
School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 1

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2

Combinational Logic Circuits

 DISCRETE LOGIC – a circuit constructed
using small-scale integrated (SSI) and
medium-scale integrated (MSI) logic
devices (NAND gates, decoders,
multiplexers, etc.)

 PROGRAMMABLE LOGIC DEVICE (PLD) –
an integrated circuit onto which a generic
logic circuit can be programmed (and
subsequently erased and re-programmed)

 GENERIC ARRAY LOGIC (GAL) – a
(legacy) flash memory based PLD, which is
typically erased and re-programmed out-
of-circuit

 COMPLEX PLD (CPLD) – large flash
memory based PLD that is programmable
in-circuit

Glossary of Common Terms

2

 isp (IN-SYSTEM PROGRAMMING) – prefix
used on CPLDs that can be erased and re-
programmed in-circuit

 FIELD PROGRAMMABLE GATE ARRAY
(FPGA) – an SRAM-based PLD that can be
programmed in-circuit (no need to “erase”
since SRAM-based)

 ADVANCED BOOLEAN EXPRESSION
LANGUAGE (ABEL) – a “classic” hardware
description language (HDL) for specifying the
behavior of PLDs

 VHDL and VERILOG – advanced hardware
simulation and description languages

Glossary of Common Terms

3

Module 2
 Learning Outcome: “An ability to analyze and design

combinational logic circuits”
A. Combinational Circuit Analysis and Synthesis
B. Mapping and Minimization
C. Timing Hazards
D. XOR/XNOR Functions
E. Programmable Logic Devices
F. Hardware Description Languages
G. Combinational Building Blocks: Decoders
H. Combinational Building Blocks: Encoders and Tri-State Outputs
I. Combinational Building Blocks: Multiplexers
J. Top Level Modules

4

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-A

Combinational Circuit Analysis and Synthesis

Reading Assignment:
DDPP 4th Ed. pp. 196-210, 5th Ed, pp. 100-117

Learning Objectives:
 Identify minterms (product terms) and maxterms (sum terms)

 List the standard forms for expressing a logic function and give
an example of each: sum-of-products (SoP), product-of-sums
(PoS), ON set, OFF set

 Analyze the functional behavior of a logic circuit by constructing
a truth table that lists the relationship between input variable
combinations and the output variable

 Transform a logic circuit from one set of symbols to another
through graphical application of DeMorgan’s Law

 Realize a combinational function directly using basic gates (NOT,
AND, OR, NAND, NOR)

6

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 2

Outline
 Overview
 Definitions
 Minterm identification
 Maxterm identification
 ON Sets and OFF sets
 Combinational circuit analysis
 Equivalent symbols
 Combinational circuit synthesis

7

Overview
 We analyze a combinational logic circuit by obtaining a

formal description of its logic function
 Once we have a description of the logic function, we can:

– determine the behavior of the circuit for various input
combinations

– manipulate an algebraic description to suggest
different circuit structures

– transform an algebraic description into a standard form
(e.g., sum-of-products for PLD implementation)

– use an algebraic description of the circuit’s functional
behavior in the analysis of a larger system that
includes the circuit

8

Definitions
 Definition: A combinational logic circuit is one whose

output depend only on its current combination of input
values (or “input combination”)

 Definition: A logic function is the assignment of “0” or
“1” to each possible combination of its input variables

X1
X2

Xn

f (X1,X2, … , Xn)
.
.
.

9

No Feedback

f

Definitions
 Definition: A literal is a variable or the complement of

a variable

 Definition: A product term is a single literal or a logical
product of two or more literals

 Definition: A sum-of-products expression is a logical
sum of product terms

 Definition: A sum term is a single literal or a logical
sum of two or more literals

 Definition: A product-of-sums expression is a logical
product of sum terms

10

Examples

W, X, Y Literals

W X Z Product Term

X Y + W Z Sum of Products Expression

X + Y + Z Sum Term

(X + Y) (W + Z) Product of Sums Expression

11

Definitions
 Definition: A normal term is a product or sum term in which

no variable appears more than once

 Definition: An n-variable minterm is a normal product term
with n literals

 Definition: An n-variable maxterm is a normal sum term
with n literals

 Definition: The canonical sum of a logic function is a sum
of minterms corresponding to input combinations for which
the function produces a “1” output

 Definition: The canonical product of a logic function is a
product of maxterms corresponding to input combinations
for which the function produces a “0” output

12

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 3

Minterm Identification
0 → complemented
1 → true

13

Maxterm Identification
0 → true
1 → complemented

14

ON Sets and OFF Sets
 Definition: The minterm list that “turns on” an output

function is called the on set
 Example: X,Y,Z(0,1,2,3)

 Definition: The maxterm list that “turns off” an output
function is called the off set

 Example: X,Y,Z(4,5,6,7)

15

Indicates “sum” (of products)

Rows of truth table that are “1”

Indicates “product” (of sums)

Rows of truth table that are “0”

Example

Based on the truth table,
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

16

Example

Based on the truth table,
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

X,Y,Z(0,3,6,7)

17

Example

Based on the truth table,
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

X,Y,Z(0,3,6,7)

X,Y,Z(1,2,4,5)

18

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 4

Example

Based on the truth table,
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

X,Y,Z(0,3,6,7)

X,Y,Z(1,2,4,5)

X’•Y’•Z’ + X’•Y•Z + X•Y•Z’ + X•Y•Z

19

Example

Based on the truth table,
determine the following

X Y Z F(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F(X,Y,Z) expressed as:

an on-set: ____________________

an off-set: ____________________

a sum of minterms: _____________________________

a product of maxterms: __________________________

X,Y,Z(0,3,6,7)

X,Y,Z(1,2,4,5)

X’•Y’•Z’ + X’•Y•Z + X•Y•Z’ + X•Y•Z

(X+Y+Z’)•(X+Y’+Z)• (X’+Y+Z)•(X’+Y+Z’)
20

Clicker Quiz

21

1. The ON set for a 3-input NAND gate
(with inputs X, Y, and Z) is:
A. X,Y,Z(7)

B. X,Y,Z(0)

C. X,Y,Z(0,1,2,3,4,5,6)

D. X,Y,Z(1,2,3,4,5,6,7)

E. none of the above

22

X Y Z FNAND(X,Y,Z)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

2. The OFF set for a 3-input NOR gate
(with inputs X, Y, and Z) is:
A. X,Y,Z(7)

B. X,Y,Z(0)

C. X,Y,Z(0,1,2,3,4,5,6)

D. X,Y,Z(1,2,3,4,5,6,7)

E. none of the above

23

X Y Z FNOR(X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

3. If the function F(X,Y,Z) is represented by the
ON SET X,Y,Z(0,3,5,6), then the complement
of this function F(X,Y,Z) is represented by the
ON SET:

A. X,Y,Z(0,3,5,6)

B. X,Y,Z(1,2,4,7)

C. X,Y,Z(1,2,4,6)

D. X,Y,Z(1,3,5,7)

E. none of the above

24

X Y Z F (X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

X Y Z F (X,Y,Z)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 5

4. If the function F(X,Y,Z) is represented by the
ON SET X,Y,Z(0,3,5,6), then the dual of this
function FD(X,Y,Z) is represented by the ON SET:

A. X,Y,Z(0,3,5,6)

B. X,Y,Z(1,2,4,7)

C. X,Y,Z(1,2,4,6)

D. X,Y,Z(1,3,5,7)

E. none of the above

25

X Y Z F (X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

X Y Z FD (X,Y,Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

DUAL truth table rule:
“flip and complement”

Example - Combinational Analysis

0

0
0

1 1
0

1

1
0

0

26

0

0
1

1 1
1

1

0
0

1

27

Example - Combinational Analysis

0

1
0

0 0
0

1

1
1

1

28

Example - Combinational Analysis

Example - Combinational Analysis

0

1
1

0 0
0

1

0
0

0

29

1

0
0

1 1
0

0

1
0

0

30

Example - Combinational Analysis

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 6

1

0
1

1 1
1

0

0
0

1

31

Example - Combinational Analysis

1

1
0

0 1
0

0

1
0

0

32

Example - Combinational Analysis

1

1
1

0 1
1

0

0
0

1

33

Example - Combinational Analysis

The “on set” of this function
is f (X,Y,Z) = X,Y,Z(1,2,5,7)

The canonical sum of this function is

f (X,Y,Z) = XYZ + XYZ + XYZ
+ XYZ

Truth Table

34

Example - Combinational Analysis

The “off set” of this function
is f (X,Y,Z) = X,Y,Z(0,3,4,6)

The canonical product of this function is
f (X,Y,Z) = (XYZ) (XYZ)(XYZ)
(XYZ)

35

Example - Combinational Analysis

Writing the function implemented
by this circuit “directly” yields

f (X,Y,Z) = ((X+Y)Z) + (XYZ) =

XZ + YZ + XYZ
36

Example - Combinational Analysis

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 7

The expression

f (X,Y,Z) = XZ + YZ + XYZ
corresponds to a different circuit
(“two-level AND-OR”) for the
same logic function

37

Example - Combinational Analysis Example – Equivalent Symbols

Recall that an equivalent symbol can
be drawn for a gate by taking the dual
of the operator and complementing all
of its inputs and outputs

38

Step 1: Starting at the “output end”, replace
the “OR” gate with an AND gate that has its
inputs and outputs complemented

39

Example – Equivalent Symbols

Step 2: Migrate the “inversion bubbles”,
as appropriate, by applying involution

Note: A two-level AND-OR circuit is equivalent
to a two-level NAND-NAND circuit!

40

Example – Equivalent Symbols

Summary
 There are numerous ways a combinational logic function

can be represented
– truth table
– algebraic sum of minterms (sum-of-products expression)
– minterm list (ON set)
– algebraic product of maxterms (product-of-sums

expression)
– maxterm list (OFF set)

41

Clicker Quiz

42

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 8

1. A NOR gate is logically equivalent to:
A. an AND gate with inverted inputs

B. an OR gate with inverted inputs

C. a NAND gate with inverted inputs

D. a NOR gate with inverted inputs

E. none of the above

43

2. An OR gate is logically equivalent to:
A. an AND gate with inverted inputs

B. an OR gate with inverted inputs

C. a NAND gate with inverted inputs

D. a NOR gate with inverted inputs

E. none of the above

44

3. A circuit consisting of a level of NOR gates followed
by a level of AND gates is logically equivalent to:
A. a multi-input OR gate

B. a multi-input AND gate

C. a multi-input NOR gate

D. a multi-input NAND gate

E. none of the above

1
2

3

1
2

3

1
2

3

45

Combinational Synthesis
 A circuit realizes (“makes real”) an expression if its

output function equals that expression
 Such a circuit is called a realization of the function
 Typically there are many possible realizations of the

same function
 Circuit transformations can be made algebraically

or graphically

46

Combinational Synthesis
 The starting point for designing a combinational logic

circuit is usually a word description of a problem
 Example: Design a 4-bit prime number detector (or,

Given a 4-bit input combination M = N3N2N1N0,
design a function that produces a “1” output for M = 1,
2, 3, 5, 7, 11, 13 and a “0” output for all other numbers)

f (N3,N2,N1,N0) = N3,N2,N1,N0(1,2,3,5,7,11,13)

47

Example – Prime Number Detector

48

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 9

Thought Questions
 How do we know if a given realization of a function is

“best” in terms of:
– speed (propagation delay)
– cost

• total number of gates
• total number of gate inputs (fan-in)

 Need two things:
– a way to transform a logic function to its simplest form

(“minimization”)
– a way to calculate the “cost” of different realizations of

a given function in order to compare them

49

? Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-B

Mapping and Minimization

Reading Assignment:
DDPP 4th Ed. pp. 210-222, 5th Ed. pp. 117-125

Learning Objectives:
 Draw a Karnaugh Map (“K-map”) for a 2-, 3-, 4-, or 5-variable logic

function

 List the assumptions underlying function minimization

 Identify the prime implicants (“PI”), essential PI, and non-essential PI of a
function depicted on a K-map

 Use a K-map to minimize a logic function (including those that are
incompletely specified) and express it in either minimal SoP or PoS form

 Use a K-map to convert a function from one standard form to another

 Calculate and compare the cost (based on the total number of gate
inputs plus the number of gate outputs) of minimal SoP and PoS
realizations of a given function

 Realize a function depicted on a K-map as a two-level NAND circuit, two-
level NOR circuit, or as an open-drain NAND/wired-AND circuit

51

Outline
 Overview
 Representation of logic functions using

K-maps
 Minimization of logic functions using

K-maps
 NAND-Wired AND configuration
 Incompletely specified functions

– where they occur
– how to minimize them

52

Overview
 Minimization is an important step in both ASIC

(application specific integrated circuit) design and
in PLD-based (programmable logic device) design

 Extra gates and gate inputs require more chip area
(“real estate”) and thereby increase cost and power
consumption

 Canonical sum and product expressions (which
can be determined “directly” from a truth table) are
particularly expensive because the number of
minterms [maxterms] grows exponentially with the
number of variables

53

Overview
 Minimization reduces the cost of two-level AND-OR, OR-

AND, NAND-NAND, NOR-NOR circuits by:
– minimizing the number of first-level gates
– minimizing the number of inputs on each first-level gate
– minimizing the number of inputs on the second-level

gate
 Most minimization methods are based on a generalization

of the Combining Theorems (T10 and T10):
Expression X + Expression X = Expression

54

Takeaway: The fundamental basis of logic
minimization is the COMBINING THEOREM

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 10

Minimization Motivation

55

4-bit
Prime Number

Detector

Minterm Form

Minimized Circuit
Realization

Overview
 Limitations of minimization methods

– no restriction on fan-in is assumed (i.e., the total
number of inputs a gate can have is assumed to be
“infinite”)

– minimization of a function of more than 4 or 5
variables is not practical to do “by hand” (a computer
program must be used!)

