ~( A & ~(B & C & ~D) );

endmodule

222

Example Verilog Module #1C
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Verilog REG Data Types

223

• Similar data type to wire, but reg can be used to store information 

• Unlike wire, reg can be used to model both combinational and 
sequential logic

• For behavioral code using an always block, the output must be 
type reg

• For dataflow code with assign statements, the outputs must be of 
type wire

• Examples: 

reg myvar;         // one bit variable called myvar

reg [7:0] myvec; // 8-bit variable called myvec

ALWAYS Block in Verilog

224

• An always block lets you write "behavioral" style 
code, similar to C

• Should have a sensitivity list associated with it:    
all statements in the always block will be evaluated 
when the conditions in this list are triggered

• Conditions may be any change to the signal or 
rising or falling edges of the signals

ALWAYS Block in Verilog

225

Example always blocks:

always @ (A,B,C) begin

…

end

always @ (posedge CLK) begin

…

end

always @ (*) begin 

…

end 

All statements will be evaluated 
whenever A, B, or C change their values

All statements will be evaluated on the 
positive (rising) edge of CLK signal 
(use negedge for falling edge of CLK)

All statements will be evaluated 
whenever any input signal in the 
always block changes

Verilog CASE Syntax

226

 Similar to the case structure in C

 Compares expression to a set of cases and evaluates the 
statement(s) associated with first matching case 

 All cases defined between case (signal) .. endcase

 Multiple statements for a case must be enclosed in a begin and 
end block

 Multiple comparison signals can be concatenated as case
({signal1,signal2…signaln}) and compared against values of their 
total bit width

 If the logic does not cover all possible bit combinations of the 
comparison signal(s), a default case must be added. e.g. a 3-bit 
signal for comparison will need a default case if 8 cases are not 
provided

Verilog MODULE Structure (Example 2)

227

module nand_nor(Sel,A,B,Y);

input Sel, A, B /* synthesis loc=4,5,6 */; 

output reg Y /* synthesis loc=7 */;

always @ (Sel,A,B) begin

case ({Sel,A,B})

3'b000: Y = 1'b1;  // row 0

3'b001: Y = 1'b1;  // row 1

3'b010: Y = 1'b1;  // row 2

// (remaining combinations)

default:  Y = 1’b0;  // or use a default case

endcase

endmodule

Y must be declared as reg
type to be an output of an 
always block

This is the closest structure 
available in Verilog to a 
traditional “truth table”

@(Sel,A,B) is a sensitivity list

For combinational logic, list all inputs

Compares each case against a concatenated 
3-bit vector with Sel at bit position 2, A at 
position 1 and B at position 0 and evaluates 
value of Y based on matching case, e.g. 
3’b001 matches Sel=0,A=0,B=1

/* Truth table example */
module ttex(E,R,S,T,A,B,C,D,F);

input  E,R,S,T   /* synthesis loc="2,3,4,5" */;
output A,B,C,D,F /* synthesis loc="14,15,16,17,18" */;
reg [4:0] abcdf /* bit vector to assign to output pins */;

always @(E,R,S,T) begin
case ({E,R,S,T)}
4'b0000: abcdf = 5'b01000;
4'b0001: abcdf = 5'b00010;
4'b0010: abcdf = 5'b00100;
4'b0011: abcdf = 5'b00010;
4'b0100: abcdf = 5'b10000;
4'b0101: abcdf = 5'b10000;
4'b0110: abcdf = 5'b00100;
4'b0111: abcdf = 5'b10000;
4'b1000: abcdf = 5'b01000;
4'b1001: abcdf = 5'b01000;
4'b1010: abcdf = 5'b00100;
4'b1011: abcdf = 5'b00001;
4'b1100: abcdf = 5'b10000;
4'b1101: abcdf = 5'b10000;
4'b1110: abcdf = 5'b00100;
4'b1111: abcdf = 5'b10000;

endcase
assign {A,B,C,D,F} = abcdf;

endmodule

Example Verilog Module #2

228

Compares each case against a concatenated 
4-bit  vector with E at bit position 3, R at 
position 2, S at position 1 and T at position 0

e.g. 4’b1011 matches E=1,R=0,S=1,T=1

assign A = abcdf[4], B = abcdf[3], etc.
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/* 4 variable XOR on 22V10 */
module xor_exA (I, X);

input [3:0] I;
output X;
// if synthesis_loc not given, 
// then ISPlever will choose pin #

// bitwise &, |, ^ can be used as
// reduction operators on a vector 

assign X = ^I;

// you could also write this as
// X = I[3]^I[2]^I[1]^I[0];

endmodule

Example Verilog Module #3A

Equation requires 8 P-terms  can be realized 
on any 22V10 macrocell (any I/O pin) 229

NOTE: Each XOR gate increases P-terms by a 
factor of 2  (number of P-terms = 2n-1)

/* 5 variable XOR on 22V10 */
module xor_exA (I, X);

input [4:0] I;
output X;

assign X = ^I;

endmodule

230

Example Verilog Module #3B
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Equation requires 16 P-terms 
can be realized on macrocells
associated with I/O pins 18 & 19

/* 10 variable XOR on 22V10 */
module xor_exC(I,X,Y,Z)
input [9:0] I;
output X,Y,Z /* synthesis loc="18,19,23" */;
wire Xi,Yi; 

// notice the index ranges
assign Xi= ^I[4:0]; // 16 P-terms
assign Yi= ^I[9:5]; // 16 P-terms
assign Z = Xi^Yi;   // 2 P-terms

// outputs can't be directly used
// like an input inside the code
assign X = Xi;
assign Y = Yi;

endmodule

231

Example Verilog Program #3C

NOTE: Requires two “passes” through the 
PLD (which doubles the propagation delay)
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 Structural code relies on instantiating every module and 
connecting their inputs and outputs manually

 Logic can be described without the use of boolean operators, 
logical constructs (if-else, case), always blocks or assign 
statements

 module_name instance_name (signal_list); will 
instantiate a module of type module_name called 
instance_name (the signal_list corresponds to the inputs and 
outputs, also called the port list)

 and AND2 (XY, X, Y); will instantiate an AND gate with 
inputs X and Y with output XY

 xor OR (X_Y,X,Y); will instantiate a 2-input XOR gate 

Structural Code in Verilog

232

Verilog Built-in Primitives

 and

 or

 nand

 nor

 xor

 xnor

233

 not

 buf

 bufif0

 bufif1

 notif0

 notif1

Usage of built-in primitives is 
illustrated in the next slide. The 
same syntax can be used for user-
defined modules as well. 

