School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

Glossary of Common Terms

DISCRETE LOGIC - a circuit constructed
using and

logic
devices (NAND gates, decoders,
multiplexers, etc.)

PROGRAMMABLE LOGIC DEVICE (PLD) —
an integrated circuit onto which a generic
logic circuit can be programmed (and

subsequently erased and re-programmed)

GENERIC ARRAY LOGIC (GAL) - a
(legacy) flash memory based PLD, which is

typically erased and re-programmed out-
MOdUIe 2 of-circuit

Combinational Logic Circuits COMPLEX PLD (CPLD) - large flash

memory based PLD that is programmable
in-circuit

Glossary of Common Terms Module 2

isp (IN-SYSTEM PROGRAMMING) — prefix 7z L4
used on CPLDs that can be erased and re-
programmed in-circuit

Combinational Circuit Analysis and Synthesis

. Mapping and Minimization

Timing Hazards

XOR/XNOR Functions

Programmable Logic Devices

Hardware Description Languages

. Combinational Building Blocks: Decoders

. Combinational Building Blocks: Encoders and Tri-State Outputs
Combinational Building Blocks: Multiplexers

Top Level Modules

FIELD PROGRAMMABLE GATE ARRAY
(FPGA) — an SRAM-based PLD that can be
programmed in-circuit (no need to “erase”
since SRAM-based)

ADVANCED BOOLEAN EXPRESSION
LANGUAGE (ABEL) - a “classic”

for specifying the
behavior of PLDs

crIeMmMOUOWP

VHDL and VERILOG - advanced hardware
simulation and description languages

Reading Assignment:
DDPP 4th Ed. pp. 196-210, 5t Ed, pp. 100-117

Learning Objectives:
o |dentify minterms (product terms) and maxterms (sum terms)

o List the standard forms for expressing a logic function and give
an example of each: sum-of-products (SoP), product-of-sums

(PoS), ON set, OFF set

Analyze the functional behavior of a logic circuit by constructing
a truth table that lists the relationship between input variable
combinations and the output variable

Module 2-A Transform a logic circuit from one set of symbols to another
through graphical application of DeMorgan’s Law

Combinational Circuit AnalySiS and SyntheSiS Realize a combinational function directly using basic gates (NOT,
AND, OR, NAND, NOR)

© 2019 by D. G. Meyer 1

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Outline

e Overview

o Definitions

e Minterm identification

e Maxterm identification

e ON Sets and OFF sets

e Combinational circuit analysis
e Equivalent symbols

e Combinational circuit synthesis

Definitions

o Definition: A combinational logic circuit is one whose
output depend only on its

o Definition: A logic function is the
to each possible combination of its input variables

X1 —
X2 —

f — f (x1,X2, ..., Xn)
Xn — No Feedback

Examples

W, X, 4 Literals

WeXeZ Product Term

XeY +WeZ Sum of Products Expression

X+Y+2Z Sum Term

(X+Y)e (W+ Z/) Product of Sums Expression

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Overview

e We analyze a combinational logic circuit by obtaining a
formal description of its logic function
e Once we have a description of the logic function, we can:

— determine the behavior of the circuit for various input
combinations

— manipulate an algebraic description to suggest
different circuit structures

— transform an algebraic description into a standard form
(e.g., sum-of-products for PLD implementation)

— use an algebraic description of the circuit’s functional
behavior in the analysis of a larger system that
includes the circuit

Definitions

e Definition: A literal is a variable or the complement of
a variable

e Definition: A product term is a single literal or a logical
product of two or more literals

o Definition: A sum-of-products expression is a logical
sum of product terms

e Definition: A sum term is a single literal or a logical
sum of two or more literals

o Definition: A product-of-sums expression is a logical
product of sum terms

Definitions

e Definition: A normal term is a product or sum term in which
no variable appears more than once

e Definition: An n-variable minterm is a normal product term
with n literals

e Definition: An n-variable maxterm is a normal sum term

with n literals

o Definition: The canonical of a logic function is a
corresponding to input combinations for which
the function produces a
e Definition: The canonical of a logic function is a

corresponding to input combinations
for which the function produces a

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Minterm Identification

0 — complemented
1 — true

Minterm Maxterm

F(0.0.0)
F(0,0.1)
F(0.1.0)
F(O.1.1)
F(1.0.0)
F(1.0.1)
F(1.1.0)
F(l.1.1)

o Gi 253 X+Y+2Z
g X+¥Y+2Z"
X+Y'+Z
X+Y¥'+2Z"
X'+Y+2Z
X'+Y+Z"
X'+Y'+Z
X'+Y'+2"

» X x Haix X X X

ON Sets and OFF Sets

o Definition: The minterm list that “turns on” an output
function is called the on set

e Example: >y,
(In:jicates “sum” (of products)

o Definition: The maxterm list that “turns off” an output
function is called the off set

e Example: Ilyy,

Indicates “product” (of sums)