– both true and complemented versions of all input
variables are assumed to be readily available (i.e., the
cost of input inverters is not considered)

This latter assumption is very appropriate for
PLD-based design, but often violated in gate-level
and ASIC-based design

56

Karnaugh Maps
 A Karnaugh map (or “K-map”) is a graphical representation

of a logic function’s truth table

 The map for an n-variable logic function is an array with 2n

cells, one for each possible input combination (minterm)

57

Karnaugh Maps
 Several things to note concerning K-maps:

– the small number in the corner of each square
indicates the minterm number

– the entries in the squares correspond to the “on set”
of the function

– the labels are placed in such a way that the minterms
on any pair of adjacent squares differ by only one
literal

– the sides of the map are considered to be contiguous
– adjacent, like squares may be combined in groups of

2k to reduce the number of product terms in an
expression (a grouping of 2k squares will eliminate k
variables)

58

Karnaugh Maps
 An alternate drawing for a 2-variable K-map

0 2

1 3

X X

Y

Y

59

Karnaugh Maps
 Example: f (X,Y) = X+ Y

0 2

1 3

X X

Y

Y

01

1 1

60

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 11

Karnaugh Maps
 An alternate drawing for a 3-variable K-map

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

61

Karnaugh Maps
 Example: f (X,Y,Z) = XY+ YZ

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

62

Karnaugh Maps
 Example: f (X,Y,Z) = XY + YZ

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

1

1

63

Karnaugh Maps
 Example: f (X,Y,Z) = XY + YZ

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

1

1 1 1

64

Karnaugh Maps
 Example: f (X,Y,Z) = XY + YZ

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

1

1 1 1

00 0

0

65

Karnaugh Maps
 Drawing for a 4-variable K-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

66

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 12

Karnaugh Maps
 Example: f (W,X,Y,Z) = XZ+ WZ + WX

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

67

Karnaugh Maps
 Example: f (W,X,Y,Z) = XZ + WZ + WX

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

68

Karnaugh Maps
 Example: f (W,X,Y,Z) = XZ + WZ + WX

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 1

1 1

1

1

1

1

0

0

0

0

69

Minimization
 Definition: A minimal sum of a logic function f is a

sum-of-products expression for f such that no sum-
of-products expression for f has fewer product terms,
and any sum-of-products expression with the same
number of product terms has at least as many literals

Translation: The minimal sum has the fewest possible
product terms (first-level gates / second-level gate inputs)
and the fewest possible literals (first-level gate inputs)

70

Minimization
 Definition: A logic function p implies a logic function

f if for every input combination such that p = 1, then
f = 1 also (i.e., if p implies f , then f is 1 for every
input combination that p is 1, and maybe some more
– or “f covers p ”)

 Definition: A prime implicant of an n-variable logic
function f is a normal product term P that implies f ,
such that if any literal is removed from P, then the
resulting product term does not imply f

71

Minimization
 Translation: A prime implicant is the largest possible

grouping of size 2k adjacent, like squares

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 1

1 1

1

1

1

1

0

0

0

0
Prime

Implicant

NOT a Prime
Implicant

72

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 13

Minimization
 Prime Implicant Theorem: A minimal sum is a sum of

prime implicants (i.e., to find a minimal sum, we need not
consider any product terms that are not prime implicants)

 Definition: An essential prime implicant has at least one
square in the grouping not shared by another prime
implicant, i.e., it has at least one “unique” square, called a
distinguished 1-cell

 Definition: A non-essential prime implicant is a grouping
with no unique squares

 Definition: The cost criterion we will use is that gate inputs
and outputs are of equal cost

COST = No. of Gate Inputs + No. of Gate Outputs
73

Minimization Procedure
 STEP 1: Circle all the prime implicants

74

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1

Minimization Procedure
 STEP 2: Note the essential prime implicants

75

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1

Minimization Procedure
 STEP 2: Note the essential prime implicants

76

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1

Minimization Procedure
 STEP 2: Note the essential prime implicants

77

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1

Minimization Procedure
 STEP 3: If there are still any uncovered squares,

include non-essential prime implicants

78

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1
One

Possibility

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 14

Minimization Procedure
 STEP 3: If there are still any uncovered squares,

include non-essential prime implicants

79

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1
f (W,X,Y,Z) = WXZ
+ WXZ + WYZ
+ XYZ

X

X

W

Y

1
2
3
4

Z

1

2
3

4
5

1
2
3
4

W'

1
2
3
4Z

1
2
3
4

W
Z'

Z'

Y
X

One possible circuit implementation (AND-OR):

COST is 16 inputs + 5 outputs = 21
80

EQUIVALENT circuit implementation,
obtained through graphical application of

DeMorgan’s Law

Note: AND-OR NAND-NAND

COST is 16 inputs + 5 outputs = 21 (same)

1
2
3
4

Z

1
2
3
4

Z'

1

2
3

4
5

Z'

X

Y

W

X

X

1
2
3
4

W
Y

W'

Z

1
2
3
4

81

Minimization Procedure
 REVISIT STEP 3: If there are still any uncovered squares,

include non-essential prime implicants

82

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1

Another
Possibility

Y

Y

Minimization Procedure
 REVISIT STEP 3: If there are still any uncovered squares,

include non-essential prime implicants

83

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Z

Z

Z

0 1

00

0 0

1 0

1

1

0

0

0

0

1

1
Y

Y

f (W,X,Y,Z) = WXZ
+ WXZ + WYZ
+ WXY

Clicker Quiz

84

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 15

1. The number of prime implicants is:
A. 1

B. 2

C. 3

D. 4

E. 5

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X

85

2. The number of essential prime
implicants is:
A. 1

B. 2

C. 3

D. 4

E. 5

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X

86

3. The number of non-essential prime
implicants is:
A. 1

B. 2

C. 3

D. 4

E. 5

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X

87

4. The number of product terms in the
minimal sum is:
A. 1

B. 2

C. 3

D. 4

E. 5

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X

88

5. The ON SET for this function:
A. W,X,Y,Z(2,4,5,6,9,10,11,12)

B. W,X,Y,Z(3,4,5,7,9,13,14,15)

C. W,X,Y,Z(3,4,5,7,9,10,11,13)

D. W,X,Y,Z(2,4,5,6,9,13,14,15)

E. none of the above

W W

Y

0 1 0 0 Z

0 1 1 1

Z

Y

1 1 1 0

0 0 1 0 Z

X X X

89

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

Minimization: Another Example
 Exercise: Find a minimal sum-of-products expression

for the function mapped below

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

11

1 1

0 0

1

1

0

1

1

0

0

1

90

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 16

Minimization Procedure
 Exercise: Find a minimal sum-of-products expression

for the function mapped below

prime
implicants

91

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

11

1 1

0 0

1

1

0

1

1

0

0

1

Minimization Procedure
 Exercise: Find a minimal sum-of-products expression

for the function mapped below

essential prime
implicants

92

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

11

1 1

0 0

1

1

0

1

1

0

0

1

Minimization Procedure
 Exercise: Find a minimal sum-of-products expression

for the function mapped below

essential prime
implicants

93

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

11

1 1

0 0

1

1

0

1

1

0

0

1

Minimization Procedure
 Exercise: Find a minimal sum-of-products expression

for the function mapped below

essential prime
implicants

94

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

11

1 1

0 0

1

1

0

1

1

0

0

1

Minimization Procedure
 Exercise: Find a minimal sum-of-products expression

for the function mapped below

essential prime
implicants

95

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

11

1 1

0 0

1

1

0

1

1

0

0

1

Minimization Procedure
 Exercise: Find a minimal sum-of-products expression

for the function mapped below

96

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

11

1 1

0 0

1

1

0

1

1

0

0

1

(largest) non-essential
prime implicant needed

to cover function

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 17

Minimization Procedure
 Exercise: Find a minimal sum-of-products expression

for the function mapped below

97

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

11

1 1

0 0

1

1

0

1

1

0

0

1
f (W,X,Y,Z) =

WY + XY +
WXZ + WXY

+ YZ

Minimization: Product-of-Sums
 Question: How could a minimal product-of-sums

expression for this function be found?

Group zeroes to get a
minimum sum-of-products
expression for f

98

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 0

11

1 1

0 0

1

1

0

0

1

0

0

1

Minimization: Product-of-Sums
 Group zeroes to get a minimum sum-of-products

expression for f

99

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 0

11

1 1

0 0

1

1

0

0

1

0

0

1

Find essential prime
implicants of f

Minimization: Product-of-Sums

100

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 0

11

1 1

0 0

1

1

0

0

1

0

0

1

Find essential prime
implicants of f

 Group zeroes to get a minimum sum-of-products
expression for f

Minimization: Product-of-Sums

101

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 0

11

1 1

0 0

1

1

0

0

1

0

0

1

 Group zeroes to get a minimum sum-of-products
expression for f

Find essential prime
implicants of f

Minimization: Product-of-Sums

102

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 0

11

1 1

0 0

1

1

0

0

1

0

0

1

Function is completely covered
using only the essential prime
implicants the non-essential
prime implicant YZ is not needed

 Group zeroes to get a minimum sum-of-products
expression for f

Find essential prime
implicants of f

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 18

Minimization: Product-of-Sums

103

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 0

11

1 1

0 0

1

1

0

0

1

0

0

1 f = WY + XY + WXZ

Apply DeMorgan’s Law

f = (W+Y)(X+Y)(W+X+Z)

 Group zeroes to get a minimum sum-of-products
expression for f

One possible circuit implementation (OR-AND):

COST is 10 inputs + 4 outputs = 14

Y'

1
2
3
4

X

W

1
2

3Y'

Z

W'

X'

1
2

3

1
2
3
4

104

EQUIVALENT circuit implementation, obtained through
graphical application of DeMorgan’s Law

Note: OR-AND NOR-NOR

COST is 10 inputs + 4 outputs = 14 (same)

W

1
2
3
4

W'

X'

1
2

3

1
2
3
4

1
2

3

Y'

Z

Y'
X

105

More Minimization Examples

Assuming that only true variables are available,
realize the function represented by
X,Y,Z(0,2,3,6) two different ways:

(a) using a single 7400 (quad 2-input NAND)
plus a single 7410 (triple 3-input NAND)

(b) using a single 7403 (quad 2-input open-
drain NAND)

Key to Solution: The “NAND-Wired AND”
configuration realizes the complement of the
NAND-NAND configuration implement F

106

Solution to (a)

X X

Z 1 1 1 0

Z 0 1 0 0

Y Y Y

Given: X,Y,Z(0,2,3,6)

107

0

1

2

3

6

7

4

5 F(X,Y,Z) = X•Y + X•Z + Y•Z

X

U1A

7410

1
2

13
12

U1C

7400

9

10
8

U2B

7410

3
4
5

6 F(X,Y,Z)
Y

U1B

7400

4

5
6Z

U1A

7400

1

2
3

U1D

7400

12

13
11

Solution to (b)

X X

Z 1 1 1 0

Z 0 1 0 0

Y Y Y

Given: X,Y,Z(0,2,3,6)

108

0

1

2

3

6

7

4

5

F(X,Y,Z) = X•Y + X•Z + Y•Z

VCC

Z

VCC

10K

X

Y

U1C

7403

9

10
8

X

10K

U1A

7403

1

2
3

U1B

7403

4

5
6

U1D

7403

12

13
11

F(X,Y,Z)

Z

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 19

“Conversion” Example

Express the complement of the following
function in minimal product-of-sums form:

F(X,Y,Z) = (X + Y) · (X + Y + Z) · (X + Y + Z)

 F(X,Y,Z) = __________________ Map ______

F(X,Y,Z) = ________

F(X,Y,Z) in minimal POS form

= ___________________

109

“Conversion” Example

Express the complement of the following
function in minimal product-of-sums form:

F(X,Y,Z) = (X + Y) · (X + Y + Z) · (X + Y + Z)

 F(X,Y,Z) = X·Y + X·Y·Z + X·Y·Z Map zeroes

X X

Z 0 1 1 0

Z 0 1 1 1

Y Y Y

F(X,Y,Z) = ________

F(X,Y,Z) in minimal POS form

= ___________________

110

“Conversion” Example

Express the complement of the following
function in minimal product-of-sums form:

F(X,Y,Z) = (X + Y) · (X + Y + Z) · (X + Y + Z)

 F(X,Y,Z) = X·Y + X·Y·Z + X·Y·Z Map zeroes

X X

Z 0 1 1 0

Z 0 1 1 1

Y Y Y

F(X,Y,Z) = Y + X•Z

F(X,Y,Z) in minimal POS form

= Y • (X + Z)

111

Incompletely Specified Functions
 There are some logic functions that do not assign a

specific binary output value (0/1) to each of the 2n

input combinations

 Since there are essentially some unused
combinations, these functions are referred to as
incompletely specified functions

 The unused combinations are often called don’t cares
or the d-set

 Example: Binary Coded Decimal (BCD), where 4 binary
digits are used to represent a decimal digit (0 - 9)10 –
here there are 6 unused combinations (1010 - 1111)2