For more information, refer to 
Section 5.7 in the Wakerly text.  

Structural Code in Verilog

234

 Example illustrating multiple modules connected

module structural_ex(A,B,C,D,X,Y);

input wire A, B, C, D;
output wire X, Y;

wire AB, CD;

and AND2a (AB, A, B); // AB = A & B
and AND2b (CD, C, D); // CD = C & D
or OR2a (X, AB, CD);   // X = AB | CD

assign Y = (A & B) | (C & D);

endmodule

X and Y evaluate the same function

X : Structural style/code 

Y : Dataflow style/code  
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Clicker Quiz

235

1. Which of the following is not a valid Verilog identifier? 
A. X2

B. 2X

C. XY

D. _XY

E. none of the above

236

2. Which of the following specifies a range of bits within 
a bit vector X in Verilog?
A. X3..X1

B. X(3:1)

C. [3:1]

D. X[3:1]

E. none of the above

237

3. For input or output port declarations, which of the following 
statements is not true?

A. "synthesis loc" declarations associate the device’s physical 
pins with symbolic port names

B. pin numbers are optional

C. if pin numbers are not specified, the pin numbers are assigned 
by the “fitter” program based on the PLD characteristics

D. the pin may be declared active high or active low

E. none of the above

238

4. The order in which different assign expressions are 
placed in the body of a Verilog module does not matter.
A. true
B. false

239

Example – Your BFFAM’s “Crazy Grader”

 Give a grade of “A” if name contains an R and a T -or-
an R and not an S

 Give a grade of “B” if name contains an E and not an R 
and not a S -or- does not contain an R and not a T and
not an S 

 Give a grade of “C” if name contains an S and not a T
 Give a grade of “D” if name contains a T and not an E 

and not an R
 Give a grade of “F” if none of the above (name 

contains an E and an S and a T and not an R)

Your “best friend from another major” (BFFAM) has been 
asked to design a circuit that determines grades based on 
the characters (E,R,S,T) in a student’s last name, as follows:

240
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K-Map of “Grade Distribution”

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

A A

A A

A A

B B

B

C C C C

D

D F

241

Options
 Map and minimize all 5 functions, implement with 

several discrete CMOS ICs, subject to the following 
limitations:
– only “true” variables are available
– only SSI chips in digital kit can be used

• 7400 quad 2-input NAND
• 7402 quad 2-input NOR
• 7404 hex inverter
• 7410 triple 3-input NAND

 Create a Verilog file that specifies the desired 
functionality using a truth table, implement with a 
single 22V10 PLD

242

Working K-Map for “A” – SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

1 1

1 1

1 1

0 0

0

0 0 0 0

0

0 0

A = SR + TR

COST = 6 inputs
+ 3 outputs = 9
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Working K-Map for “A” – PoS

0 4 12 8 

1 5 13 9 

3 7 15 11 

2 6 14 10 

 

 

E E

R RR

S

S

T

T

T

1 1

1 1

1 1

0 0

0

0 0 0 0

0

0 0

A = R + ST
A = R  (S + T)

COST = 4 inputs
+ 2 outputs = 6

Cheaper than SoP
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Working K-Map for “B” – SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

1 1

1

0 0 0 0

0

0 0

B = ESR + 
RST

COST = 8 inputs
+ 3 outputs = 11
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Working K-Map for “B” – PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

1 1

1

0 0 0 0

0

0 0

B = S + R + ET
B = S R(E+T)

COST = 5 inputs
+ 2 outputs = 7

Cheaper than SoP
246
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Working K-Map for “C” – SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

1 1 1 1

0

0 0

C = ST

COST = 3 inputs
+ 2 outputs = 5
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Working K-Map for “C” – PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

1 1 1 1

0

0 0

C = S + T
C = ST

COST = 2 inputs
+ 1 output = 3

Cheaper than SoP
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Working K-Map for “D” – SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

0 0 0 0

1

1 0

D = ETR

COST = 4 inputs
+ 2 outputs = 6
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Working K-Map for “D” – PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

0 0 0 0

1

1 0

D = ETR

COST = 3 inputs
+ 1 output = 4

Cheaper than SoP
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Working K-Map for “F” - SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

0 0 0 0

0

0 1

F = ESRT

COST = 5 inputs
+ 2 outputs = 7
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Working K-Map for “F” - PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

0 0 0 0

0

0 1

F = E+S+R+T
F = ESRT

COST = 4 inputs
+ 1 output = 5

Cheaper than SoP
252
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SSI “final answer”…

1/2 - 7402

2/3 - 7410
1/4 - 7400

1/4 - 7402

1/3 - 7410
1/6 - 7404

1/2 - 7400
1/4 - 7402

2/3 - 7404

3/4 - 7400         5/6 - 7404
1 - 7402            1 - 7410

4 integrated circuits total 253

Verilog “final answer”…
/* Who Wants to be a Digijock */

module gameshow(E,R,S,T,A,B,C,D,F);

input wire E,R,S,T      /* synthesis loc=2,3,4,5 */;
output wire A,B,C,D,F   /* synthesis loc=14,15,16,17,18 */;

reg [4:0] ABCDF;

always @ (E, R, S, T) begin
case ({E,R,S,T})
4'b0000:  ABCDF = 5'b01000;
4'b0001:  ABCDF = 5'b00010;
4'b0010:  ABCDF = 5'b00100;
4'b0011:  ABCDF = 5'b00010;
4'b0100:  ABCDF = 5'b10000;
4'b0101:  ABCDF = 5'b10000;
4'b0110:  ABCDF = 5'b00100;
4'b0111:  ABCDF = 5'b10000;
4'b1000:  ABCDF = 5'b01000;
4'b1001:  ABCDF = 5'b01000;
4'b1010:  ABCDF = 5'b00100;
4'b1011:  ABCDF = 5'b00001;
4'b1100:  ABCDF = 5'b10000;
4'b1101:  ABCDF = 5'b10000;
4'b1110:  ABCDF = 5'b00100;
4'b1111:  ABCDF = 5'b10000;

endcase
end

assign {A,B,C,D,F} = ABCDF;

endmodule 254

Are you sure that’s your final answer? 