Y[z] Fx,Y,2) |
Example Xz

Based on the truth table,
determine the following

F(X,Y,Z) expressed as:

an on-set: M
an off-set:

a sum of minterms:

a product of maxterms:

© 2019 by D. G. Meyer

Maxterm Identification

0 — true
1 — complemented

ECE 270 Lecture Module 2

Spring 2019 Edition

X /_Y_KF_/M Maxterm

0 0 0 FO000
o 1 F(0.0.1)
0 F(0,1,0)
F(0,1,1)

F(1,0,0)

F(L.0.1)

F(1,1.0)

F(LL11)

XW;- Vi'A z’

b3

X
X +
X

Y+z

Example

Based on the truth table,
determine the following

F(X,Y,Z) expressed as:
an on-set:

an off-set:

asum of minterms:

a product of maxterms:

Example

Based on the truth table,
determine the following

F(X,Y,Z) expressed as:

an on-set: 2X.Y.Z(o’316’7)

F(X,Y,Z)

1

aSlalalalo|o|oo|X

Alalo|loalaloo|<

F(X,Y,Z)

1

X
0
0
0
0
1
1
1
1

an off-set: 1-Ix,v, 2,4,5)

a sum of minterms:

a product of maxterms:

Alalo|oa|laloo|<

School of Electrical & Computer Engineering
Purdue University, College of Engineering

| X |Y|2| Fxv.2) |

Example

Based on the truth table,
determine the following

F(X,Y,Z) expressed as:

anonset: _2xyz(0,367)

an off-set: M

a sum of minterms: X'°Y’eZ’ + X’eYeZ + XeYoZ’ + XeY°Z

a product of maxterms:

ECE 270 Lecture Module 2
Spring 2019 Edition

F(X,Y,Z)

Example

1

Based on the truth table,

determine the following

F(X,Y,Z) expressed as:

Ala|alalo|o|oo|X

ala|lo|loalaloo|=<

anonset: 2xyz(0367)
anoffset: _Llxvz(1.245)

asum of minterms: X'2Y’eZ’ + X’eYoZ + XeYeZ’ + XeY<Z

a product of maxterms:

(XAY+2Z')o(X+Y’+2Z)e (X' +Y+Z)o(X'+Y+2Z’)

1. Thg ON set for a 3-input NAND gate XY Z] Fuma%oY,2) |
(with inputs X, Y, and Z) is: ololo 1
ZX,Y,Z(7) 0|01 1
Zxxz(0) o[1]0 1
ZX,Y,Z(°11!2!3!4’5!6) 011 1
. . 2xvz(1:2,3,4,5,6,7) 1(0(0 1
C“Cker QUIZ none of the above 1|0(1 1
1[1]0 1
1[1]1 0
21 22
2. The OFF set for a 3-input NOR gate [T TZTF 56v.2) 3. If the function F(X,Y,2) is represented by the
(with inputs X, Y, and Z) is: 0 lolo 1 ON SET I y(0,3,5,6), then the complement
Ty v 2(7) 010l 0 of this function F’(X,Y,Z) is represented by the
Tl v2(0) ol1]0 0 ON SET: Y[z FxYvz) | [x][Y[z] Fxvz)
Iy v(0,1,2,3,4,5,6) 0l1]1 0 Zxv2(0,3,5,6) olo 1 ololo o
Ty y7(1,2,3,4,5,6,7) 1]0]0 0 Zxvz(1,2,4,7) ool 0 olol1 1
none of the above 101 0 Zxvz(1,2,4,6) 0|10 0 o[1]o 1
1010 0 Zxvz(1,3,5.7) o|1]1 1 0|1]1 0
1111 0 none of the above 1(0(0 0 1/0(0 1
1]01 1 1]01 0
11]0 1 11]0 0
1[1]1 0 1[1]1 i
23] 24|

© 2019 by D. G. Meyer

School of Electrical & Computer Engineering ECE 270 Lecture Module 2

Purdue University, College of Engineering Spring 2019 Edition
4. If the function F(X,Y,Z) is represented by the Example - Combinational Ana|ygig
ON SET Xy y(0,3,5,6), then the dual of this
function FP(X,Y,Z) is represented by the ON SET:

2xv(0,3,5,6)
% x[Y[z] Fx,Y,2) x[¥[z] PP (x,Y,2) 0x—
Tyal1,2,47) o) >
o 0jojo 1 0jojo 1 0" — 1
Zxvz(1,2,4,6) 0/o]1 0 \\ 0o 1/10 02 LDO
Zxv2(1,3,5.7) 0[1]o 0 o1] o [>0 1 FlO
none of the above |54 1 dE 1 0
1]o]o 0 ™Nolo] o 1 D
- 1]o][1 1 /1 N 1
E::AL truth table ruIe.” 11100 1 MEDNE
p and complement O 0 7 Tl Yo
Example - Combinational Analysis Example - Combinational Analysis
0 o7 > >0
Lt LDj MLt LDT
1 F1 1 F1
D D
0 1
Example - Combinational Analysis Example - Combinational Analysis
0x—q 15«

toDeal D0, o Dot Dy,
OE Se=ttes

© 2019 by D. G. Meyer 5

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

Example - Combinational Analysis

o[el

17+

Example - Combinational Analysis

074

Example - Combinational Analysis

meD

17

s

Example - Combinational Analysis

The “on set” of this function 2 0

is f(X,Y,2) = 2x,Y,2(1,2,5,7)
The canonical sum of this function is
FKY,2) = X'aY'eZ + X'eYoZ' + XoY'eZ
+ XeYeZ

Example - Combinational Analysis

\%;ﬁ e

The “off set” of this function 1
is f (X,Y,2) = Tx,Y,2(0,3,4,6) 2

£ (XY,Z) = (X+Y4Z) o (X+Y'+2Z")o (X'+Y+Z)o
X'+Y'+Z)

-E-BE - -8 -~

5 0

The canonical product of this function is i
5 1

6 1

1

-8 - B =

Example - Combinational Analysis

i e—TE
- Do N W

Writing the function implemented
by this circuit “directly” yields

[(XY,2) = ((X+Y')eZ) + (X'eYoZ') =
XeoZ + Y'eZ + X'eYoZ'

© 2019 by D. G. Meyer

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

Example - Combinational Analysis

The expression T e kb
S (X,Y,Z) = XoZ + Y'eZ + X'eYeZ'
corresponds to a different circuit
(“two-level AND-OR”) for the
same logic function

Example — Equivalent Symbols

Recall that an cquivalent symbol can e 10 1
be drawn for a gate by taking the dual !
of the operator and complementing all
of its inputs and outputs

Example — Equivalent Symbols

) - I D |
“LTijD ‘D '
v D,

Step 1: Starting at the “output end”, replace
the “OR” gate with an AND gate that has its
inputs and outputs complemented

Example — Equivalent Symbols

Step 2: Migrate the “inversion bubbles”,
as appropriate, by applying involution

40

Summary

e There are numerous ways a combinational logic function
can be represented
— truth table
— algebraic sum of minterms (sum-of-products expression)
— minterm list (ON set)

— algebraic product of maxterms (product-of-sums
expression)

— maxterm list (OFF set)

© 2019 by D. G. Meyer

Clicker Quiz

42

School of Electrical & Computer Engineering ECE 270 Lecture Module 2

Purdue University, College of Engineering Spring 2019 Edition
1. ANOR gate is logically equivalent to: 2. An OR gate is logically equivalent to:
an AND gate with inverted inputs an AND gate with inverted inputs
an OR gate with inverted inputs an OR gate with inverted inputs
a NAND gate with inverted inputs a NAND gate with inverted inputs
a NOR gate with inverted inputs a NOR gate with inverted inputs
none of the above none of the above

44

3. A circuit consisting of a level of NOR gates followed
by a level of AND gates is logically equivalent to:

Combinational Synthesis

a multi-input OR gate e A circuit realizes (“makes real”) an expression if its
a multi-input AND gate : . output fu.nctl.or.1 equals that e.xprgsswn .

. 2 s e Such a circuit is called a realization of the function
a multi-input NOR gate s g ; q Ao

. . e Typically there are many possible realizations of the
a multi-input NAND gate 2

same function

e Circuit transformations can be made algebraically
or graphically

none of the above

Combinational Synthesis Example — Prime Number Detector

e The starting point for designing a combinational logic
circuit is usually a word description of a problem

e Example: Design a 4-bit prime number detector

(N3,N2,N1,No) = £N3,N2,N1,No(1,2,3,5,

48

© 2019 by D. G. Meyer 8

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Thought Questions

e How do we know if a given realization of a function is
“best” in terms of:

— speed (propagation delay)
— cost 7
» total number of gates L
« total number of gate inputs (fan-in)
o Need two things:
—a way to transform a logic function to its simplest form
(“minimization”)
—a way to calculate the “cost” of different realizations of
a given function in order to compare them

Reading Assignment:
DDPP 4t Ed. pp. 210-222, 5" Ed. pp. 117-125

Learning Objectives:

e Draw a Karnaugh Map (“K-map”) for a 2-, 3-, 4-, or 5-variable logic
function

List the assumptions underlying function minimization

Identify the prime implicants (“PI”), essential Pl, and non-essential Pl of a
function depicted on a K-map

Use a K-map to minimize a logic function (including those that are
incompletely specified) and express it in either minimal SoP or PoS form

e Use a K-map to convert a function from one standard form to another

Calculate and compare the cost (based on the total number of gate
inputs plus the number of gate outputs) of minimal SoP and PoS
realizations of a given function