112

Incompletely Specified Functions
 Application: Determine a logic function that will be “1”

if the BCD digit input satisfies the following inequality:
1 < N10 < 9

F = W,X,Y,Z (2,3,4,5,6,7,8) + d(10,11,12,13,14,15)

On Set d-Set

113

BCD Inequality Detector Example
N10 W X Y Z F(W,X,Y,Z)

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 0

114

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 20

Incompletely Specified Functions
 To minimize an incompletely specified function, we

modify the procedure for circling sets of 1’s (prime
implicants) as follows:

– allow d’s to be included when circling sets of 1’s,
to make the sets as large as possible

– do not circle any sets that contain only d’s

– look for distinguished 1-cells only, not
distinguished d-cells

Most hardware description languages (HDL) provide
a means for the designer to specify don’t care inputs

115

BCD Inequality Detector Example: SOP

Minimum SP: f (W,X,Y,Z) = X + Y + WZ
Cost: 5 gate inputs + 2 gate outputs = 7

116

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 d

10

d 0

d d

1

1

1

1

0

1

d

d

BCD Inequality Detector Example: POS

Minimum PS:

f (W,X,Y,Z) =

WZ + WXY
 f (W,X,Y,Z) =

(W + Z) (W + X + Y)

Cost: 7 gate inputs
+ 3 gate outputs = 10

Conclusion: The SP implementation costs less
117

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 d

10

d 0

d d

1

1

1

1

0

1

d

d

Incompletely Specified Functions
 Example: Find a minimal sum-of-products expression

for the function mapped below

118

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 0

01

d d

0 0

d

1

0

d

d

1

d

0

f (W,X,Y,Z) = WX+ WY
Cost: 6 gate inputs +

3 gate outputs
= 9 cost units

Incompletely Specified Functions
 Example: Find a minimal product-of-sums expression

for the function mapped below

119

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 0

01

d d

0 0

d

1

0

d

d

1

d

0

W

f (W,X,Y,Z) = W + XY
f (W,X,Y,Z) = W (X+Y)
Cost: 4 gate inputs +

2 gate outputs
= 6 cost units

Clicker Quiz

120

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 21

1. The cost of a minimal sum of products realization of this function
(assuming both true and complemented variables are available) is:

A. 9 B. 10 C. 11 D. 12 E. none of the above

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

121

2. The cost of a minimal products of sum realization of this function
(assuming both true and complemented variables are available) is:

A. 9 B. 10 C. 11 D. 12 E. none of the above

122

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

3. Assuming the availability of only true input variables, the fewest number of
2-input NAND gates that are needed to realize this function is:

A. 6 B. 7 C. 8 D. 9 E. none of the above

123

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

4. Assuming the availability of only true input variables, the fewest number of
2-input NOR gates that are needed to realize this function is:

A. 6 B. 7 C. 8 D. 9 E. none of the above

124

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

5. Assuming the availability of only true input variables, the fewest number of
2-input open-drain NAND gates that are needed to realize this function is:

A. 6 B. 7 C. 8 D. 9 E. none of the above

125

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

6. The number of pull-up resistors required for realizing this function using
only 2-input open drain NAND gates (assuming the availability of only
true input variables) is:

A. 1 B. 2 C. 3 D. 4 E. none of the above
126

X X

Z 1 1 0 d

Z 0 0 1 0

Y Y Y

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 22

Introduction to Digital System Design

Purdue IM:PACT* Spring 2018 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-C

Timing Hazards

Reading Assignment:
DDPP 4th Ed. pp. 224-229, 5th Ed. pp. 122-126

Learning Objectives:
 Define and identify static-0, static-1, and dynamic hazards
 Describe how a static hazard can be eliminated using

consensus terms
 Describe a circuit that takes advantage of the existence of

hazards and analyze its behavior
 Draw a timing chart that depicts the input-output relationship

of a combinational circuit

128

Outline
 Timing hazards

– Static
– Dynamic

 Elimination of timing hazards
 Clever utilization of timing hazards
 Designing hazard-free circuits

129

Timing Hazards
 The combinational circuit analysis methods

described thus far ignore propagation delay and
predict only the steady state behavior

 Gate propagation delay may cause the transient
behavior of logic circuit to differ from that predicted
by steady state analysis

 A circuit’s output may produce a short pulse (often
called a glitch) at time when steady state analysis
predicts the output should not change

 A hazard is said to exist when a circuit has the
possibility of producing such a glitch

130

Timing Hazards: Static 1
 Definition: A static-1 hazard is a pair of input

combinations that: (a) differ in only one input variable
and (b) both produce a “1” output, such that it is
possible for a momentary “0” output to occur during
a transition in the differing input variable

1

1

1 0

131

Timing Hazards: Static 0
 Definition: A static-0 hazard is a pair of input

combinations that: (a) differ in only one input variable
and (b) both produce a “0” output, such that it is
possible for a momentary “1” output to occur during a
transition in the differing input variable

A static-0 hazard is just the dual of a static-1 hazard
132

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 23

Timing Hazards
 A K-map can be used to detect static hazards in a two-

level sum-of-products or product-of-sums circuit
 Important: The existence or nonexistence of static

hazards depends on the circuit design (i.e., realization)
of a logic function

 A properly designed two-level sum-of-products (AND-
OR) circuit has no static-0 hazards but may have
static-1 hazards

 Existence of static-1 hazards can be predicted from a
K-map

133

Timing Hazards
 Using a K-map to graphically detect the possibility

of a static-1 hazard:

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

0

0 1 1

10 1

0
f (X,Y,Z) = XZ+YZ

Note: It is possible for the output to momentarily
glitch to “0” if the AND gate that covers one of the
combinations goes to “0” before the AND gate
covering the other input combination goes to “1”

134

Timing Hazards
 Solution: Include an extra product term (AND gate)

to cover the hazardous input pair

0 2 6 4

1 3 7 5

X X

Y Y

Z

Z

Y

0

0 1 1

10 1

0

f (X,Y,Z) = XZ+YZ
+ XY

The extra product term is the consensus of the
two original terms – in general, consensus terms
must be added to eliminate hazards

135

Timing Hazards
 A dynamic hazard is the possibility of an output

changing more than once as the result of a single
input transition

 Multiple output transitions can occur if there are
multiple paths with different delays from the changing
input to the changing output

136

Timing Hazards
 Important: Not all hazards are hazardous – in fact,

some can be quite useful! Consider the case in
which we would like to detect a low-to-high
transition (the “leading edge”) of a logic signal

TPLHTPHL

137

Designing Hazard-Free Circuits
 Very few practical applications require the design of

hazard-free combinational circuits (e.g., feedback
sequential circuits)

 Techniques for finding hazards in arbitrary circuits
are difficult to use

 If cost is not a problem, then a “brute force” method
of obtaining a hazard-free realization is to use the
complete sum (i.e., all prime implicants)

 Functions that have non-adjacent product terms are
inherently hazardous when subjected to
simultaneous input changes

138

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 24

Clicker Quiz

139

1. Steady state analysis of this circuit would
predict that its output will always be:
A. 0

B. 1

C. 50% of VCC

D. Les Déplorables

E. none of the above

12
1

2

3

X
Y

140

2. This circuit exhibits the following type of
hazard when its input, X, transitions from
low-to-high:
A. static-0

B. static-1

C. dynamic

D. Les Déplorables

E. none of the above

12
1

2

3

X
Y

141

3. This circuit exhibits the following type of
hazard when its input, X, transitions from
high-to-low:
A. static-0

B. static-1

C. dynamic

D. Les Déplorables

E. none of the above

12
1

2

3

X
Y

142

4. Steady-state analysis of the function realized by this
circuit for the input waveforms shown predicts that the
output F(X,Y) should:
A. should always be low

B. should always be high

C. should be identical to the input

D. should be the complement of the input

E. none of the above

1
2

3

1
2

3

1
2

3

12X

Y
F

12

143

1 ms

5. Dynamic analysis of the output F(X,Y) reveals that:
A. a static “0” hazard will be generated in response to

low-to-high transitions of the input waveform
B.a static “1” hazard will be generated in response to

low-to-high transitions of the input waveform
C.a static “0” hazard will be generated in response to

high-to-low transitions of the input waveform
D.a static “1” hazard will be generated in response to

high-to-low transitions of the input waveform
E. none of the above

1
2

3

1
2

3

1
2

3

12X

Y
F

12

144

1 ms

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 25

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-D

XOR/XNOR Functions

Reading Assignment:
DDPP 4th Ed. pp. 447-448, 5th Ed. pp. 320-322

Learning Objectives:
 Identify properties of XOR/XNOR functions

 Simplify an otherwise non-minimizable function by
expressing it in terms of XOR/XNOR operators

146

Outline
 XOR and XNOR functions

 XOR operator properties

 XOR “checkerboard” K-map

 XOR N-variable functions

 Realization of “non-reducible” functions using
XOR/XNOR gates

147

XOR/XNOR Functions
 An Exclusive-OR (XOR) gate is a 2-input gate whose

output is “1” if exactly one of its inputs is “1” (or, an
XOR gate produces an output of “1” if its inputs are
different)

 An Exclusive-NOR (XNOR) gate is the complement of
an XOR gate – it produces an output of “1” if its
inputs are the same

 An XNOR gate is also referred to as an Equivalence
(or XAND) gate

 Although XOR is not one of the basic functions of
switching algebra, discrete XOR gates are commonly
used in practice 148

XOR/XNOR Functions
 The “ring sum” operator is often used to denote the

XOR function: XY = X•Y + X•Y
 The XNOR function can be thought of as either the dual

or the complement of the XOR function

149

(XY) = (XY)D = X•Y + X•Y

X Y XY (XY)
0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

XOR Operator Properties
 X X = X•X + X•X = 0 + 0 = 0

 X X = X•X + X•X = 0 + 0 = 0

 X 1 = X •1 + X•0 = X
 X 1 = X•1 + X•0 = X

 (X Y) = X Y 1

 X Y = Y X

 X (Y Z) = (X Y) Z

 X•(Y Z) = (X•Y) (X•Z)

150

XOR and XNOR
Equivalent Symbols

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 26

XOR K-Map
 K-map of 2-variable XOR function

X Y = X´•Y + X•Y´

Leads to a “checkerboard” K-map, that cannot
be reduced (in either SoP or PoS form)

0 2

1 3

X X

Y

Y

10

1 0

151

XOR N-Variable Functions
 The XOR (or XNOR) of N variables can be realized

with tree or cascade circuits

152

- tree XOR circuit (N is a power of 2)

- cascade XOR circuit

The output of an n-variable XOR function is
1 if an odd number of inputs are 1

The output of an n-variable XNOR function
is 1 if an even number of inputs are 1

Realization of an n-variable XOR or XNOR
function will require 2n-1 P-terms

Non-Reducible Functions
 Functions that cannot be significantly reduced using

conventional minimization techniques can sometimes be
simplified by implementing them with XOR/XNOR gates

 Candidate functions that may be simplified this way have
K-maps with “diagonal 1’s”

 Technique: Write out function in SoP form, and “factor
out” XOR/XNOR expressions

153

Example – “Diagonal” K-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0

01

0 0

1 0

1

0

0

0

0

0

0

0

154

1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

01

0 0

1 0

1

0

0

0

0

0

0

0

F(W,X,Y,Z) =
W•X•Y•Z + W•X•Y•Z
+ W•X•Y•Z + W•X•Y•Z

155

Example – “Diagonal” K-map
 Minimize function to the extent possible

1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

01

0 0

1 0

1

0

0

0

0

0

0

0

F(W,X,Y,Z) =
W•X•Y•Z + W•X•Y•Z
+ W•X•Y•Z + W•X•Y•Z

= X•Z • (W•Y + W•Y)
+ X•Z • (W•Y + W•Y)

156

Example – “Diagonal” K-map
 Factor out XOR/XNOR expressions

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 27

 Factor out XOR/XNOR expressions

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

01

0 0

1 0

1

0

0

0

0

0

0

0

F(W,X,Y,Z) =
W•X•Y•Z + W•X•Y•Z
+ W•X•Y•Z + W•X•Y•Z

= X•Z • (W•Y + W•Y)
+ X•Z • (W•Y + W•Y)

= (X•Z +X•Z)•(W•Y+W•Y)

157

Example – “Diagonal” K-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

0 1

01

0 0

1 0

1

0

0

0

0

0

0

0

F(W,X,Y,Z) =
W•X•Y•Z + W•X•Y•Z
+ W•X•Y•Z + W•X•Y•Z

= X•Z • (W•Y + W•Y)
+ X•Z • (W•Y + W•Y)

= (X•Z +X•Z)•(W•Y+W•Y)

= (X Z) • (W Y)

158

Example – “Diagonal” K-map
 Write function in terms of XOR/XNOR operators

 Realize using XOR/XNOR gates

COST = 6 inputs + 3 outputs = 9 159

Example – “Diagonal” K-map

COST = 20 inputs + 5 outputs = 25
160

Example – “Diagonal” K-map
 Compare with minimal SoP realization

Example – “X”-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 0

1 0

1

1

0

0

0

0

0

0

161

 Minimize function to the extent possible

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 0

1 0

1

1

0

0

0

0

0

0

F(W,X,Y,Z) =
X•Z + X•Z

162

Example – “X”-map

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 28

 Write function in terms of XOR/XNOR operators

F(W,X,Y,Z) =
X•Z + X•Z
= (X Z)

163

Example – “X”-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 0

1 0

1

1

0

0

0

0

0

0

 Compare costs

F(W,X,Y,Z) =
X•Z + X•Z Cost=9
= (X Z) Cost=3

164

Example – “X”-map

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

W W

X XX

Y

Y

Z

Z

Z

1 1

11

1 0

1 0

1

1

0

0

0

0

0

0

Clicker Quiz

165

1. The function realized by this circuit is a:
A. 2-input XOR

B. 2-input XNOR

C. 2-input AND

D. 2-input OR

E. none of the above

1
2

3

1
2

3

1
2

3

12X

Y
F

12

166

2. The ON set of the function realized by this circuit is:
A. X,Y(0,2)

B. X,Y(0,3)

C. X,Y(1,2)

D. X,Y(1,3)

E. none of the above

X'
Y

X
Y'

OD

OD

1

2
3

7403

4

5
6

7403

VCC

167

3. The ON set of the function realized by this circuit is:
A. X,Y,Z(0,3,4,7)

B. X,Y,Z(1,2,5,6)

C. X,Y,Z(0,3,5,6)

D. X,Y,Z(1,2,4,7)

E. none of the above

1
2

3

1
2

3

X
Y

Z
F

168

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 29

4. The XOR property listed below that is NOT true is:
A. X 0 = X
B. X 1 = X
C. X X = X
D. X X = 1
E. none of the above

169

5. The following is NOT an equivalent symbol
for an XOR gate:

A.