/* Who Wants to be a Digijock */

module gameshow(E,R,S,T,A,B,C,D,F);

input wire E,R,S,T       /* synthesis loc=2,3,4,5 */;
output wire A,B,C,D,F    /* synthesis loc=14,15,16,17,18 */;

/* Quick and easy way in Verilog */

/* …“by inspection” from problem statement */

assign A = (R & T) | (R & ~S);

assign B = (E & ~R & ~S) | (~R & ~T & ~S);

assign C = S & ~T;

assign D = T & ~E & ~R;

assign F = ~A & ~B & ~C & ~D; 

// or assign F = E & S & T & ~R;

endmodule

255

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-G
Combinational Building Blocks: Decoders / Demultiplexers

Reading Assignment:  
DDPP 4th Ed. pp. 384-390, 403-409; 5th Ed. pp. 250-256, 260-278

Learning Objectives:
 Define the function of a decoder (demultiplexer) and 

describe how it can be used as a combinational 
building block

 Illustrate how a decoder can be used to realize an 
arbitrary Boolean function

257

Outline
 Overview
 Binary decoders
 Decoders in Verilog
 Special purpose decoders

258
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Overview
 Definition: A decoder is a multiple-input, multiple-output 

logic circuit that converts coded inputs into coded outputs
 The input code generally has fewer bits than the output code
 In a one-to-one mapping, each input code word produces a 

different output code word

259

Overview
 The most commonly used input code is an n-bit 

binary code, where an n-bit word represents one of 2n

different coded values

 Sometimes an n-bit binary code is truncated to 
represent fewer than 2n values (e.g., BCD)

 The most commonly used output code is a 1-out-of-m 
code, which contains m bits, where only one bit is 
asserted at any time (the output code bits are 
mutually exclusive)

260

Binary Decoders
 The most common decoder circuit is an n-to-2n decoder 

or binary decoder
 Binary decoders have an n-bit binary input code and a 

1-out-of-2n output code
 Application: Used to activate exactly one of 2n outputs 

based on an n-bit value
 Analogy: Electronically-controlled rotary selector switch

261

A device that routes an 
input to one of 2n outputs 
is typically referred to as a 
(1-to-2n) demultiplexer

Note that EN can also be construed as a digital input 
that is routed to the selected output, in which case the 
circuit would be referred to as a (1:4) demultiplexer

Example: 2-to-4 (2:4) Decoder

262

Select 
lines

Enable

D
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Example: 2-to-4 (2:4) Decoder
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0

d

d 0

0

0
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Example: 2-to-4 (2:4) Decoder
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Example: 2-to-4 (2:4) Decoder

265

1

0

1 0

1

0
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Example: 2-to-4 (2:4) Decoder
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1

1

0 0

0

1

0

Example: 2-to-4 (2:4) Decoder
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1 0

0

0
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Key Observations
• Key Observation #1: each output of an n to 2n binary decoder represents a 

minterm of an n-variable Boolean function; therefore, any arbitrary Boolean 
function of n-variables can be realized with an n-input binary decoder by 
simply “OR-ing” the needed outputs 

• Key Observation #2: if the decoder outputs are active low, a NAND gate can 
be used to “OR” the minterms of the function (representing its ON set)

• Key Observation #3: if the decoder outputs are active low, an AND gate can 
be used to “OR” the minterms of the complement function (representing its 
OFF set)

• Key Observation #4: a NAND gate (or AND gate) with at most 2n-1 inputs is 
needed to implement an arbitrary n-variable function using an n to 2n binary 
decoder (that has active low outputs)

268

Example – Arbitrary Function Realization

F(X,Y,Z)
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General circuit for implementing an arbitrary n-variable function 
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ON set = X,Y,Z(1,2,4,7)

F(X,Y,Z)= XYZ

Illustration for n=3, 
F(X,Y,Z)

Here, output of NAND 
gate is ACTIVE HIGH
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Example – Arbitrary Function Realization
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using a decoder with active low outputs and a NAND gate with 
2n-1 inputs, for case where the ON set has > 2n-1 members
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Here, output of NAND 
gate is ACTIVE LOW

ON set = X,Y,Z(1,3,4,5,6)

OFF set = X,Y,Z(0,2,7)