Realize a function depicted on a K-map as a two-level NAND circuit, two-
level NOR circuit, or as an open-drain NAND/wired-AND circuit

Overview

e Minimization is an important step in both ASIC
(application specific integrated circuit) design and
in PLD-based (programmable logic device) design

e Extra gates and gate inputs require more chip area
(“real estate”) and thereby increase cost and power
consumption

e Canonical sum and product expressions (which
can be determined “directly” from a truth table) are
particularly expensive because the number of
minterms [maxterms] grows exponentially with the
number of variables

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Module 2-B
Mapping and Minimization

Outline

Overview

Representation of logic functions using
K-maps

Minimization of logic functions using
K-maps

NAND-Wired AND configuration
Incompletely specified functions
—where they occur

— how to minimize them

Overview

e Minimization reduces the cost of two-level AND-OR, OR-
AND, NAND-NAND, NOR-NOR circuits by:

— minimizing the number of first-level gates
— minimizing the number of inputs on each first-level gate
— minimizing the number of inputs on the second-level

gate
o Most minimization methods are based on a generalization

of the (T10 and T10'):

Expression ¢ X + Expression « X' = Expression

LELCEVEVH

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

Minimization Motivation

Overview
L] e Limitations of minimization methods
Heemm L L — no restriction on fan-in is assumed (i.e., the total
4-bit 5 | number of inputs a gate can have is assumed to be
Prime Number [L ; “infinite”)
Detector 1 — minimization of a function of more than 4 or 5
Minterm Form [y variables is not practical to do “by hand” (a computer
[— program must be used!)
e — both true and complemented versions of all input
SR variables are assumed to be readily available (i.e., the
L . . A cost of input inverters is not considered)
Minimized Circuit - ol
Realization T] - This latter assumption is very appropri
Ho— PLD-based design, but often violated in gate-level

and ASIC-based design

Karnaugh Maps Karnaugh Maps

e A Karnaugh map (or “K-map”) is a graphical representation e Several things to note concerning K-maps:

of a logic function’s truth table — the small number in the corner of each square
e The map for an n-variable logic function is an array with 2" indicates the minterm number
cells, one for each possible input combination (minterm) — the entries in the squares correspond to the “on set”
of the function
Copyright 2000 by Prentice Hall, Inc. w

il Dcign rncisles and Pracics, 3 WX — —the labels are placed in such a way that the minterms
vZN\ 00 o1 11 10 on any pair of adjacent squares differ by only one

o B

‘v x literal
1 T 5 Y . . .
2N 00 ot 11 10 — the sides of the map are considered to be contiguous
T EN I S R

—adjacent, like squares may be combined in groups of
1 B B B 2Xto reduce the number of eroduct terms in an

expression (a grouping of 2X squares will eliminate k
variables)

Karnaugh Maps Karnaugh Maps

e An alternate drawing for a 2-variable K-map e Example: f(X,Y) =X'+Y

X' X X' X
v il v N
Y v KN

© 2019 by D. G. Meyer 10

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Karnaugh Maps

e An alternate drawing for a 3-variable K-map

Karnaugh Maps

e Example: f(X,Y,2) =

Karnaugh Maps
e Example: f(X,Y,2) =

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2

Karnaugh Maps
e Example: f(X,Y,2) =X oY’ + YoZ

Karnaugh Maps

e Example: f(X,Y,Z) =

Karnaugh Maps
e Drawing for a 4-variable K-map

w'
4

Spring 2019 Edition

11

School of Electrical & Computer Engineering

ECE 270 Lecture Module 2
Purdue University, College of Engineering

Spring 2019 Edition

Karnaugh Maps

o Example: f(W,X,Y,Z) = X'eZ' + WeZ + W'eX
WI
4

Karnaugh Maps

o Example: f(W,X,Y,Z) = + WeZ + W eX
WI
4

Karnaugh Maps

e Example: f(W,X,Y,2) =

Minimization
e Definition: A minimal sum of a logic function f is a

W sum-of-products expression forf such that no sum-
4

of-products expression forf has fewer product terms,
and any sum-of-products expression with the same
number of product terms has at least as many literals

Translation: The minimal sum has the fewest possible
product terms (first-level gates / second-level gate inputs)
and the fewest possible literals (first-level gate inputs)

Minimization Minimization
e Definition: A logic function p a logic function
f if for every input combination such that p = 1, then
f=1also (i.e., if p implies f, then f is 1 for every W
input combination that p is 1, and maybe some more
p”)
: A prime implicant of an n-variable logic

Prime
Definition Implicant
function f is a normal product term P that implies f, .