B.

C.

D.

E. none of the above
170

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-E

Programmable Logic Devices

Reading Assignment:
DDPP 4th Ed. pp. 370-383, 840-859; 5th Ed. pp. 246-252

Learning Objectives:

 Describe the genesis of programmable logic devices
 List the differences between complex programmable logic

devices (CPLDs) and field programmable gate arrays
(FPGAs) and describe the basic organization of each

172

Outline
 Overview
 Programmable Logic Arrays (PLAs)
 Programmable Array Logic (PALs)
 Generic Array Logic (GALs)
 Complex PLDs
 Field Programmable Gate Arrays (FPGAs)
 Summary

173

Overview
 The first programmable logic devices (PLDs) were

programmable logic arrays (PLAs)
 PLAs are combinational, two-level AND-OR devices that can

be programmed to realize and sum-of-products expression
 Limitations

– number of inputs (n)
– number of outputs (m)
– number of product (“P”) terms (p)

Such a device might be described as
an n x m PLA with p product terms

174

PLD

PLA

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 30

Programmable Logic Array
 4 x 3 PLA with 6 product terms

Potential connections indicated by “X”
175

Overview

 Each input is connected to a buffer that produces both a true and a
complemented version of the signal for use in the array

 Connections are made by fuses, which are actual fusible links (one-
time programmable devices) or non-volatile memory cells (erasable,
re-programmable devices)

176

Overview

177

 Each AND gate’s inputs can be any subset of the primary input
signals and their complements

 Each OR gate’s inputs can be any subset of the AND gate outputs

Programmable Logic Array
 Compact view of 4 x 3 PLA with 6 P-terms

178

Programmable Logic Array
 4 x 3 PLA programmed to implement three logic equations

I1•I2 + I1•I2•I3•I4

I1•I3 + I1•I3•I4 + I2

I1•I2 + I1•I3 + I1•I2•I4
179

Programmable Array Logic
 A special case of PLA is the programmable array logic (PAL)
 Unlike a PLA, a PAL device has a fixed OR array

(i.e. AND gates can not be shared)
 Each output has an individual tri-state enable,

controlled by a dedicated AND gate
 There is an inverter between the output

of the OR gate and the external pin
 Some of the output pins may also be

used as inputs (called “I/O pins”)
– tri-state buffer OFF, input only
– tri-state buffer ON, either

output-only, output cascaded to
another function input, or
feedback to create a sequential
circuit

180

PLD

PAL

PLA

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 31

Generic Array Logic
 Generic Array Logic (GAL) devices can be configured to emulate the

AND-OR, register (flip-flop), and output structure of combinational
and sequential PAL devices

 An output logic macrocell (“OLMC”) is associated with each I/O pin to
provide configuration control

 OLMCs include output polarity control (important because it allows
minimization software to “choose” either the SoP or PoS realization
of a given function)

 Erasable/reprogrammable GAL devices use floating gate technology
(flash memory) for “fuses” and are non-volatile (i.e., retain
programming without power)

 GAL devices require a “universal programmer” to erase and
reprogram their so-called “fuse maps” (means that they must be
removed for reprogramming and subsequently reinstalled – requires
a socket)

 A legacy GAL device (22V10) is included in your digital parts kit to
provide an introduction to PLDs 181

GAL Combinational Macrocell

182

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated
inputs

tri-state enable
selector (4:1 mux)

output
polarity
control

P-term router
(1:2 demux)

“fuse” matrix

dedicated output
enable (OE) pin

product terms
(P-terms)

GAL Combinational Macrocell

183

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated
inputs

tri-state enable
selector (4:1 mux)

output
polarity
control

P-term router
(1:2 demux)

0
“fuse” matrix

dedicated output
enable (OE) pin

product terms
(P-terms)

GAL Combinational Macrocell

184

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated
inputs

tri-state enable
selector (4:1 mux)

output
polarity
control

P-term router
(1:2 demux)

“fuse” matrix

dedicated output
enable (OE) pin

product terms
(P-terms)

P-term router
(1:2 demux)

1

GAL Combinational Macrocell

185

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated
inputs

tri-state enable
selector (4:1 mux)

output
polarity
control

P-term router
(1:2 demux)

“fuse” matrix

dedicated output
enable (OE) pin

product terms
(P-terms)

0
0

GAL Combinational Macrocell

186

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated
inputs

tri-state enable
selector (4:1 mux)

output
polarity
control

P-term router
(1:2 demux)

“fuse” matrix

dedicated output
enable (OE) pin

product terms
(P-terms)

0
1

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 32

GAL Combinational Macrocell

187

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated
inputs

tri-state enable
selector (4:1 mux)

output
polarity
control

P-term router
(1:2 demux)

“fuse” matrix

dedicated output
enable (OE) pin

product terms
(P-terms)

1
0

GAL Combinational Macrocell

188

INPUT PIN 9

I/O PIN

OE PIN

10

D3D2D1D0

Y

A
Y0

Y1

A
B

G

F0

F1
F2

F3

.
.

.

...
INPUT PIN 0

I/O pin

dedicated
inputs

tri-state enable
selector (4:1 mux)

output
polarity
control

P-term router
(1:2 demux)

“fuse” matrix

dedicated output
enable (OE) pin

product terms
(P-terms)

1
1

GAL22V10 Block Diagram
number of AND

array inputs

number of macrocells and associated I/O pins
189

GAL22V10 AND Array (“Fuse Matrix”)

190

GAL22V10 Output Logic Macrocell (“OLMC”)

191

Number of P-terms per OLMC ranges from 8 to 16

I/O
pin

GAL22V10 Output Logic Macrocell (“OLMC”)

192
Single P-term per OLMC dedicated to tri-state buffer enable

I/O
pin

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 33

GAL22V10 Output Logic Macrocell (“OLMC”)

193

All OLMC edge-triggered D flip-flops utilize common clock (CLK) ,
asynchronous reset (AR), and asynchronous preset (SP) signals

I/O
pin

Note: Flip-flops are used to
create sequential circuits

GAL22V10 Output Logic Macrocell (“OLMC”)

194

4:1 multiplexer selects (routes) true/complemented combinational
or true/complemented registered function to the I/O pin

I/O
pin

GAL22V10 Output Logic Macrocell (“OLMC”)

195

2:1 multiplexer selects (routes) true/complemented I/O pin or
true/complemented registered feedback to the P-term array

I/O
pin

Note: Tri-state
buffer is turned
off to use I/O
pin as an input

GAL22V10 Pinout

macrocell
I/O pins

(inputs or
outputs)

data
inputs

196

clock or
data input

data input

Complex PLDs (CPLDs)

 Modern complex PLDs (CPLDs) contain hundreds of macrocells
and I/O pins, and are designed to be erased/reprogrammed
in-circuit (called “isp”)

 Because CPLDs typically contain significantly more macrocells
than I/O pins, capability is provided to use macrocell resources
“internally” (called a node)

 Example: The Lattice ispMACH 4000 series CPLDs feature
36-input, 16-macrocell GLBs

 A “breakout board” utilizing an ispMACH 4256ZE device (with 256
macrocells and 144 pins) will be used for the second half of the lab
experiments

197

 A global routing pool (GRP) is used to connect generic logic
blocks (GLBs)

 Output routing pools (ORPs) connect the GLBs to the I/O blocks
(IOBs), which contain multiple I/O cells 198

ispMACH 4000ZE Block Diagram

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 34

ispMACH 4000ZE Generic Logic Block

199

ispMACH 4000ZE 36-Input AND Array

200

ispMACH 4000ZE Macrocell

201

Field Programmable Gate Arrays
 A field programmable gate array (FPGA) is “kind of like a CPLD

turned inside-out”
 Logic is broken into a large number of programmable blocks

called look-up tables (LUTs) or configurable logic blocks (CLBs)
 Programming configuration is stored in SRAM-based memory

cells and is therefore volatile, meaning the FPGA configuration is
lost when power is removed

 Programming information must therefore be loaded into an
FPGA (typically from an external ROM chip) each time it is
powered up (“initialization/boot” cycle)

 LUTs/CLBs are inherently less capable than PLD macrocells, but
many more of them will fit on a comparably sized FPGA (than
macrocells on a CPLD)

202

Summary
 There are currently two types of programmable logic devices in

common use:
– CPLDs

• in-circuit programmable
• non-volatile (retains configuration information when powered

down)
• “instant on” (no external configuration ROM or boot sequence

required)
• less dense (fewer programmable logic blocks) than comparably

sized FPGA
– FPGAs

• in-circuit programmable
• volatile (loses configuration when powered down)
• requires external configuration ROM and “boot” sequence to

initialize
• more dense (greater number programmable logic blocks) than

comparably sized CPLD 203

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-F

Hardware Description Languages

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 35

Reading Assignment:
DDPP 4th Ed. pp. 237-243, 290-335; 5th Ed. pp. 177-233

Learning Objectives:
 List the basic features and capabilities of a hardware

description language
 List the syntactic elements of a Verilog module
 Identify operators and keywords used to create Verilog

modules
 Write equations using Verilog dataflow syntax
 Define functional behavior by creating truth tables with the
casez construct in Verilog

205

Outline
 Overview
 Verilog and ispLeverTM

 Verilog coding semantics
 Verilog module structure
 Verilog symbols for logical operations
 Sample Verilog modules
 Structural code in Verilog

206

Overview
 Hardware description languages (HDLs) are the most common way to

describe the programming configuration of a CPLD or an FPGA

 The first HDL to enjoy widespread use was PALASM (“PAL Assembler”)
from Monolithic Memories, Inc. (inventors of the PAL device)

 Early HDLs only supported equation entry

 Next generation languages such as CUPL (Compiler Universal for
Programmable Logic) and ABEL (Advanced Boolean Expression
Language) added more advanced capabilities:

– truth tables and clocked operator tables

– logic minimization

– high-level constructs such as when-else-then and state diagram

– test vectors

– timing analysis
207

Overview
 Both VHDL and Verilog started out as simulation languages (later

developments in these languages allowed actual hardware design)

 Both languages support modular, hierarchical coding and support
a wide variety of high-level programming constructs represents
a higher level of abstraction
– arrays
– procedures
– function calls
– conditional and iterative statements

 Potential Pitfall – Because VHDL and Verilog have their genesis as
simulation languages, it is possible to create non-synthesizable
HDL code using them (i.e., code that can simulate a digital system,
but not actually realize it)

 Advantage – VHDL and Verilog are much better adapted to large
scale system design Verilog has become the most common
language for IC design and verification.

208

“Deep into levels of
abstraction, your
descent will be”

Verilog and ispLeverTM

 Because Verilog is so commonly used in industry and you will
need it in future classes, you will be introduced to Verilog in
this course

 You will use Verilog to program legacy PLDs (like the 22V10) as
well as current generation CPLDs (like the ispMACH 4256ZE)

 We will use the Lattice ispLever Classic 1.8 software package in
lab, which includes support for ABEL, Verilog, and VHDL as
well as schematic entry

 You can obtain your own free copy of this software from the
Lattice Semiconductor web site (www.latticesemi.com)

209

Verilog and ispLeverTM

 A Verilog module is a text file containing:

– documentation (program name, comments)

– declarations that identify the inputs and outputs of the logic
functions to be performed

– statements that specify the logic functions to be performed

 Because you need to be able to program a PLD or CPLD, your
Verilog code must be strictly limited to syntax that translates neatly
into logic circuitry

 Verilog source files are transformed into a fuse map file by the
compiler integrated into ispLever

 A universal programmer is used to burn the fuse map file into a
legacy PLD device (an isp device can be programmed directly from
the integrated ispVM tool via a USB cable)

210

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 36

Verilog Program Semantics
 identifiers (module names, signal/variable names) must begin with a

letter or underscore _ and can include digits and dollar signs ($)

 identifiers are case sensitive

 single line comments begin with //

 /* comments can also be done this way */

 input and output declarations tell the compiler about symbolic names
associated with the external pins of the device

 each assign statement describes a small piece of logic circuitry

 Constant values can be described as n’bxxxx where n is the bit-width
of the signal and x is 0 or 1

211

Verilog WIRE Type

212

• wire is a basic data type in Verilog

• Similar to an actual wire, these variables cannot store
logic values and are used to connect signals between
inputs, outputs and logic elements such as gates

• wire is used to model combinational logic

• wire can take on four basic values

 0 – logical zero

 1 – logical one

 X – unknown value

 Z – high-impedance state

Verilog BITWISE Operators

213

& and

| or

~ not

^ exclusive or

~^ or ^~ exclusive nor

You will learn about logical vs. bitwise operators later
(similar to C)

ispLEVER Operators

214

Reports generated by ispLever use a different notation
for some of the bitwise operators

Logical
operation

Verilog ispLEVER

AND & &

OR | #

NOT ~ !