F(X,Y,Z) = X•Z + X•Y + X•Z

1

/* 3:8 Decoder / 1:8 Demultiplexer with Active-Low Outputs */

module dec38L(EN, I, nY);

input wire EN; // Enable input pin
input wire [2:0] I;  // Select input pins
output wire [7:0] nY;     // Active-low output pins

wire [7:0] Y;

assign nY = ~Y; // Active low assignment 

assign Y[0] = EN & ~I[2] & ~I[1] & ~I[0];
assign Y[1] = EN & ~I[2] & ~I[1] &  I[0];
assign Y[2] = EN & ~I[2] &  I[1] & ~I[0];
assign Y[3] = EN & ~I[2] &  I[1] &  I[0];
assign Y[4] = EN &  I[2] & ~I[1] & ~I[0];
assign Y[5] = EN &  I[2] & ~I[1] &  I[0];
assign Y[6] = EN &  I[2] &  I[1] & ~I[0];
assign Y[7] = EN &  I[2] &  I[1] &  I[0];

endmodule
272

Decoders in Verilog

/* 3:8 Decoder / 1:8 Demultiplexer with Active-High Outputs */

module dec38H(EN, I, Y);

input wire EN; // Enable input pin
input wire [2:0] I;   // Select input pins
output wire [7:0] Y;  // Active-high output pins

assign Y[0] = EN & ~I[2] & ~I[1] & ~I[0];
assign Y[1] = EN & ~I[2] & ~I[1] &  I[0];
assign Y[2] = EN & ~I[2] &  I[1] & ~I[0];
assign Y[3] = EN & ~I[2] &  I[1] &  I[0];
assign Y[4] = EN &  I[2] & ~I[1] & ~I[0];
assign Y[5] = EN &  I[2] & ~I[1] &  I[0];
assign Y[6] = EN &  I[2] &  I[1] & ~I[0];
assign Y[7] = EN &  I[2] &  I[1] &  I[0];

endmodule

273

Decoders/Demultiplexers in Verilog

/* 3:8 Decoder / 1:8 Demultiplexer with Active-High Outputs */

module dec38H(EN, I, Y);

input wire EN; // Enable input pin
input wire [2:0] I;   // Select input pins
output reg [7:0] Y;  // Active-high output pins

always @* begin  // @* instead of listing inputs
Y = 8’b0;      // assign all bits of Y to 0
Y[I]= EN;      // overwrite the Ith bit with EN

end

endmodule

274

Decoders/Demultiplexers in Verilog

Clicker Quiz

275

1. The OFF set realized by this decoder-based circuit is: 

A. X,Y,Z(0,2,5,7)

B. X,Y,Z(1,3,4,6)

C. X,Y,Z(1,2,4,5)

D. X,Y,Z(0,3,4,6)

E. none of the above
276
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2. The ON set realized by this decoder-based circuit is: 

A. X,Y,Z(0,2,5,7)

B. X,Y,Z(1,3,4,6)

C. X,Y,Z(1,2,4,5)

D. X,Y,Z(0,3,4,6)

E. none of the above
277
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VCC Special Purpose Decoders
 A seven-segment decoder has 4-bit BCD or hexadecimal 

data as its input code and  “seven-segment code” as its 
output code

278

/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /* synthesis loc=“2,3,4,5” */;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000:  SEG7 = 7'b1111110;
4'b0001:  SEG7 = 7'b0110000;
4'b0010:  SEG7 = 7'b1101101;
4'b0011:  SEG7 = 7'b1111001;
4'b0100:  SEG7 = 7'b0110011;
4'b0101:  SEG7 = 7'b1011011;
4'b0110:  SEG7 = 7'b1011111;
4'b0111:  SEG7 = 7'b1110000;
4'b1000:  SEG7 = 7'b1111111;
4'b1001:  SEG7 = 7'b1111011;
4'b1010:  SEG7 = 7'b1110111;
4'b1011:  SEG7 = 7'b0011111;
4'b1100:  SEG7 = 7'b1001110;
4'b1101:  SEG7 = 7'b0111101;
4'b1110:  SEG7 = 7'b1001111;
4'b1111:  SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 279

Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000:  SEG7 = 7'b1111110;
4'b0001:  SEG7 = 7'b0110000;
4'b0010:  SEG7 = 7'b1101101;
4'b0011:  SEG7 = 7'b1111001;
4'b0100:  SEG7 = 7'b0110011;
4'b0101:  SEG7 = 7'b1011011;
4'b0110:  SEG7 = 7'b1011111;
4'b0111:  SEG7 = 7'b1110000;
4'b1000:  SEG7 = 7'b1111111;
4'b1001:  SEG7 = 7'b1111011;
4'b1010:  SEG7 = 7'b1110111;
4'b1011:  SEG7 = 7'b0011111;
4'b1100:  SEG7 = 7'b1001110;
4'b1101:  SEG7 = 7'b0111101;
4'b1110:  SEG7 = 7'b1001111;
4'b1111:  SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 280

Example: Hexadecimal 7-Segment Decoder

/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000:  SEG7 = 7'b1111110;
4'b0001:  SEG7 = 7'b0110000;
4'b0010:  SEG7 = 7'b1101101;
4'b0011:  SEG7 = 7'b1111001;
4'b0100:  SEG7 = 7'b0110011;
4'b0101:  SEG7 = 7'b1011011;
4'b0110:  SEG7 = 7'b1011111;
4'b0111:  SEG7 = 7'b1110000;
4'b1000:  SEG7 = 7'b1111111;
4'b1001:  SEG7 = 7'b1111011;
4'b1010:  SEG7 = 7'b1110111;
4'b1011:  SEG7 = 7'b0011111;
4'b1100:  SEG7 = 7'b1001110;
4'b1101:  SEG7 = 7'b0111101;
4'b1110:  SEG7 = 7'b1001111;
4'b1111:  SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 281

Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000:  SEG7 = 7'b1111110;
4'b0001:  SEG7 = 7'b0110000;
4'b0010:  SEG7 = 7'b1101101;
4'b0011:  SEG7 = 7'b1111001;
4'b0100:  SEG7 = 7'b0110011;
4'b0101:  SEG7 = 7'b1011011;
4'b0110:  SEG7 = 7'b1011111;
4'b0111:  SEG7 = 7'b1110000;
4'b1000:  SEG7 = 7'b1111111;
4'b1001:  SEG7 = 7'b1111011;
4'b1010:  SEG7 = 7'b1110111;
4'b1011:  SEG7 = 7'b0011111;
4'b1100:  SEG7 = 7'b1001110;
4'b1101:  SEG7 = 7'b0111101;
4'b1110:  SEG7 = 7'b1001111;
4'b1111:  SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 282