such that if any literal is removed from P, then the
NOT a Prime
Implicant

e Translation: A prime implicant is the
of size 2 adjacent, like squares

resulting product term does not implyf

© 2019 by D. G. Meyer 12

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

Minimization ation Procedure
e Prime Implicant Theorem: o e AT s
(i.e., to find a minimal sum, we need not
consider any product terms that are not prime implicants)
e Definition: An essential prime implicant has at least one ‘o "o ”1 °0
square in the grouping not shared by another prime
implicant, i.e., it has at least one “unique” square, called a 10 ’1— 136 90
distinguished 1-cell z < =
e Definition: A non-essential prime implicant is a grouping 0 L 1] 0
° ‘I;v:fri]nri‘t?ol::l?:: :g:::isterion we will use is that ‘ 0 60 L _J

COST = No. of Gate Inputs + No. of Gate Outputs

ation Proceadure ation Proceadure
0 4 2 8 0 4 2 8
o |0 [l1/|o0 0o |0 [{1/]|0
1 5. |13 9 1 50— |13 9
o |fillo |o o |[illo [o
3 7 1 11 3 7 15— |11
o |alll1])|]o o [lJ[l1]|]o
o [0 |1 o [0 |

Minimization Procedure ation Procedure
o STEP 2: Note the prime implicants P ere are 3 overed square
0 4 2 8
0 |0 |1 0
1 5 13 9
0 |/ 0 |0
3 7 1 11
0 - 1l o
20 So 1 1

© 2019 by D. G. Meyer 13

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

0 4 2 8
0 |0 |1 0
i P f (WX.Y,Z) = W'eXeZ Z
0 [[1]]jo |o + WeXeZ' + WeYeZ' = :
3 11
0 1 0 + XeYeZ
2 0 P E ”:I] One possible circuit implementation (AND-OR):
COST is 16 inputs + 5 outputs = 21

Minimization Procedure

° STEP 3: If there are still any uncovered squares,
include

EQUIVALENT circuit implementation,
obtained through graphical application of
DeMorgan’s Law

Note: AND-OR = NAND-NAND
COST is 16 inputs + 5 outputs = 21 (same) 81

Minimization Procedure

. STEP 3: If there are still any uncovered squares,
include

Clicker Quiz

[(W,X,Y,Z) = WeXeZ
+ WeXeZ' + WeYeZ'
+ WeXeY

© 2019 by D. G. Meyer 14

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

w w w w
1. The number of prime implicants is: 2. The number of essential prime

0 ! 0 o |7 1 0 ! 0 o |F implicants is:
Y Y

0 1 1 1 2 0 1 1 1 1

z 3 z 2

1 1 1 0 1 1 1 0
v 4 v 3

0 0 1 0 |z 5 0 0 1 0 |z 4

X X X! X X X! 5

85| 86|
W w wr w
3. The number of non-essential prime 4. The number of product terms in the

- St Y implicants is: y R minimal sum is:

0 1 1 1 1 0 1 1 1 1

z 2 z 2

1 1 1 0 1 1 1 0
Y 3 Y 3

0 0 1 o |z 4 0 0 1 o |z 4

X X X! 5 X X X! 5

87 88|

w w Minimization: Another Example
o "1 [P0 "0 |2 5. The ON SET for this function: e Exercise: Find a minimal sum-of-products expression
YR T = 5 Zwxvz(2:4,5,6,9,10,11,12) for the function mapped below
o |11 | Twxyz(3:4.57,9,13,14,15) o
R I o e Swxvz(3,4,5,7,9,10,11,13)
Y > - = = Zwxvz(2,4,5,6,9,13,14,15)
0 0 B L none of the above
X X X!

© 2019 by D. G. Meyer 15

School of Electrical & Computer Engineering
Purdue University, College of Engineering

O O PP a0 O
4 12 8
1 0 | 1)
1 5 3 prime
P el implicants
3 7.1 |15 11
0o |(1]|lo0 |0
20 GL 140 10
3 O D 0oceq a
O o pped belo
4 12 8|
1110 [@ [N
1 5 z |9 essential prime
1 {41 implicants
3 7 15 11
o |} 0
20 61 14 10

Minimization Procedure

e Exercise: Find a minimal sum-of-products expression
for the function mapped below

4

essential prime
implicants

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Q O olgele D O
4 12__]8

1o |A [N
1 5 FET essential prime

1)) implicants
3 71|15 11

0 [([1]|o0 |0
ZO GL 14o 10

3 O D 0oceq [a

4 12 8l
1 0 1A |
1 5 319 essential prime
1) (p|]a |4 implicants
3 7 15 11
o ([Ml|o]o
2 0 GL 140 10

Minimization Procedure

e Exercise: Find a minimal sum-of-products expression
for the function mapped below

(largest) non-essential
prime implicant needed
to cover function

16

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Minimization Procedure

e Exercise: Find a minimal sum-of-products expression

for the function mapped below

f WX)Yz)=

WeY'’ + X'eY' +
WeX'eZ' + WeXeY
+Y'eZ

Minimization: Product-of-Sums

e Group to get a minimum sum-of-products

expression for

0 12 8
1 0 1 1
1 5 13 9
1 1 1 1
7 15 1
o(|1 (@
i
o[

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Minimization: Product-of-Sums

e Question: How could a minimal product-of-sums
expression for this function be found?