XOR ^ $

Verilog ASSIGN Statements

215

assign statements are used to continuously assign the value
of the expression on the right of the = to the signal on the left

wire [2:0] A,B,X,Y;

assign A = 3’b110;

assign B = 3’b101;

assign X = A & B;

assign Y = A | B;

3‐bit wires A, B, X, and Y

A is assigned the constant 3‐bit value of 110

B is assigned the constant 3‐bit value of 101

wire X is assigned the value of A bitwise
AND‐ed with B i.e. 100

wire Y is assigned the value of A bitwise OR‐
ed with B i.e. 111

Verilog MODULE Structure (Example 1)

216

// comments start with double slash, keywords highlighted in red

/* or they can be bounded with slash star as in C */

module nand_nor(Sel,A,B,Y);

input wire Sel, A, B;

output wire Y;

wire Y1, Y2, Y3, Y4;

assign Y = Y3 | Y4;

assign Y1 = A & B ;

assign Y2 = A | B;

assign Y3 = (~Y1) & Sel;

assign Y4 = (~Y2) & (~Sel);

endmodule

Describes a circuit called nand_nor
with inputs Sel, A, B, and output Y

4 individual wire names Y1 .. Y4

Each assign statement describes a
separate piece of logic with the output
on the left and operations on inputs on
the right

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 37

Verilog MODULE Structure (Example 1)

217

module nand_nor(Sel,A,B,Y);

input wire Sel, A, B /* synthesis loc=4,5,6 */;

output wire Y /* synthesis loc=7 */;

wire Y1, Y2, Y3, Y4;

assign Y = Y3 | Y4;

assign Y1 = A & B ;

assign Y2 = A | B;

assign Y3 = (~Y1) & Sel;

assign Y4 = (~Y2) & (~Sel);

endmodule

wire is one of several signal variable
types you will learn to use

assign statements are not the only
way of describing your logic, but they
are the simplest for very small
combinational logic designs

synthesis loc is a compiler directive
that tells ispLever to connect Sel, A,
B, and Y to pins 4, 5, 6, and 7
(respectively) on the PLD

Verilog MODULE Structure (Example 1)

218

module nand_nor(Sel,A,B,Y);

input wire Sel, A, B /* synthesis loc=4,5,6 */;

output wire [1:0] Y /* synthesis loc=7,8 */;

wire Y1, Y2, Y3,Y4;

assign Y = {Y3,Y4};

assign Y1 = A & B ;

assign Y2 = A | B;

assign Y3 = (~Y1) & Sel;

assign Y4 = (~Y2) & (~Sel);

endmodule

The index range [1:0] makes Y into a 2-bit vector

Y[1] assigned to pin 7, Y[0] pin 8

The concatenation operator { } makes
a bit vector out of multiple wires

Verilog BIT Literals

219

wire a,b;

wire [2:0] Y;

assign a = 1'b0;

assign b = 1'b1;

assign Y = 3'b100;

1 bit equal to binary 0

1 bit equal to binary 1

3 bits equal to
Y[2]=1’b1 Y[1]=1’b0 Y[0]=1’b0

/* Verilog Combinational Example for GAL22V10 */

module verilog_exA(A,B,C,D,X,Y,Z);

input A,B,C,D /* synthesis loc="2,3,4,5" */;
output X,Y,Z /* synthesis loc="14,15,16" */;

// dataflow style logic equations
assign X = (A & B) | ~(C & D);
assign Y = ~(B & D) | ~(A & B & D);
assign Z = A & ~(B & C & ~D);
// use parenthesis for readability
// and to make sure order of operations
// (precedence) are as intended

endmodule

220

Example Verilog Module #1A

Note: Explicit pin declarations can be
omitted and automatically assigned by
the “fitter” program (part of ispLever)

/* Verilog Combinational Example for GAL22V10
with active low inputs */

// "n" prefix is just a naming convention
module verilog_exA(nA,nB,nC,nD,X,Y,Z);
input nA,nB,nC,nD /* synthesis loc="2,3,4,5" */;
output X,Y,Z /* synthesis loc="14,15,16" */;

wire A,B,C,D;
assign A = ~nA; // to treat inputs as
assign B = ~nB; // active low, you must
assign C = ~nC; // invert them
assign D = ~nD;

assign X = (A & B) | ~(C & D);
assign Y = ~(B & D) | ~(A & B & D);
assign Z = A & ~(B & C & ~D);

endmodule

221

Example Verilog Module #1B
/* Verilog Combinational Example for GAL22V10

with active low inputs and outputs */

module verilog_exA(nA,nB,nC,nD,nX,nY,nZ);
input nA,nB,nC,nD /* synthesis loc="2,3,4,5" */;
output nX,nY,nZ /* synthesis loc="14,15,16" */;

wire A,B,C,D;
assign A = ~nA; // to treat inputs as
assign B = ~nB; // active low, you must
assign C = ~nC; // invert them
assign D = ~nD;

// to make outputs active low, invert the
// value assigned to the output
assign nX = ~((A & B) | ~(C & D));
assign nY = ~(~(B & D) | ~(A & B & D));
assign nZ = ~(A & ~(B & C & ~D));

endmodule

222

Example Verilog Module #1C

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 38

Verilog REG Data Types

223

• Similar data type to wire, but reg can be used to store information

• Unlike wire, reg can be used to model both combinational and
sequential logic

• For behavioral code using an always block, the output must be
type reg

• For dataflow code with assign statements, the outputs must be of
type wire

• Examples:

reg myvar; // one bit variable called myvar

reg [7:0] myvec; // 8-bit variable called myvec

ALWAYS Block in Verilog

224

• An always block lets you write "behavioral" style
code, similar to C

• Should have a sensitivity list associated with it:
all statements in the always block will be evaluated
when the conditions in this list are triggered

• Conditions may be any change to the signal or
rising or falling edges of the signals

ALWAYS Block in Verilog

225

Example always blocks:

always @ (A,B,C) begin

…

end

always @ (posedge CLK) begin

…

end

always @ (*) begin

…

end

All statements will be evaluated
whenever A, B, or C change their values

All statements will be evaluated on the
positive (rising) edge of CLK signal
(use negedge for falling edge of CLK)

All statements will be evaluated
whenever any input signal in the
always block changes

Verilog CASE Syntax

226

 Similar to the case structure in C

 Compares expression to a set of cases and evaluates the
statement(s) associated with first matching case

 All cases defined between case (signal) .. endcase

 Multiple statements for a case must be enclosed in a begin and
end block

 Multiple comparison signals can be concatenated as case
({signal1,signal2…signaln}) and compared against values of their
total bit width

 If the logic does not cover all possible bit combinations of the
comparison signal(s), a default case must be added. e.g. a 3-bit
signal for comparison will need a default case if 8 cases are not
provided

Verilog MODULE Structure (Example 2)

227

module nand_nor(Sel,A,B,Y);

input Sel, A, B /* synthesis loc=4,5,6 */;

output reg Y /* synthesis loc=7 */;

always @ (Sel,A,B) begin

case ({Sel,A,B})

3'b000: Y = 1'b1; // row 0

3'b001: Y = 1'b1; // row 1

3'b010: Y = 1'b1; // row 2

// (remaining combinations)

default: Y = 1’b0; // or use a default case

endcase

endmodule

Y must be declared as reg
type to be an output of an
always block

This is the closest structure
available in Verilog to a
traditional “truth table”

@(Sel,A,B) is a sensitivity list

For combinational logic, list all inputs

Compares each case against a concatenated
3-bit vector with Sel at bit position 2, A at
position 1 and B at position 0 and evaluates
value of Y based on matching case, e.g.
3’b001 matches Sel=0,A=0,B=1

/* Truth table example */
module ttex(E,R,S,T,A,B,C,D,F);

input E,R,S,T /* synthesis loc="2,3,4,5" */;
output A,B,C,D,F /* synthesis loc="14,15,16,17,18" */;
reg [4:0] abcdf /* bit vector to assign to output pins */;

always @(E,R,S,T) begin
case ({E,R,S,T)}
4'b0000: abcdf = 5'b01000;
4'b0001: abcdf = 5'b00010;
4'b0010: abcdf = 5'b00100;
4'b0011: abcdf = 5'b00010;
4'b0100: abcdf = 5'b10000;
4'b0101: abcdf = 5'b10000;
4'b0110: abcdf = 5'b00100;
4'b0111: abcdf = 5'b10000;
4'b1000: abcdf = 5'b01000;
4'b1001: abcdf = 5'b01000;
4'b1010: abcdf = 5'b00100;
4'b1011: abcdf = 5'b00001;
4'b1100: abcdf = 5'b10000;
4'b1101: abcdf = 5'b10000;
4'b1110: abcdf = 5'b00100;
4'b1111: abcdf = 5'b10000;

endcase
assign {A,B,C,D,F} = abcdf;

endmodule

Example Verilog Module #2

228

Compares each case against a concatenated
4-bit vector with E at bit position 3, R at
position 2, S at position 1 and T at position 0

e.g. 4’b1011 matches E=1,R=0,S=1,T=1

assign A = abcdf[4], B = abcdf[3], etc.

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 39

/* 4 variable XOR on 22V10 */
module xor_exA (I, X);

input [3:0] I;
output X;
// if synthesis_loc not given,
// then ISPlever will choose pin #

// bitwise &, |, ^ can be used as
// reduction operators on a vector

assign X = ^I;

// you could also write this as
// X = I[3]^I[2]^I[1]^I[0];

endmodule

Example Verilog Module #3A

Equation requires 8 P-terms can be realized
on any 22V10 macrocell (any I/O pin) 229

NOTE: Each XOR gate increases P-terms by a
factor of 2 (number of P-terms = 2n-1)

/* 5 variable XOR on 22V10 */
module xor_exA (I, X);

input [4:0] I;
output X;

assign X = ^I;

endmodule

230

Example Verilog Module #3B
1

11

13

10

2

3

4

5

6

7

8

9

14

15

16

17

18

19

20

21

22

23

Equation requires 16 P-terms
can be realized on macrocells
associated with I/O pins 18 & 19

/* 10 variable XOR on 22V10 */
module xor_exC(I,X,Y,Z)
input [9:0] I;
output X,Y,Z /* synthesis loc="18,19,23" */;
wire Xi,Yi;

// notice the index ranges
assign Xi= ^I[4:0]; // 16 P-terms
assign Yi= ^I[9:5]; // 16 P-terms
assign Z = Xi^Yi; // 2 P-terms

// outputs can't be directly used
// like an input inside the code
assign X = Xi;
assign Y = Yi;

endmodule

231

Example Verilog Program #3C

NOTE: Requires two “passes” through the
PLD (which doubles the propagation delay)

1

11

13

10

2

3

4

5

6

7

8

9

14

15

16

17

18

19

20

21

22

23

 Structural code relies on instantiating every module and
connecting their inputs and outputs manually

 Logic can be described without the use of boolean operators,
logical constructs (if-else, case), always blocks or assign
statements

 module_name instance_name (signal_list); will
instantiate a module of type module_name called
instance_name (the signal_list corresponds to the inputs and
outputs, also called the port list)

 and AND2 (XY, X, Y); will instantiate an AND gate with
inputs X and Y with output XY

 xor OR (X_Y,X,Y); will instantiate a 2-input XOR gate

Structural Code in Verilog

232

Verilog Built-in Primitives

 and

 or

 nand

 nor

 xor

 xnor

233

 not

 buf

 bufif0

 bufif1

 notif0

 notif1

Usage of built-in primitives is
illustrated in the next slide. The
same syntax can be used for user-
defined modules as well.

For more information, refer to
Section 5.7 in the Wakerly text.