Example: Hexadecimal 7-Segment Decoder
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/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000:  SEG7 = 7'b1111110;
4'b0001:  SEG7 = 7'b0110000;
4'b0010:  SEG7 = 7'b1101101;
4'b0011:  SEG7 = 7'b1111001;
4'b0100:  SEG7 = 7'b0110011;
4'b0101:  SEG7 = 7'b1011011;
4'b0110:  SEG7 = 7'b1011111;
4'b0111:  SEG7 = 7'b1110000;
4'b1000:  SEG7 = 7'b1111111;
4'b1001:  SEG7 = 7'b1111011;
4'b1010:  SEG7 = 7'b1110111;
4'b1011:  SEG7 = 7'b0011111;
4'b1100:  SEG7 = 7'b1001110;
4'b1101:  SEG7 = 7'b0111101;
4'b1110:  SEG7 = 7'b1001111;
4'b1111:  SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 283

Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000:  SEG7 = 7'b1111110;
4'b0001:  SEG7 = 7'b0110000;
4'b0010:  SEG7 = 7'b1101101;
4'b0011:  SEG7 = 7'b1111001;
4'b0100:  SEG7 = 7'b0110011;
4'b0101:  SEG7 = 7'b1011011;
4'b0110:  SEG7 = 7'b1011111;
4'b0111:  SEG7 = 7'b1110000;
4'b1000:  SEG7 = 7'b1111111;
4'b1001:  SEG7 = 7'b1111011;
4'b1010:  SEG7 = 7'b1110111;
4'b1011:  SEG7 = 7'b0011111;
4'b1100:  SEG7 = 7'b1001110;
4'b1101:  SEG7 = 7'b0111101;
4'b1110:  SEG7 = 7'b1001111;
4'b1111:  SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 284

Example: Hexadecimal 7-Segment Decoder

/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000:  SEG7 = 7'b1111110;
4'b0001:  SEG7 = 7'b0110000;
4'b0010:  SEG7 = 7'b1101101;
4'b0011:  SEG7 = 7'b1111001;
4'b0100:  SEG7 = 7'b0110011;
4'b0101:  SEG7 = 7'b1011011;
4'b0110:  SEG7 = 7'b1011111;
4'b0111:  SEG7 = 7'b1110000;
4'b1000:  SEG7 = 7'b1111111;
4'b1001:  SEG7 = 7'b1111011;
4'b1010:  SEG7 = 7'b1110111;
4'b1011:  SEG7 = 7'b0011111;
4'b1100:  SEG7 = 7'b1001110;
4'b1101:  SEG7 = 7'b0111101;
4'b1110:  SEG7 = 7'b1001111;
4'b1111:  SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 285

Example: Hexadecimal 7-Segment Decoder
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Module 2-H
Combinational Building Blocks: Encoders and Tri-State Outputs

Reading Assignment:  
DDPP 4th Ed. pp. 408-412, 430-432; 5th Ed. 279-280, 308-310

Learning Objectives:
 Define the function of an encoder and describe how 

it can be used as a combinational building block
 Discuss why the inputs of an encoder typically need 

to be prioritized

287

Outline
 Overview
 Priority Encoders
 Tri-State Outputs
 Keypad Encoders
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Overview
 Definition: An encoder is an “inverse decoder” – the role 

of inputs and outputs is reversed, and there are more 
input code bits than output code bits

 The simplest encoder to build is a 2n-to-n or binary 
encoder 

H
L
L
L
L
L

L
L

H

L

L
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Priority Encoders
 A common application is to encode the number of a device 

requesting service from a microprocessor-based system

Problem: More than one device may be 
requesting service at any given time 290

Priority Encoders
 Solution: Assign priority to the input lines, such that 

when multiple inputs are asserted simultaneously, the 
highest priority (i.e. highest numbered) input “wins” –
such a device is called a priority encoder

 An easy way to specify this functionality in Verilog is to 
use the casez construct

 Example: An 8-to-3 encoder with active high inputs and 
outputs, including a “strobe” output (G) to indicate if any 
input has been asserted

291

Verilog CASEZ Construct
 use ? as “wild card”

 beware of non-unique expressions – first matching 
expression wins

292

casez ({Sel,A,B})

3'b00?: Y = 1'b1;

3'b010: Y = 1'b1;  

3'b011: Y = 1'b0;

// etc.

endcase

000 or 001 both yield Y = 1’b1

/* 8-to-3 Priority Encoder Using a GAL22V10 */

module pri_enc(I, E, G);
input wire [7:0] I; // Input 0 - lowest priority, Input 7 - highest priority
output wire [2:0] E; // Encoded output
output wire G;      // Strobe output (asserted if any input is asserted)
reg [3:0] EG;

always @ (I) begin
casez (I)

8'b00000000:  EG = 4'b0000;  // No inputs asserted
8'b00000001:  EG = 4'b0001;  // Input 0 wins
8'b0000001?:  EG = 4'b0011;  // Input 1 wins
8'b000001??:  EG = 4'b0101;  // Input 2 wins
8'b00001???:  EG = 4'b0111;  // Input 3 wins
8'b0001????:  EG = 4'b1001;  // Input 4 wins
8'b001?????:  EG = 4'b1011;  // Input 5 wins
8'b01??????:  EG = 4'b1101;  // Input 6 wins
8'b1???????:  EG = 4'b1111;  // Input 7 wins

endcase
end

assign {E,G} = EG;

endmodule
293

Title: 8-to-3 Priority Encoder Using GAL 22V10 (ispLever Reduced Equation Report)

P-Terms   Fan-in  Fan-out  Type  Name (attributes)

--------- ------ ------- ---- -----------------

4/1        4        1    Pin- E2 

8/1        8        1    Pin- G 

4/3        6        1    Pin- E1 

4/4        7        1    Pin   E0 

=========
20/9          Best P-Term Total: 9

Total Pins: 12

Total Nodes: 0

Average P-Term/Output: 2

Positive-Polarity (SoP) Equations:

E2 = (I7 # I6 # I5 # I4);