allo o]0
0 12
1 0 1
1 5 13
HEEE
7 1
oll"1 |om
—H L&
[0 | e
allo 0]0
(1] 12
1 0 1
1 5 13
BENE
7 15
o) |1 [
L
107 | e

Group zeroes to get a
minimum sum-of-products

expression for f~

17

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ation: Proad 0
0 0 12 8
1 U 1 7 =WeY + X'eY + WeXeZ'
1 5 13 9
1 1 1 1
= =K Apply DeMorgan’s Law
0 1 | @7
z I f = (W'+Y')e(X+Y')o(W+X'+Z)
1B | e

ECE 270 Lecture Module 2
Spring 2019 Edition

One possible circuit implementation (OR-AND):
COST is 10 inputs + 4 outputs = 14

104

EQUIVALENT circuit implementation, obtained through
graphical application of DeMorgan’s Law

Note: OR-AND =NOR-NOR
COST is 10 inputs + 4 outputs = 14 (same)

105

More Minimization Examples

Assuming that only true variables are available,
realize the function represented by
2y v2(0,2,3,6) two different ways:

(a) using a single 7400 (quad 2-input NAND)
plus a single 7410 (triple 3-input NAND)

(b) using a single 7403 (quad 2-input open-
drain NAND)

Key to Solution: The “NAND-Wired AND”
configuration realizes the complement of the
NAND-NAND configuration = implement F’

106

Solution to (a) Given: I,,,(0,2,3,6)

X X

z U 1 I l] - 1] 0
B 3 7 5 F(X,Y,Z) = X'eY + X'eZ' + YoZ'

Solution to (b) Given: I,,,(0,2,3,6)

F'(X,Y,Z) = XY’ + XoZ + Y'oZ

F(X,Y.2)

108

© 2019 by D. G. Meyer

18

ECE 270 Lecture Module 2
Spring 2019 Edition

School of Electrical & Computer Engineering
Purdue University, College of Engineering

“Conversion” Example

Express the complement of the following
function in minimal product-of-sums form:

FX,Y,Z)=(X+Y) - (X'+Y +2) - (X+Y+2Z)

“Conversion” Example

Express the complement of the following
function in minimal product-of-sums form:

FIXY,Z)= (X+Y)- (X +Y+2)- (X+Y+2)

= F'(X,Y,Z) = = Map = F'(X,Y,Z) = X-Y' + X-Y"-Z' + X'-Y'-Z = Map zeroes
X X
FXYZ)=___ = o P—T) FXYZ)=__ =
F'(X,Y,Z) in minimal POS form Z 15 t[i F’'(X,Y,Z) in minimal POS form
= Y’ Y Y’ =

109

110

“Conversion” Example

Express the complement of the following
function in minimal product-of-sums form:

FX,Y,2)= (X+Y): (X'+Y+2)- (X+Y+2)

=2 F'(X,Y,Z) = X"-Y' + X-Y'-Z' + X'-Y'-Z = Map zeroes

Incompletely Specified Functions

e There are some logic functions that do not assign a
specific binary output value (0/1) to each of the 2"
input combinations

e Since there are essentially some unused
combinations, these functions are referred to as

incompletely specified functions
e The unused combinations are often called don’t cares

X' X
ZloJf[me FOCYZ) =Y+ X2 3 Zr thec:_sest' Coded Decimal (BCD), where 4 bi
, o e Example: Binary Coded Decima , where 4 binary
z|o LQ B F'(X,Y,Z) in minimal POS form digits are used to represent a decimal digit (0 - 9)10 —
vl -~ . » =Y+ (X'+2) here there are 6 unused combinations (1010 - 1111)2

1

Incompletely Specified Functions

e Application: Determine a logic function that will be “1”
if the BCD digit input satisfies the following inequality:
1<N1p<9

F=2Zwxyz

© 2019 by D. G. Meyer

BCD Inequality Detector Example
F(W,X,Y,Z)

=

O=mm == -0l

OO (NO(N|B|WINI= O

19

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Incompletely Specified Functions

e To minimize an incompletely specified function, we

modify the procedure for circling sets of 1’s (prime
implicants) as follows:

—allow to be included when circling sets of 1’s,
to make the sets as large as possible

—do not circle any sets that contain only
— look for distinguished 1-cells only, not

Most hardware description languages (HDL) provide
a means for the designer to specify don’t care inputs

BCD Inequality Detector Example: POS

Minimum PS:
f'w,x,y,z) =
WeZ + W' eX oY’
- f(W,X,Y,2) =
W +2Z')e (W+X+Y)