Structural Code in Verilog

234

 Example illustrating multiple modules connected

module structural_ex(A,B,C,D,X,Y);

input wire A, B, C, D;
output wire X, Y;

wire AB, CD;

and AND2a (AB, A, B); // AB = A & B
and AND2b (CD, C, D); // CD = C & D
or OR2a (X, AB, CD); // X = AB | CD

assign Y = (A & B) | (C & D);

endmodule

X and Y evaluate the same function

X : Structural style/code

Y : Dataflow style/code

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 40

Clicker Quiz

235

1. Which of the following is not a valid Verilog identifier?
A. X2

B. 2X

C. XY

D. _XY

E. none of the above

236

2. Which of the following specifies a range of bits within
a bit vector X in Verilog?
A. X3..X1

B. X(3:1)

C. [3:1]

D. X[3:1]

E. none of the above

237

3. For input or output port declarations, which of the following
statements is not true?

A. "synthesis loc" declarations associate the device’s physical
pins with symbolic port names

B. pin numbers are optional

C. if pin numbers are not specified, the pin numbers are assigned
by the “fitter” program based on the PLD characteristics

D. the pin may be declared active high or active low

E. none of the above

238

4. The order in which different assign expressions are
placed in the body of a Verilog module does not matter.
A. true
B. false

239

Example – Your BFFAM’s “Crazy Grader”

 Give a grade of “A” if name contains an R and a T -or-
an R and not an S

 Give a grade of “B” if name contains an E and not an R
and not a S -or- does not contain an R and not a T and
not an S

 Give a grade of “C” if name contains an S and not a T
 Give a grade of “D” if name contains a T and not an E

and not an R
 Give a grade of “F” if none of the above (name

contains an E and an S and a T and not an R)

Your “best friend from another major” (BFFAM) has been
asked to design a circuit that determines grades based on
the characters (E,R,S,T) in a student’s last name, as follows:

240

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 41

K-Map of “Grade Distribution”

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

A A

A A

A A

B B

B

C C C C

D

D F

241

Options
 Map and minimize all 5 functions, implement with

several discrete CMOS ICs, subject to the following
limitations:
– only “true” variables are available
– only SSI chips in digital kit can be used

• 7400 quad 2-input NAND
• 7402 quad 2-input NOR
• 7404 hex inverter
• 7410 triple 3-input NAND

 Create a Verilog file that specifies the desired
functionality using a truth table, implement with a
single 22V10 PLD

242

Working K-Map for “A” – SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

1 1

1 1

1 1

0 0

0

0 0 0 0

0

0 0

A = SR + TR

COST = 6 inputs
+ 3 outputs = 9

243

Working K-Map for “A” – PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

1 1

1 1

1 1

0 0

0

0 0 0 0

0

0 0

A = R + ST
A = R (S + T)

COST = 4 inputs
+ 2 outputs = 6

Cheaper than SoP
244

Working K-Map for “B” – SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

1 1

1

0 0 0 0

0

0 0

B = ESR +
RST

COST = 8 inputs
+ 3 outputs = 11

245

Working K-Map for “B” – PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

1 1

1

0 0 0 0

0

0 0

B = S + R + ET
B = S R(E+T)

COST = 5 inputs
+ 2 outputs = 7

Cheaper than SoP
246

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 42

Working K-Map for “C” – SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

1 1 1 1

0

0 0

C = ST

COST = 3 inputs
+ 2 outputs = 5

247

Working K-Map for “C” – PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

1 1 1 1

0

0 0

C = S + T
C = ST

COST = 2 inputs
+ 1 output = 3

Cheaper than SoP
248

Working K-Map for “D” – SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

0 0 0 0

1

1 0

D = ETR

COST = 4 inputs
+ 2 outputs = 6

249

Working K-Map for “D” – PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

0 0 0 0

1

1 0

D = ETR

COST = 3 inputs
+ 1 output = 4

Cheaper than SoP
250

Working K-Map for “F” - SoP

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

0 0 0 0

0

0 1

F = ESRT

COST = 5 inputs
+ 2 outputs = 7

251

Working K-Map for “F” - PoS

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

0 0

0 0

0 0

0 0

0

0 0 0 0

0

0 1

F = E+S+R+T
F = ESRT

COST = 4 inputs
+ 1 output = 5

Cheaper than SoP
252

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 43

SSI “final answer”…

1/2 - 7402

2/3 - 7410
1/4 - 7400

1/4 - 7402

1/3 - 7410
1/6 - 7404

1/2 - 7400
1/4 - 7402

2/3 - 7404

3/4 - 7400 5/6 - 7404
1 - 7402 1 - 7410

4 integrated circuits total 253

Verilog “final answer”…
/* Who Wants to be a Digijock */

module gameshow(E,R,S,T,A,B,C,D,F);

input wire E,R,S,T /* synthesis loc=2,3,4,5 */;
output wire A,B,C,D,F /* synthesis loc=14,15,16,17,18 */;

reg [4:0] ABCDF;

always @ (E, R, S, T) begin
case ({E,R,S,T})
4'b0000: ABCDF = 5'b01000;
4'b0001: ABCDF = 5'b00010;
4'b0010: ABCDF = 5'b00100;
4'b0011: ABCDF = 5'b00010;
4'b0100: ABCDF = 5'b10000;
4'b0101: ABCDF = 5'b10000;
4'b0110: ABCDF = 5'b00100;
4'b0111: ABCDF = 5'b10000;
4'b1000: ABCDF = 5'b01000;
4'b1001: ABCDF = 5'b01000;
4'b1010: ABCDF = 5'b00100;
4'b1011: ABCDF = 5'b00001;
4'b1100: ABCDF = 5'b10000;
4'b1101: ABCDF = 5'b10000;
4'b1110: ABCDF = 5'b00100;
4'b1111: ABCDF = 5'b10000;

endcase
end

assign {A,B,C,D,F} = ABCDF;

endmodule 254

Are you sure that’s your final answer?

/* Who Wants to be a Digijock */

module gameshow(E,R,S,T,A,B,C,D,F);

input wire E,R,S,T /* synthesis loc=2,3,4,5 */;
output wire A,B,C,D,F /* synthesis loc=14,15,16,17,18 */;

/* Quick and easy way in Verilog */

/* …“by inspection” from problem statement */

assign A = (R & T) | (R & ~S);

assign B = (E & ~R & ~S) | (~R & ~T & ~S);

assign C = S & ~T;

assign D = T & ~E & ~R;

assign F = ~A & ~B & ~C & ~D;

// or assign F = E & S & T & ~R;

endmodule

255

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-G
Combinational Building Blocks: Decoders / Demultiplexers

Reading Assignment:
DDPP 4th Ed. pp. 384-390, 403-409; 5th Ed. pp. 250-256, 260-278

Learning Objectives:
 Define the function of a decoder (demultiplexer) and

describe how it can be used as a combinational
building block

 Illustrate how a decoder can be used to realize an
arbitrary Boolean function

257

Outline
 Overview
 Binary decoders
 Decoders in Verilog
 Special purpose decoders

258

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 44

Overview
 Definition: A decoder is a multiple-input, multiple-output

logic circuit that converts coded inputs into coded outputs
 The input code generally has fewer bits than the output code
 In a one-to-one mapping, each input code word produces a

different output code word

259

Overview
 The most commonly used input code is an n-bit

binary code, where an n-bit word represents one of 2n

different coded values

 Sometimes an n-bit binary code is truncated to
represent fewer than 2n values (e.g., BCD)

 The most commonly used output code is a 1-out-of-m
code, which contains m bits, where only one bit is
asserted at any time (the output code bits are
mutually exclusive)

260

Binary Decoders
 The most common decoder circuit is an n-to-2n decoder

or binary decoder
 Binary decoders have an n-bit binary input code and a

1-out-of-2n output code
 Application: Used to activate exactly one of 2n outputs

based on an n-bit value
 Analogy: Electronically-controlled rotary selector switch

261

A device that routes an
input to one of 2n outputs
is typically referred to as a
(1-to-2n) demultiplexer

Note that EN can also be construed as a digital input
that is routed to the selected output, in which case the
circuit would be referred to as a (1:4) demultiplexer

Example: 2-to-4 (2:4) Decoder

262

Select
lines

Enable

D
e

c
o

d
e

d
 O

u
tp

u
ts

Example: 2-to-4 (2:4) Decoder

263

0

d

d 0

0

0

0

Example: 2-to-4 (2:4) Decoder

264

1

0

0 1

0

0

0

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 45

Example: 2-to-4 (2:4) Decoder

265

1

0

1 0

1

0

0

Example: 2-to-4 (2:4) Decoder

266

1

1

0 0

0

1

0

Example: 2-to-4 (2:4) Decoder

267

1

1

1 0

0

0

1

Key Observations
• Key Observation #1: each output of an n to 2n binary decoder represents a

minterm of an n-variable Boolean function; therefore, any arbitrary Boolean
function of n-variables can be realized with an n-input binary decoder by
simply “OR-ing” the needed outputs

• Key Observation #2: if the decoder outputs are active low, a NAND gate can
be used to “OR” the minterms of the function (representing its ON set)

• Key Observation #3: if the decoder outputs are active low, an AND gate can
be used to “OR” the minterms of the complement function (representing its
OFF set)

• Key Observation #4: a NAND gate (or AND gate) with at most 2n-1 inputs is
needed to implement an arbitrary n-variable function using an n to 2n binary
decoder (that has active low outputs)

268

Example – Arbitrary Function Realization

F(X,Y,Z)

269

I0

I1

I2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3:8

General circuit for implementing an arbitrary n-variable function
using a decoder with active low outputs and a NAND gate with
2n-1 inputs, for case where the ON set has 2n-1 members

Z

Y

X

1

Illustration for n=3,
F(X,Y,Z)

Example – Arbitrary Function Realization

F(X,Y,Z)

270

I0

I1

I2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3:8

General circuit for implementing an arbitrary n-variable function
using a decoder with active low outputs and a NAND gate with
2n-1 inputs, for case where the ON set has 2n-1 members

Z

Y

X

1

ON set = X,Y,Z(1,2,4,7)

F(X,Y,Z)= XYZ

Illustration for n=3,
F(X,Y,Z)

Here, output of NAND
gate is ACTIVE HIGH

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 46

Example – Arbitrary Function Realization

271

I0

I1

I2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3:8

General circuit for implementing an arbitrary n-variable function
using a decoder with active low outputs and a NAND gate with
2n-1 inputs, for case where the ON set has > 2n-1 members

Z

Y

X

1

Illustration for n=3,
F(X,Y,Z)

F(X,Y,Z)

VCC

Here, output of NAND
gate is ACTIVE LOW

ON set = X,Y,Z(1,3,4,5,6)

OFF set = X,Y,Z(0,2,7)

F(X,Y,Z) = X•Z + X•Y + X•Z

1

/* 3:8 Decoder / 1:8 Demultiplexer with Active-Low Outputs */

module dec38L(EN, I, nY);

input wire EN; // Enable input pin
input wire [2:0] I; // Select input pins
output wire [7:0] nY; // Active-low output pins

wire [7:0] Y;

assign nY = ~Y; // Active low assignment

assign Y[0] = EN & ~I[2] & ~I[1] & ~I[0];
assign Y[1] = EN & ~I[2] & ~I[1] & I[0];
assign Y[2] = EN & ~I[2] & I[1] & ~I[0];
assign Y[3] = EN & ~I[2] & I[1] & I[0];
assign Y[4] = EN & I[2] & ~I[1] & ~I[0];
assign Y[5] = EN & I[2] & ~I[1] & I[0];
assign Y[6] = EN & I[2] & I[1] & ~I[0];
assign Y[7] = EN & I[2] & I[1] & I[0];

endmodule
272

Decoders in Verilog

/* 3:8 Decoder / 1:8 Demultiplexer with Active-High Outputs */

module dec38H(EN, I, Y);

input wire EN; // Enable input pin
input wire [2:0] I; // Select input pins
output wire [7:0] Y; // Active-high output pins

assign Y[0] = EN & ~I[2] & ~I[1] & ~I[0];
assign Y[1] = EN & ~I[2] & ~I[1] & I[0];
assign Y[2] = EN & ~I[2] & I[1] & ~I[0];
assign Y[3] = EN & ~I[2] & I[1] & I[0];
assign Y[4] = EN & I[2] & ~I[1] & ~I[0];
assign Y[5] = EN & I[2] & ~I[1] & I[0];
assign Y[6] = EN & I[2] & I[1] & ~I[0];
assign Y[7] = EN & I[2] & I[1] & I[0];

endmodule

273

Decoders/Demultiplexers in Verilog

/* 3:8 Decoder / 1:8 Demultiplexer with Active-High Outputs */

module dec38H(EN, I, Y);

input wire EN; // Enable input pin
input wire [2:0] I; // Select input pins
output reg [7:0] Y; // Active-high output pins

always @* begin // @* instead of listing inputs
Y = 8’b0; // assign all bits of Y to 0
Y[I]= EN; // overwrite the Ith bit with EN

end

endmodule

274

Decoders/Demultiplexers in Verilog

Clicker Quiz

275

1. The OFF set realized by this decoder-based circuit is:

A. X,Y,Z(0,2,5,7)

B. X,Y,Z(1,3,4,6)

C. X,Y,Z(1,2,4,5)

D. X,Y,Z(0,3,4,6)

E. none of the above
276

I0

I1

I2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3:8

Z

Y

X

1

F(X,Y,Z)

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 47

2. The ON set realized by this decoder-based circuit is:

A. X,Y,Z(0,2,5,7)

B. X,Y,Z(1,3,4,6)

C. X,Y,Z(1,2,4,5)

D. X,Y,Z(0,3,4,6)

E. none of the above
277

I0

I1

I2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3:8

Z

Y

X

1

F(X,Y,Z)