G  = (I7 # I6 # I5 # I4 # I3 # I2 # I1 # I0);

E1 = (I7 # I6 # !I5 & !I4 & I3 # !I5 & !I4 & I2);

E0 = (I7 # !I6 & I5 # !I6 & !I4 & I3 # !I6 & !I4 & !I2 & I1);

Reverse-Polarity Equations:

!E2 = (!I7 & !I6 & !I5 & !I4);

!G  = (!I7 & !I6 & !I5 & !I4 & !I3 & !I2 & !I1 & !I0);

!E1 = (!I7 & !I6 & I5 # !I7 & !I6 & I4 # !I7 & !I6 & !I3 & !I2);

!E0 = (!I7 & I6 # !I7 & !I5 & I4 # !I7 & !I5 & !I3 & I2 # !I7 & !I5 & !I3 & !I1); 294

ispLEVER operators: 
AND - &, OR - #, 
NOT - !, XOR - $
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Tri-State Outputs
 Tri-state outputs can be assigned one of three values: 

logical 1, logical 0 or Hi-Z (high impedance)
 Hi-Z is a state that is not driven to any value and can be 

seen as an open circuit
 Example: ENABLE asserted 

will allow the input (logic 1 or 0) 
to be seen on the OUPUT                                                   
(ENABLE negated will float                                                                 
OUTPUT to Hi-Z)

295

Tri-State Outputs
 In Verilog, an output value of 'bZ (high- impedance or Hi-Z) 

assigned to an output port disables (“floats”) the output
 tri is a wire type used for tri-state values
 Can use the conditional operator ? : to implement a tri-state buffer
 output tri D_z;  input wire D,EN; 
 assign D_z = EN ? D : 1'bZ    (ternary operator)
If EN == 1, D_z = D
If EN == 0, D_z=1'bZ (disabled)

 Example: Create a Verilog module that implements a 4:2 priority 
encoder with tri-state encoded outputs (E1, E0).  This design 
should include an active high output strobe (G) that is asserted 
when any input is asserted 

296

/* 4-to-2 Priority Encoder With Tri-State Enable */

module prienc42(I, E_z, G, EN);

input wire [3:0] I;   // input 0 - lowest priority, 
// input 3 - highest priority

input wire EN;        // tri-state enable control input
output tri [1:0] E_z; // encoded tri-state enabled output
output wire G;        // strobe “go” output (high if any input is asserted)

reg [2:0] EG;        // EG = {E,G}

always @ (I) begin
casez (I)

4'b0000:  EG = 3'b000; // No inputs active
4'b0001:  EG = 3'b001; // Input 0 wins
4'b001?:  EG = 3'b011; // Input 1 wins
4'b01??:  EG = 3'b101; // Input 2 wins
4'b1???:  EG = 3'b111; // Input 3 wins

endcase
end

assign G = EG[0];
assign E_z = EN ? EG[2:1] : 2'bzz;

endmodule
297

Example: 4-to-2 Priority Encoder with Tri-State Outputs

Keypad Encoders
 Another common use for encoders is to encode keypads 

and keyboards
 Example: Design a 10-to-4 priority encoder for encoding a 

BCD keypad using a 22V10
 Solution: Modify the 8-to-3 priority encoder Verilog file 

described previously (include tri-state output capability)

298

/* 10-to-4 BCD Priority Keypad Encoder */

module bcd_enc(K, EN, E_z, KS);

input wire EN; // Tri-state enable
input wire [9:0] K;   // Key inputs (0 - lowest priority, 9 - highest)
output tri [3:0] E_z; // 4-bit encoded tri-state enabled BCD output
output wire G; // Key strobe (asserted high when any key pressed)

reg [4:0] KG;

assign G = KG[0];
assign E_z = EN ? KG[4:1] : 4'bZZZZ;

always @ (K) begin
casez (K)

10'b0000000000:  KG = 5'b00000;
10'b0000000001:  KG = 5'b00001;
10'b000000001?:  KG = 5'b00011;
10'b00000001??:  KG = 5'b00101;
10'b0000001???:  KG = 5'b00111;
10'b000001????:  KG = 5'b01001;
10'b00001?????:  KG = 5'b01011;
10'b0001??????:  KG = 5'b01101;
10'b001???????:  KG = 5'b01111;
10'b01????????:  KG = 5'b10001;
10'b1?????????:  KG = 5'b10011;

endcase
end

endmodule

299

Clicker Quiz

300
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/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})
4'b0000:  EG = 3'b000;
4'b0001:  EG = 3'b111;
4'b001?:  EG = 3'b101;
4'b01??:  EG = 3'b011;
4'b1???:  EG = 3'b001;

endcase
end

endmodule

301

1. The highest priority input is:
A. A
B. B
C. C
D. D
E. none of the above

302

/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})

4'b0000:  EG = 3'b000;
4'b0001:  EG = 3'b111;
4'b001?:  EG = 3'b101;
4'b01??:  EG = 3'b011;
4'b1???:  EG = 3'b001;

endcase
end

endmodule

2. The lowest priority input is:
A. A
B. B
C. C
D. D
E. none of the above
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/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})
4'b0000:  EG = 3'b000;
4'b0001:  EG = 3'b111;
4'b001?:  EG = 3'b101;
4'b01??:  EG = 3'b011;
4'b1???:  EG = 3'b001;

endcase
end

endmodule

3. If input A is asserted, 
the outputs will be:
A. E1=0,  E0=0,  G=0
B. E1=0,  E0=0,  G=1
C. E1=1,  E0=1,  G=0
D. E1=1,  E0=1,  G=1
E. none of the above
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/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})