Cost: 7 gate inputs
+ 3 gate outputs =10

Incompletely Specified Functions

e Example: Find a minimal product-of-sums expression
for the function mapped below

F(WX,Y,Z) = W + XeY'
f(W,X,Y,Z) =W’ e (X'+Y)
Cost: 4 gate inputs +

2 gate outputs

= 6 cost units

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

BCD Inequality Detector Example: SOP

Minimum SP: f(W,X,Y,Z) =X +Y + WeZ'
Cost: 5 gate inputs + 2 gate outputs =7

Incompletely Specified Functions

e Example: Find a minimal sum-of-products expression
for the function mapped below

£ (W,X,Y,Z) = WeX' + WeY
Cost: 6 gate inputs +

3 gate outputs

=9 cost units

Clicker Quiz

120

20

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

X! X
z 1 1 0 d
z 0 0 1 0
Y Y Y

1. The cost of a minimal sum of products realization of this function
(assuming both true and complemented variables are available) is:

A.9 B.10 C.11 D.12 E. none of the above

121

X' X
z 1 1 0 d
z 0 0 1 0
Y Y Y

2. The cost of a minimal products of sum realization of this function
(assuming both true and complemented variables are available) is:

A.9 B.10 C.11 D.12 E. none of the above

122

X! X
z 1 1 0 d
z 0 0 1 0
Y’ Y Y’

2-input NAND gates that are needed to realize this function is:
A.6 B.7 C.8 D.9 E. none ofthe above

3. Assuming the availability of only true input variables, the fewest number of

123

X! X
z' 1 1 0 d
z 0 0 1 0
Y Y Y

4. Assuming the availability of only true input variables, the fewest number of
2-input NOR gates that are needed to realize this function is:

A.6 B.7 C.8 D.9 E. none of the above

124

X' X
z 1 1 0 d
z 0 0 1 0
Y’ Y Y

A.6 B.7 C.8 D.9 E. none ofthe above

5. Assuming the availability of only true input variables, the fewest number of
2-input open-drain NAND gates that are needed to realize this function is:

X' X
z 1 1 0 d
z 0 0 1 0
Y Y Y

6. The number of pull-up resistors required for realizing this function using
only 2-input open drain NAND gates (assuming the availability of only
true input variables) is:

A.1 B.2 C.3 D.4 E. none of the above

126

© 2019 by D. G. Meyer

21

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Module 2-C
Timing Hazards

Outline

e Timing hazards
— Static
—Dynamic
e Elimination of timing hazards
e Clever utilization of timing hazards
e Designing hazard-free circuits

Timing Hazards: Static 1

e Definition: A static-1 hazard is a pair of input
combinations that:
and , such that it is
possible for a momentary output to occur during
a transition in the differing input variable

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Reading Assignment:
DDPP 4™ Ed. pp. 224-229, 5" Ed. pp. 122-126

Learning Objectives:

e Define and identify static-0, static-1, and dynamic hazards

o Describe how a static hazard can be eliminated using
consensus terms

e Describe a circuit that takes advantage of the existence of
hazards and analyze its behavior

Draw a timing chart that depicts the input-output relationship
of a combinational circuit

Timing Hazards

o The combinational circuit analysis methods
described thus far ignore propagation delay and
predict only the steady state behavior

e Gate propagation delay may cause the transient
behavior of logic circuit to differ from that predicted
by steady state analysis

e A circuit’s output may produce a short pulse (often
called a glitch) at time when steady state analysis
predicts the output should not change

e A hazard is said to exist when a circuit has the
possibility of producing such a glitch

Timing Hazards: Static 0

o Definition: A static-0 hazard is a pair of input
combinations that:
and , such that it is
possible for a momentary output to occur during a
transition in the differing input variable

wxzP

A static-0 hazard is juéi the dual of a static-1 hazard

22

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Timing Hazards

e A K-map can be used to detect static hazards in a two-
level sum-of-products or product-of-sums circuit

e Important: The existence or nonexistence of static
hazards depends on the circuit design (i.e., realization)
of a logic function

e A properly designed two-level sum-of-products (AND-
OR) circuit has no hazards but may have

hazards

e Existence of static-1 hazards can be predicted from a

K-map

Timing Hazards

e Solution: Include an extra product term (AND gate)
to cover the hazardous input pair

fXY2)=

Timing Hazards

e Important: Not all hazards are hazardous - in fact,
some can be quite useful! Consider the case in
which we would like to detect a low-to-high
transition (the “leading edge”) of a logic signal

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Timing Hazards

e Using a K-map to graphically detect the possibility
of a static-1 hazard:

£ (XY,Z) = XeZ'+YoZ

Timing Hazards

e A dynamic hazard is the possibility of an output
changing more than once as the result of a single
input transition

e Multiple output transitions can occur if there are
multiple paths with different delays from the changing
input to the changing output