VCC Special Purpose Decoders
 A seven-segment decoder has 4-bit BCD or hexadecimal

data as its input code and “seven-segment code” as its
output code

278

/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /* synthesis loc=“2,3,4,5” */;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000: SEG7 = 7'b1111110;
4'b0001: SEG7 = 7'b0110000;
4'b0010: SEG7 = 7'b1101101;
4'b0011: SEG7 = 7'b1111001;
4'b0100: SEG7 = 7'b0110011;
4'b0101: SEG7 = 7'b1011011;
4'b0110: SEG7 = 7'b1011111;
4'b0111: SEG7 = 7'b1110000;
4'b1000: SEG7 = 7'b1111111;
4'b1001: SEG7 = 7'b1111011;
4'b1010: SEG7 = 7'b1110111;
4'b1011: SEG7 = 7'b0011111;
4'b1100: SEG7 = 7'b1001110;
4'b1101: SEG7 = 7'b0111101;
4'b1110: SEG7 = 7'b1001111;
4'b1111: SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 279

Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000: SEG7 = 7'b1111110;
4'b0001: SEG7 = 7'b0110000;
4'b0010: SEG7 = 7'b1101101;
4'b0011: SEG7 = 7'b1111001;
4'b0100: SEG7 = 7'b0110011;
4'b0101: SEG7 = 7'b1011011;
4'b0110: SEG7 = 7'b1011111;
4'b0111: SEG7 = 7'b1110000;
4'b1000: SEG7 = 7'b1111111;
4'b1001: SEG7 = 7'b1111011;
4'b1010: SEG7 = 7'b1110111;
4'b1011: SEG7 = 7'b0011111;
4'b1100: SEG7 = 7'b1001110;
4'b1101: SEG7 = 7'b0111101;
4'b1110: SEG7 = 7'b1001111;
4'b1111: SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 280

Example: Hexadecimal 7-Segment Decoder

/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000: SEG7 = 7'b1111110;
4'b0001: SEG7 = 7'b0110000;
4'b0010: SEG7 = 7'b1101101;
4'b0011: SEG7 = 7'b1111001;
4'b0100: SEG7 = 7'b0110011;
4'b0101: SEG7 = 7'b1011011;
4'b0110: SEG7 = 7'b1011111;
4'b0111: SEG7 = 7'b1110000;
4'b1000: SEG7 = 7'b1111111;
4'b1001: SEG7 = 7'b1111011;
4'b1010: SEG7 = 7'b1110111;
4'b1011: SEG7 = 7'b0011111;
4'b1100: SEG7 = 7'b1001110;
4'b1101: SEG7 = 7'b0111101;
4'b1110: SEG7 = 7'b1001111;
4'b1111: SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 281

Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000: SEG7 = 7'b1111110;
4'b0001: SEG7 = 7'b0110000;
4'b0010: SEG7 = 7'b1101101;
4'b0011: SEG7 = 7'b1111001;
4'b0100: SEG7 = 7'b0110011;
4'b0101: SEG7 = 7'b1011011;
4'b0110: SEG7 = 7'b1011111;
4'b0111: SEG7 = 7'b1110000;
4'b1000: SEG7 = 7'b1111111;
4'b1001: SEG7 = 7'b1111011;
4'b1010: SEG7 = 7'b1110111;
4'b1011: SEG7 = 7'b0011111;
4'b1100: SEG7 = 7'b1001110;
4'b1101: SEG7 = 7'b0111101;
4'b1110: SEG7 = 7'b1001111;
4'b1111: SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 282

Example: Hexadecimal 7-Segment Decoder

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 48

/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000: SEG7 = 7'b1111110;
4'b0001: SEG7 = 7'b0110000;
4'b0010: SEG7 = 7'b1101101;
4'b0011: SEG7 = 7'b1111001;
4'b0100: SEG7 = 7'b0110011;
4'b0101: SEG7 = 7'b1011011;
4'b0110: SEG7 = 7'b1011111;
4'b0111: SEG7 = 7'b1110000;
4'b1000: SEG7 = 7'b1111111;
4'b1001: SEG7 = 7'b1111011;
4'b1010: SEG7 = 7'b1110111;
4'b1011: SEG7 = 7'b0011111;
4'b1100: SEG7 = 7'b1001110;
4'b1101: SEG7 = 7'b0111101;
4'b1110: SEG7 = 7'b1001111;
4'b1111: SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 283

Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000: SEG7 = 7'b1111110;
4'b0001: SEG7 = 7'b0110000;
4'b0010: SEG7 = 7'b1101101;
4'b0011: SEG7 = 7'b1111001;
4'b0100: SEG7 = 7'b0110011;
4'b0101: SEG7 = 7'b1011011;
4'b0110: SEG7 = 7'b1011111;
4'b0111: SEG7 = 7'b1110000;
4'b1000: SEG7 = 7'b1111111;
4'b1001: SEG7 = 7'b1111011;
4'b1010: SEG7 = 7'b1110111;
4'b1011: SEG7 = 7'b0011111;
4'b1100: SEG7 = 7'b1001110;
4'b1101: SEG7 = 7'b0111101;
4'b1110: SEG7 = 7'b1001111;
4'b1111: SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 284

Example: Hexadecimal 7-Segment Decoder

/* Hexadecimal 7-Segment Decoder for 22V10 */

module hexadec(I, A, B, C, D, E, F, G);

input wire [3:0] I /*synthesis loc=“2,3,4,5”*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;

always @ (I) begin
case (I)
4'b0000: SEG7 = 7'b1111110;
4'b0001: SEG7 = 7'b0110000;
4'b0010: SEG7 = 7'b1101101;
4'b0011: SEG7 = 7'b1111001;
4'b0100: SEG7 = 7'b0110011;
4'b0101: SEG7 = 7'b1011011;
4'b0110: SEG7 = 7'b1011111;
4'b0111: SEG7 = 7'b1110000;
4'b1000: SEG7 = 7'b1111111;
4'b1001: SEG7 = 7'b1111011;
4'b1010: SEG7 = 7'b1110111;
4'b1011: SEG7 = 7'b0011111;
4'b1100: SEG7 = 7'b1001110;
4'b1101: SEG7 = 7'b0111101;
4'b1110: SEG7 = 7'b1001111;
4'b1111: SEG7 = 7'b1000111;

endcase
end

assign {A,B,C,D,E,F,G} = SEG7;
endmodule 285

Example: Hexadecimal 7-Segment Decoder

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-H
Combinational Building Blocks: Encoders and Tri-State Outputs

Reading Assignment:
DDPP 4th Ed. pp. 408-412, 430-432; 5th Ed. 279-280, 308-310

Learning Objectives:
 Define the function of an encoder and describe how

it can be used as a combinational building block
 Discuss why the inputs of an encoder typically need

to be prioritized

287

Outline
 Overview
 Priority Encoders
 Tri-State Outputs
 Keypad Encoders

288

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 49

Overview
 Definition: An encoder is an “inverse decoder” – the role

of inputs and outputs is reversed, and there are more
input code bits than output code bits

 The simplest encoder to build is a 2n-to-n or binary
encoder

H
L
L
L
L
L

L
L

H

L

L

289

Priority Encoders
 A common application is to encode the number of a device

requesting service from a microprocessor-based system

Problem: More than one device may be
requesting service at any given time 290

Priority Encoders
 Solution: Assign priority to the input lines, such that

when multiple inputs are asserted simultaneously, the
highest priority (i.e. highest numbered) input “wins” –
such a device is called a priority encoder

 An easy way to specify this functionality in Verilog is to
use the casez construct

 Example: An 8-to-3 encoder with active high inputs and
outputs, including a “strobe” output (G) to indicate if any
input has been asserted

291

Verilog CASEZ Construct
 use ? as “wild card”

 beware of non-unique expressions – first matching
expression wins

292

casez ({Sel,A,B})

3'b00?: Y = 1'b1;

3'b010: Y = 1'b1;

3'b011: Y = 1'b0;

// etc.

endcase

000 or 001 both yield Y = 1’b1

/* 8-to-3 Priority Encoder Using a GAL22V10 */

module pri_enc(I, E, G);
input wire [7:0] I; // Input 0 - lowest priority, Input 7 - highest priority
output wire [2:0] E; // Encoded output
output wire G; // Strobe output (asserted if any input is asserted)
reg [3:0] EG;

always @ (I) begin
casez (I)

8'b00000000: EG = 4'b0000; // No inputs asserted
8'b00000001: EG = 4'b0001; // Input 0 wins
8'b0000001?: EG = 4'b0011; // Input 1 wins
8'b000001??: EG = 4'b0101; // Input 2 wins
8'b00001???: EG = 4'b0111; // Input 3 wins
8'b0001????: EG = 4'b1001; // Input 4 wins
8'b001?????: EG = 4'b1011; // Input 5 wins
8'b01??????: EG = 4'b1101; // Input 6 wins
8'b1???????: EG = 4'b1111; // Input 7 wins

endcase
end

assign {E,G} = EG;

endmodule
293

Title: 8-to-3 Priority Encoder Using GAL 22V10 (ispLever Reduced Equation Report)

P-Terms Fan-in Fan-out Type Name (attributes)

--------- ------ ------- ---- -----------------

4/1 4 1 Pin- E2

8/1 8 1 Pin- G

4/3 6 1 Pin- E1

4/4 7 1 Pin E0

=========
20/9 Best P-Term Total: 9

Total Pins: 12

Total Nodes: 0

Average P-Term/Output: 2

Positive-Polarity (SoP) Equations:

E2 = (I7 # I6 # I5 # I4);

G = (I7 # I6 # I5 # I4 # I3 # I2 # I1 # I0);

E1 = (I7 # I6 # !I5 & !I4 & I3 # !I5 & !I4 & I2);

E0 = (I7 # !I6 & I5 # !I6 & !I4 & I3 # !I6 & !I4 & !I2 & I1);

Reverse-Polarity Equations:

!E2 = (!I7 & !I6 & !I5 & !I4);

!G = (!I7 & !I6 & !I5 & !I4 & !I3 & !I2 & !I1 & !I0);

!E1 = (!I7 & !I6 & I5 # !I7 & !I6 & I4 # !I7 & !I6 & !I3 & !I2);

!E0 = (!I7 & I6 # !I7 & !I5 & I4 # !I7 & !I5 & !I3 & I2 # !I7 & !I5 & !I3 & !I1); 294

ispLEVER operators:
AND - &, OR - #,
NOT - !, XOR - $

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 50

Tri-State Outputs
 Tri-state outputs can be assigned one of three values:

logical 1, logical 0 or Hi-Z (high impedance)
 Hi-Z is a state that is not driven to any value and can be

seen as an open circuit
 Example: ENABLE asserted

will allow the input (logic 1 or 0)
to be seen on the OUPUT
(ENABLE negated will float
OUTPUT to Hi-Z)

295

Tri-State Outputs
 In Verilog, an output value of 'bZ (high- impedance or Hi-Z)

assigned to an output port disables (“floats”) the output
 tri is a wire type used for tri-state values
 Can use the conditional operator ? : to implement a tri-state buffer
 output tri D_z; input wire D,EN;
 assign D_z = EN ? D : 1'bZ (ternary operator)
If EN == 1, D_z = D
If EN == 0, D_z=1'bZ (disabled)

 Example: Create a Verilog module that implements a 4:2 priority
encoder with tri-state encoded outputs (E1, E0). This design
should include an active high output strobe (G) that is asserted
when any input is asserted

296

/* 4-to-2 Priority Encoder With Tri-State Enable */

module prienc42(I, E_z, G, EN);

input wire [3:0] I; // input 0 - lowest priority,
// input 3 - highest priority

input wire EN; // tri-state enable control input
output tri [1:0] E_z; // encoded tri-state enabled output
output wire G; // strobe “go” output (high if any input is asserted)

reg [2:0] EG; // EG = {E,G}

always @ (I) begin
casez (I)

4'b0000: EG = 3'b000; // No inputs active
4'b0001: EG = 3'b001; // Input 0 wins
4'b001?: EG = 3'b011; // Input 1 wins
4'b01??: EG = 3'b101; // Input 2 wins
4'b1???: EG = 3'b111; // Input 3 wins

endcase
end

assign G = EG[0];
assign E_z = EN ? EG[2:1] : 2'bzz;

endmodule
297

Example: 4-to-2 Priority Encoder with Tri-State Outputs

Keypad Encoders
 Another common use for encoders is to encode keypads

and keyboards
 Example: Design a 10-to-4 priority encoder for encoding a

BCD keypad using a 22V10
 Solution: Modify the 8-to-3 priority encoder Verilog file

described previously (include tri-state output capability)

298

/* 10-to-4 BCD Priority Keypad Encoder */

module bcd_enc(K, EN, E_z, KS);

input wire EN; // Tri-state enable
input wire [9:0] K; // Key inputs (0 - lowest priority, 9 - highest)
output tri [3:0] E_z; // 4-bit encoded tri-state enabled BCD output
output wire G; // Key strobe (asserted high when any key pressed)

reg [4:0] KG;

assign G = KG[0];
assign E_z = EN ? KG[4:1] : 4'bZZZZ;

always @ (K) begin
casez (K)

10'b0000000000: KG = 5'b00000;
10'b0000000001: KG = 5'b00001;
10'b000000001?: KG = 5'b00011;
10'b00000001??: KG = 5'b00101;
10'b0000001???: KG = 5'b00111;
10'b000001????: KG = 5'b01001;
10'b00001?????: KG = 5'b01011;
10'b0001??????: KG = 5'b01101;
10'b001???????: KG = 5'b01111;
10'b01????????: KG = 5'b10001;
10'b1?????????: KG = 5'b10011;

endcase
end

endmodule

299

Clicker Quiz

300

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 51

/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})
4'b0000: EG = 3'b000;
4'b0001: EG = 3'b111;
4'b001?: EG = 3'b101;
4'b01??: EG = 3'b011;
4'b1???: EG = 3'b001;

endcase
end

endmodule

301

1. The highest priority input is:
A. A
B. B
C. C
D. D
E. none of the above

302

/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})