4'b0000:  EG = 3'b000;
4'b0001:  EG = 3'b111;
4'b001?:  EG = 3'b101;
4'b01??:  EG = 3'b011;
4'b1???:  EG = 3'b001;

endcase
end

endmodule

4. When inputs B and C are 
asserted simultaneously
(and A is negated) the 
outputs will be:
A. E1=0,  E0=0,  G=1
B. E1=0,  E0=1,  G=1
C. E1=1,  E0=0,  G=1
D. E1=1,  E0=1,  G=1
E. none of the above
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/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})
4'b0000:  EG = 3'b000;
4'b0001:  EG = 3'b111;
4'b001?:  EG = 3'b101;
4'b01??:  EG = 3'b011;
4'b1???:  EG = 3'b001;

endcase
end

endmodule
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Reading Assignment:  
DDPP 4th Ed. pp. 432-440, 445-446; 5th Ed. pp. 281-289, 290-291

Learning Objectives:
 Define the function of a multiplexer and describe how it 

can be used as a combinational building block
 Illustrate how a multiplexer can be used to realize an 

arbitrary Boolean function

307

Outline
 Overview
 General multiplexer structure
 Multiplexer truth table analogy
 Multiplexer function generation
 Multiplexers in Verilog

308

Overview
 Definition: A multiplexer is a digital switch that uses 

s select lines to determine which of n = 2s inputs is 
connected to its output

 It is often called a mux for short
 Each of the input paths may be b bits wide
 An overall enable signal (EN) is usually provided 

(if EN negated, all outputs are “0”)
 The equation implemented by an s select line 

multiplexer is the sum-of-products form of a general 
s-variable function

F(X,Y) = a0•X•Y + a1•X•Y + a2•X•Y + a3•X•Y
309

n inputs (each b bits wide) 
with s select lines, where     

s = log2n

310

General Multiplexer Structure

Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 a0

0 1 a1

1 0 a2

1 1 a3

D0

D1

D2

D3

F(X,Y)

i1 i0

X   Y

F

Functional values 
assigned to each 

combination
311

Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 0

0 1 0

1 0 0

1 1 1

D0

D1

D2

D3

F(X,Y)

i1 i0

X   Y

F

AND function

312
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Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 0

0 1 1

1 0 1

1 1 1

D0

D1

D2

D3

F(X,Y)

i1 i0

X   Y

F

OR function
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Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 0

0 1 1

1 0 1

1 1 0

D0

D1

D2

D3

F(X,Y)

i1 i0

X   Y

F

XOR function
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Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 1

0 1 0

1 0 0

1 1 1

D0

D1

D2

D3

F(X,Y)

i1 i0

X   Y

F

XNOR function
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Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 a0

0 1 a1

1 0 a2

1 1 a3

D0

D1

D2

D3

F(X,Y)

i1 i0

X   Y

F

Question: How many 
different functions of 

S variables are 
possible? 316

Answer:  2 2 S

This is very similar to the look-up 
tables (LUTs) used in FPGAs

Example: 8-to-1 (8:1) Multiplexer

317

D0

D1

D2

D3

D4

D5

D6

D7 i2   i1 i0

select lines

F output8:1
data 

inputs

318

F(X,Y,Z)

X   Y  Z

D0

D1

D2

D3

D4

D5

D6

D7

Example: Multiplexer Function Realization
Determine the multiplexer data input values for 
realizing the function F(X,Y,Z) = X•Z + X•(YZ)
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F(X,Y,Z) = X•Z + X•(YZ)

= X•Z + X•(Y•Z + Y•Z)

= X•Z + X•Y•Z + X•Y•Z

X   Y  Z

D0

D1

D2

D3

D4

D5

D6

D7

Example: Multiplexer Function Realization
Determine the multiplexer data input values for 
realizing the function F(X,Y,Z) = X•Z + X•(YZ)

320

F(X,Y,Z) = X•Z + X•(YZ)

= X•Z + X•(Y•Z + Y•Z)

= X•Z + X•Y•Z + X•Y•Z

X   Y  Z

0

1

1

0

0

1

0

1

Example: Multiplexer Function Realization
Determine the multiplexer data input values for 
realizing the function F(X,Y,Z) = X•Z + X•(YZ)

 
X X 

Z 0 1 0 0 

Z 1 0 1 1 

 
Y Y Y 

F(X,Y,Z) = X,Y,Z(1,2,5,7)

Multiplexers in Verilog
 Multiplexer functionality can be expressed in Verilog 

in several different ways:
using conventional sum-of-products expressions
using case structures
using if-else constructs or ternary operators

 Example: 8-to-1 X 1-bit multiplexer using a 22V10 PLD 
(conventional SoP)

 Example: 4-to-1 X 8-bit multiplexer using a CPLD (two 
advanced methods)

321

/* 8-to-1 X 1-bit Multiplexer Using 22V10 */

module mux811(D, EN, S, Y);

input wire [7:0] D; // Data inputs
input wire EN; // Function enable
input wire [2:0] S; // Select lines
output wire Y; // Output

assign Y = EN & (~S[2] & ~S[1] & ~S[0] & D[0] |
~S[2] & ~S[1] &  S[0] & D[1] |
~S[2] &  S[1] & ~S[0] & D[2] |
~S[2] &  S[1] &  S[0] & D[3] |
S[2] & ~S[1] & ~S[0] & D[4] |
S[2] & ~S[1] &  S[0] & D[5] |
S[2] &  S[1] & ~S[0] & D[6] |
S[2] &  S[1] &  S[0] & D[7] );

endmodule
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Example: 8-to-1  1-bit Multiplexer

/* 4-to-1 X 8-bit Multiplexer Using CPLD */

module mux418b(EN, S, A, B, C, D, Y_z);

input wire EN;                // tri-state output enable line
input wire [1:0] S; // select inputs
input wire [7:0] A, B, C, D;  // 8-bit input buses
output tri [7:0] Y_z;        // 8-bit output bus

reg [7:0] Y;

assign Y_z = EN ? Y : 8’bZZZZZZZZ;

always @ (S) begin
// Y = 8’b00000000;

if (S == 2'b00)      Y = A;
else if (S == 2'b01) Y = B;
else if (S == 2'b10) Y = C;
else if (S == 2'b11) Y = D;

// else Y = 8’b00000000;
end

endmodule
323

Example: 4-to-1  8-bit Multiplexer – Method 1

Similar to case statements, a default 
value for the signal should be provided 
in an else statement or above the if-else 
if block as needed

/* 4-to-1 X 8-bit Multiplexer Using CPLD */

module mux418b(EN, S, A, B, C, D, Y_z);

input wire EN;                // Tri-state output enable line
input wire [1:0] S; // Select inputs
input wire [7:0] A, B, C, D;  // 8-bit input buses
output tri [7:0] Y_z;        // 8-bit output bus

reg [7:0] Y;

assign Y_z = EN ? Y : 8’bZZZZZZZZ;

always @ (S) begin
Y = 8’b00000000;
case (S)

2’d0: Y = A;    // d stands for decimal
2’d1: Y = B;
2’d2: Y = C;
2’d3: Y = D;
// default: Y = 8’b00000000;

endcase
end

endmodule 324

Example: 4-to-1  8-bit Multiplexer – Method 2
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Clicker Quiz

325

/* Big Multiplexer */

module bigmux(EN, S, A, B, C, D, Y_z);

input wire EN;
input wire [1:0] S;
input wire [7:0] A, B, C, D;
output tri [7:0] Y_z;

wire [7:0] Y;

assign Y_z = EN ? Y : 8'bZZZZZZZZ;
assign Y = ~S[1] & ~S[0] & A | 

~S[1] &  S[0] & B | 
S[1] & ~S[0] & C | 
S[1] &  S[0] & D;

endmodule
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1. The number of equations generated 
by this program (that would be 
burned into a PLD that realized this 
design) is:
A. 2
B. 8
C. 9
D. 16
E. none of the above
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/* Big Multiplexer */

module bigmux(EN, S, A, B, C, D, Y_z);

input wire EN;
input wire [1:0] S;
input wire [7:0] A, B, C, D;
output wire [7:0] Y_z;

wire [7:0] Y;

assign Y_z = EN ? Y : 8'bZZZZZZZZ;
assign Y = ~S[1] & ~S[0] & A | 

~S[1] &  S[0] & B | 
S[1] & ~S[0] & C | 
S[1] &  S[0] & D;

endmodule

2. When EN=0, S[1]=1, and S[0]=1, the 
output Y_z:
A. will all be Hi-Z
B. will all be zero
C. will all be one
D. will be equal to the inputs D
E. none of the above
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/* Big Multiplexer */

module bigmux(EN, S, A, B, C, D, Y_z);

input wire EN;
input wire [1:0] S;
input wire [7:0] A, B, C, D;
output wire [7:0] Y_z;

wire [7:0] Y;

assign Y_z = EN ? Y : 8'bZZZZZZZZ;
assign Y = ~S[1] & ~S[0] & A | 

~S[1] &  S[0] & B | 
S[1] & ~S[0] & C | 
S[1] &  S[0] & D;

endmodule

3. When EN=1, S[1]=1, and S[0]=1, 
the output Y:
A. will all be Hi-Z
B. will all be zero
C. will all be one
D. will be equal to the input D
E. none of the above
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/* Big Multiplexer */

module bigmux(EN, S, A, B, C, D, Y_z);

input wire EN;
input wire [1:0] S;
input wire [7:0] A, B, C, D;
output wire [7:0] Y_z;

wire [7:0] Y;

assign Y_z = EN ? Y : 8'bZZZZZZZZ;
assign Y = ~S[1] & ~S[0] & A | 

~S[1] &  S[0] & B | 
S[1] & ~S[0] & C | 
S[1] &  S[0] & D;

endmodule
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Reading Assignment:  
DDPP 4th Ed. pp. 306-308, 5th Ed. 198-201

Learning Objectives:
 Understand the need for using top level (hierarchical) 

modules
 Understand how top level modules are created in Verilog 

using structural Verilog syntax

331

Outline
 Overview
 Instantiating modules
 Example top level modules
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Overview
 Definition: A top level module is the highest level module 

in a design hierarchy that instantiates other modules and 
connects them

 Separating logic across multiple modules serves the 
advantage of reusability for modules and removing 
redundant logic

 Example: If two modules use a 4-to-1 mux, create a 
separate module for the mux, and simply instantiate it in 
the other modules

333

Instantiating Modules
 Follows structural style of instantiation: 
module_name instance_name (signal_list);

 Signals in signal_list will be connected in the 
order of that module’s portlist – this is called port 
mapping by order

 Alternatively, port mapping by name can be used, 
which is a more error-free method – here, each signal 
passed to the instantiated module uses the name of 
the signal in the module’s port list to indicate where 
it is  connected
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Example Top Level Modules
module and_or(A,B,C,D);
input wire A, B;
output wire C, D;

assign C = A & B;
assign D  = A | B;

endmodule
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module top_order(w,x,y,z);
input wire w, x;
output wire y, z;

assign a = 1’b0;
assign b = 1’b1;
and_or DUT1(w, x, y, z);

endmodule

module top_name(w,x,y,z);
input wire w, x;
output wire y, z;

assign a = 1’b0;
assign b = 1’b1;
and_or DUT1(.B(x), .A(w), .D(z), .C(y));

endmodule

Port mapping by order assigns  A = w, B = x,    
C = y, D = z based on how they are ordered in 
the instantiation

Port mapping by name allows the signals to be listed 
in any order with A = w, B = x, C = y, D = z

Module 2  Combinational Logic Circuits
 Learning Outcome: “An ability to analyze and design 

combinational logic circuits”
A. Combinational Circuit Analysis and Synthesis
B. Mapping and Minimization
C. Timing Hazards
D. XOR/XNOR Functions
E. Programmable Logic Devices
F. Hardware Description Languages
G. Combinational Building Blocks: Decoders
H. Combinational Building Blocks: Encoders and Tri-State Outputs
I. Combinational Building Blocks: Multiplexers
J. Top Level Modules
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