4'b0000: EG = 3'b000;
4'b0001: EG = 3'b111;
4'b001?: EG = 3'b101;
4'b01??: EG = 3'b011;
4'b1???: EG = 3'b001;

endcase
end

endmodule

2. The lowest priority input is:
A. A
B. B
C. C
D. D
E. none of the above

303

/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})
4'b0000: EG = 3'b000;
4'b0001: EG = 3'b111;
4'b001?: EG = 3'b101;
4'b01??: EG = 3'b011;
4'b1???: EG = 3'b001;

endcase
end

endmodule

3. If input A is asserted,
the outputs will be:
A. E1=0, E0=0, G=0
B. E1=0, E0=0, G=1
C. E1=1, E0=1, G=0
D. E1=1, E0=1, G=1
E. none of the above

304

/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})

4'b0000: EG = 3'b000;
4'b0001: EG = 3'b111;
4'b001?: EG = 3'b101;
4'b01??: EG = 3'b011;
4'b1???: EG = 3'b001;

endcase
end

endmodule

4. When inputs B and C are
asserted simultaneously
(and A is negated) the
outputs will be:
A. E1=0, E0=0, G=1
B. E1=0, E0=1, G=1
C. E1=1, E0=0, G=1
D. E1=1, E0=1, G=1
E. none of the above

305

/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;
output wire [1:0] E;
output wire G;

reg [2:0] EG;

assign E = EG[2:1];
assign G = EG[0];

always @ (A, B, C, D) begin
casez ({A,B,C,D})
4'b0000: EG = 3'b000;
4'b0001: EG = 3'b111;
4'b001?: EG = 3'b101;
4'b01??: EG = 3'b011;
4'b1???: EG = 3'b001;

endcase
end

endmodule

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-I
Combinational Building Blocks: Multiplexers

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 52

Reading Assignment:
DDPP 4th Ed. pp. 432-440, 445-446; 5th Ed. pp. 281-289, 290-291

Learning Objectives:
 Define the function of a multiplexer and describe how it

can be used as a combinational building block
 Illustrate how a multiplexer can be used to realize an

arbitrary Boolean function

307

Outline
 Overview
 General multiplexer structure
 Multiplexer truth table analogy
 Multiplexer function generation
 Multiplexers in Verilog

308

Overview
 Definition: A multiplexer is a digital switch that uses

s select lines to determine which of n = 2s inputs is
connected to its output

 It is often called a mux for short
 Each of the input paths may be b bits wide
 An overall enable signal (EN) is usually provided

(if EN negated, all outputs are “0”)
 The equation implemented by an s select line

multiplexer is the sum-of-products form of a general
s-variable function

F(X,Y) = a0•X•Y + a1•X•Y + a2•X•Y + a3•X•Y
309

n inputs (each b bits wide)
with s select lines, where

s = log2n

310

General Multiplexer Structure

Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 a0

0 1 a1

1 0 a2

1 1 a3

D0

D1

D2

D3

F(X,Y)

i1 i0

X Y

F

Functional values
assigned to each

combination
311

Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 0

0 1 0

1 0 0

1 1 1

D0

D1

D2

D3

F(X,Y)

i1 i0

X Y

F

AND function

312

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 53

Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 0

0 1 1

1 0 1

1 1 1

D0

D1

D2

D3

F(X,Y)

i1 i0

X Y

F

OR function

313

Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 0

0 1 1

1 0 1

1 1 0

D0

D1

D2

D3

F(X,Y)

i1 i0

X Y

F

XOR function

314

Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 1

0 1 0

1 0 0

1 1 1

D0

D1

D2

D3

F(X,Y)

i1 i0

X Y

F

XNOR function

315

Multiplexer Truth Table Analogy

X Y F(X,Y)

0 0 a0

0 1 a1

1 0 a2

1 1 a3

D0

D1

D2

D3

F(X,Y)

i1 i0

X Y

F

Question: How many
different functions of

S variables are
possible? 316

Answer: 2 2 S

This is very similar to the look-up
tables (LUTs) used in FPGAs

Example: 8-to-1 (8:1) Multiplexer

317

D0

D1

D2

D3

D4

D5

D6

D7 i2 i1 i0

select lines

F output8:1
data

inputs

318

F(X,Y,Z)

X Y Z

D0

D1

D2

D3

D4

D5

D6

D7

Example: Multiplexer Function Realization
Determine the multiplexer data input values for
realizing the function F(X,Y,Z) = X•Z + X•(YZ)

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 54

319

F(X,Y,Z) = X•Z + X•(YZ)

= X•Z + X•(Y•Z + Y•Z)

= X•Z + X•Y•Z + X•Y•Z

X Y Z

D0

D1

D2

D3

D4

D5

D6

D7

Example: Multiplexer Function Realization
Determine the multiplexer data input values for
realizing the function F(X,Y,Z) = X•Z + X•(YZ)

320

F(X,Y,Z) = X•Z + X•(YZ)

= X•Z + X•(Y•Z + Y•Z)

= X•Z + X•Y•Z + X•Y•Z

X Y Z

0

1

1

0

0

1

0

1

Example: Multiplexer Function Realization
Determine the multiplexer data input values for
realizing the function F(X,Y,Z) = X•Z + X•(YZ)

X X

Z 0 1 0 0

Z 1 0 1 1

Y Y Y

F(X,Y,Z) = X,Y,Z(1,2,5,7)

Multiplexers in Verilog
 Multiplexer functionality can be expressed in Verilog

in several different ways:
using conventional sum-of-products expressions
using case structures
using if-else constructs or ternary operators

 Example: 8-to-1 X 1-bit multiplexer using a 22V10 PLD
(conventional SoP)

 Example: 4-to-1 X 8-bit multiplexer using a CPLD (two
advanced methods)

321

/* 8-to-1 X 1-bit Multiplexer Using 22V10 */

module mux811(D, EN, S, Y);

input wire [7:0] D; // Data inputs
input wire EN; // Function enable
input wire [2:0] S; // Select lines
output wire Y; // Output

assign Y = EN & (~S[2] & ~S[1] & ~S[0] & D[0] |
~S[2] & ~S[1] & S[0] & D[1] |
~S[2] & S[1] & ~S[0] & D[2] |
~S[2] & S[1] & S[0] & D[3] |
S[2] & ~S[1] & ~S[0] & D[4] |
S[2] & ~S[1] & S[0] & D[5] |
S[2] & S[1] & ~S[0] & D[6] |
S[2] & S[1] & S[0] & D[7]);

endmodule

322

Example: 8-to-1 1-bit Multiplexer

/* 4-to-1 X 8-bit Multiplexer Using CPLD */

module mux418b(EN, S, A, B, C, D, Y_z);

input wire EN; // tri-state output enable line
input wire [1:0] S; // select inputs
input wire [7:0] A, B, C, D; // 8-bit input buses
output tri [7:0] Y_z; // 8-bit output bus

reg [7:0] Y;

assign Y_z = EN ? Y : 8’bZZZZZZZZ;

always @ (S) begin
// Y = 8’b00000000;

if (S == 2'b00) Y = A;
else if (S == 2'b01) Y = B;
else if (S == 2'b10) Y = C;
else if (S == 2'b11) Y = D;

// else Y = 8’b00000000;
end

endmodule
323

Example: 4-to-1 8-bit Multiplexer – Method 1

Similar to case statements, a default
value for the signal should be provided
in an else statement or above the if-else
if block as needed

/* 4-to-1 X 8-bit Multiplexer Using CPLD */

module mux418b(EN, S, A, B, C, D, Y_z);

input wire EN; // Tri-state output enable line
input wire [1:0] S; // Select inputs
input wire [7:0] A, B, C, D; // 8-bit input buses
output tri [7:0] Y_z; // 8-bit output bus

reg [7:0] Y;

assign Y_z = EN ? Y : 8’bZZZZZZZZ;

always @ (S) begin
Y = 8’b00000000;
case (S)

2’d0: Y = A; // d stands for decimal
2’d1: Y = B;
2’d2: Y = C;
2’d3: Y = D;
// default: Y = 8’b00000000;

endcase
end

endmodule 324

Example: 4-to-1 8-bit Multiplexer – Method 2

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 55

Clicker Quiz

325

/* Big Multiplexer */

module bigmux(EN, S, A, B, C, D, Y_z);

input wire EN;
input wire [1:0] S;
input wire [7:0] A, B, C, D;
output tri [7:0] Y_z;

wire [7:0] Y;

assign Y_z = EN ? Y : 8'bZZZZZZZZ;
assign Y = ~S[1] & ~S[0] & A |

~S[1] & S[0] & B |
S[1] & ~S[0] & C |
S[1] & S[0] & D;

endmodule

326

1. The number of equations generated
by this program (that would be
burned into a PLD that realized this
design) is:
A. 2
B. 8
C. 9
D. 16
E. none of the above

327

/* Big Multiplexer */

module bigmux(EN, S, A, B, C, D, Y_z);

input wire EN;
input wire [1:0] S;
input wire [7:0] A, B, C, D;
output wire [7:0] Y_z;

wire [7:0] Y;

assign Y_z = EN ? Y : 8'bZZZZZZZZ;
assign Y = ~S[1] & ~S[0] & A |

~S[1] & S[0] & B |
S[1] & ~S[0] & C |
S[1] & S[0] & D;

endmodule

2. When EN=0, S[1]=1, and S[0]=1, the
output Y_z:
A. will all be Hi-Z
B. will all be zero
C. will all be one
D. will be equal to the inputs D
E. none of the above

328

/* Big Multiplexer */

module bigmux(EN, S, A, B, C, D, Y_z);

input wire EN;
input wire [1:0] S;
input wire [7:0] A, B, C, D;
output wire [7:0] Y_z;

wire [7:0] Y;

assign Y_z = EN ? Y : 8'bZZZZZZZZ;
assign Y = ~S[1] & ~S[0] & A |

~S[1] & S[0] & B |
S[1] & ~S[0] & C |
S[1] & S[0] & D;

endmodule

3. When EN=1, S[1]=1, and S[0]=1,
the output Y:
A. will all be Hi-Z
B. will all be zero
C. will all be one
D. will be equal to the input D
E. none of the above

329

/* Big Multiplexer */

module bigmux(EN, S, A, B, C, D, Y_z);

input wire EN;
input wire [1:0] S;
input wire [7:0] A, B, C, D;
output wire [7:0] Y_z;

wire [7:0] Y;

assign Y_z = EN ? Y : 8'bZZZZZZZZ;
assign Y = ~S[1] & ~S[0] & A |

~S[1] & S[0] & B |
S[1] & ~S[0] & C |
S[1] & S[0] & D;

endmodule

Introduction to Digital System Design

Purdue IM:PACT* Spring 2019 Edition

*Instruction Matters: Purdue Academic
Course Transformation

Module 2-J
Top Level (Hierarchical) Modules

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

© 2019 by D. G. Meyer 56

Reading Assignment:
DDPP 4th Ed. pp. 306-308, 5th Ed. 198-201

Learning Objectives:
 Understand the need for using top level (hierarchical)

modules
 Understand how top level modules are created in Verilog

using structural Verilog syntax

331

Outline
 Overview
 Instantiating modules
 Example top level modules

332

Overview
 Definition: A top level module is the highest level module

in a design hierarchy that instantiates other modules and
connects them

 Separating logic across multiple modules serves the
advantage of reusability for modules and removing
redundant logic

 Example: If two modules use a 4-to-1 mux, create a
separate module for the mux, and simply instantiate it in
the other modules

333

Instantiating Modules
 Follows structural style of instantiation:
module_name instance_name (signal_list);

 Signals in signal_list will be connected in the
order of that module’s portlist – this is called port
mapping by order

 Alternatively, port mapping by name can be used,
which is a more error-free method – here, each signal
passed to the instantiated module uses the name of
the signal in the module’s port list to indicate where
it is connected

334

Example Top Level Modules
module and_or(A,B,C,D);
input wire A, B;
output wire C, D;

assign C = A & B;
assign D = A | B;

endmodule

335

module top_order(w,x,y,z);
input wire w, x;
output wire y, z;

assign a = 1’b0;
assign b = 1’b1;
and_or DUT1(w, x, y, z);

endmodule

module top_name(w,x,y,z);
input wire w, x;
output wire y, z;

assign a = 1’b0;
assign b = 1’b1;
and_or DUT1(.B(x), .A(w), .D(z), .C(y));

endmodule

Port mapping by order assigns A = w, B = x,
C = y, D = z based on how they are ordered in
the instantiation

Port mapping by name allows the signals to be listed
in any order with A = w, B = x, C = y, D = z

Module 2 Combinational Logic Circuits
 Learning Outcome: “An ability to analyze and design

combinational logic circuits”
A. Combinational Circuit Analysis and Synthesis
B. Mapping and Minimization
C. Timing Hazards
D. XOR/XNOR Functions
E. Programmable Logic Devices
F. Hardware Description Languages
G. Combinational Building Blocks: Decoders
H. Combinational Building Blocks: Encoders and Tri-State Outputs
I. Combinational Building Blocks: Multiplexers
J. Top Level Modules

336