Designing Hazard-Free Circuits

e Very few practical applications require the design of
hazard-free combinational circuits (e.g., feedback
sequential circuits)

e Techniques for finding hazards in arbitrary circuits
are difficult to use

e If cost is not a problem, then a “brute force” method
of obtaining a hazard-free realization is to use the
complete sum (i.e., all prime implicants)

e Functions that have non-adjacent product terms are
inherently hazardous when subjected to
simultaneous input changes

23

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

Clicker Quiz

139

1. Steady state analysis of this circuit would
predict that its output will always be:
0

1
50% of V¢

Les Déplorables
none of the above

140

2. This circuit exhibits the following type of
hazard when its input, X, transitions from
low-to-high:

static-0

static-1

dynamic

Les Déplorables
none of the above

3. This circuit exhibits the following type of
hazard when its input, X, transitions from
high-to-low:

static-0

static-1

dynamic

Les Déplorables
none of the above

142

4. Steady-state analysis of the function realized by this
circuit for the input waveforms shown predicts that the
output F(X,Y) should:

should always be low

should always be high

should be identical to the input
should be the complement of the input
none of the above

143

5. Dynamic analysis of the output F(X,Y) reveals that:
a static “0” hazard will be generated in response to
low-to-high transitions of the input waveform
a static “1” hazard will be generated in response to
low-to-high transitions of the input waveform
a static “0” hazard will be generated in response to
high-to-low transitions of the input waveform
a static “1” hazard will be generated in response to
high-to-low transitions of the input waveform

none of the above i

© 2019 by D. G. Meyer

24

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Module 2-D
XOR/XNOR Functions

Outline

e XOR and XNOR functions

o XOR operator properties

e XOR “checkerboard” K-map
e XOR N-variable functions

e Realization of “non-reducible” functions using
XOR/XNOR gates

ECE 270 Lecture Module 2
Spring 2019 Edition

Reading Assignment:
DDPP 4th Ed. pp. 447-448, 5t Ed. pp. 320-322

Learning Objectives:
o Identify properties of XOR/XNOR functions

e Simplify an otherwise non-minimizable function by
expressing it in terms of XOR/XNOR operators

XOR/XNOR Functions

e An Exclusive-OR (XOR) gate is a 2-input gate whose
output is “1” if exactly one of its inputs is “1” (or, an
XOR gate produces an output of “1” if its inputs are
different)

e An Exclusive-NOR (XNOR) gate is the complement of
an XOR gate - it produces an output of “1” if its
inputs are the same

e An XNOR gate is also referred to as an Equivalence
(or XAND) gate

e Although XOR is not one of the basic functions of
switching algebra, discrete XOR gates are commonly
used in practice

XOR/XNOR Functions

The “ring sum” operator @ is often used to denote the
XOR function: X@Y = X'*Y + XY’
The XNOR function can be thought of as either the dual
or the complement of the XOR function

(X®Y)' = (XPY)P = X'sY' + XY

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

149

XOR Operator @ Properties
X®X=XeX+XX=0+0=0
XX =XX+XX=0+0=0
X®&1=X*+1+X0=X
X' ®1=X1+X0=X
XoYy=XoYd1
XeY=Y®X
XO(YOZ)=(XOY)DZ
Xo(Y @ Z) = (X+Y) © (X2)

XOR and XNOR
Equivalent Symbols

150

© 2019 by D. G. Meyer

25

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

XOR K-Map XOR N-Variable Functions

e K-map of 2-variable XOR function The XOR (or XNOR) of N variables can be realized
XBY =XeY + XY’

with tree or cascade circuits
- tree XOR circuit (N is a power of 2)

')D The output of an n-variable XOR function is
X X))D 1 if an odd number of inputs are 1

")D The output of an n-variable XNOR function

[N >
v)D)D is 1 if an even number of inputs are 1

- cascade XOR circuit Realization of an n-variable XOR or XNOR

function will require 2" P-terms
Leads to a “checkerboard” K-map, that cannot % .

be reduced (in either SoP or PoS form)

_‘D7 152
Non-Reducible Functions Example — “Diagonal” K-map
o Functions that cannot be significantly reduced using
conventional minimization techniques can be ,
simplified by implementing them with XOR/XNOR gates 0 th i WB
e Candidate functions that may be simplified this way have , 1 0 0 0|z
K-maps with “diagonal 1’s” YR 0 5 1 130 9 0
e Technique: Write out function in SoP form, and “factor < = = = z
out” XOR/XNOR expressions 0 0 1 0
Y
2 o 6 o 140 101 Z’
X' X X'
154,
Example — “Diagonal” K-map Example — “Diagonal” K-map
Minimize function to the extent possible Factor out XOR/XNOR expressions
W’ w F(W,X,Y,2) = W w FIWX,Y,Z) =
°@ ‘0% Po |z wxevz s wexeyz 110 % [Fo |z wxevz+wxyz
v | s + WeXsYoZ + WeX'sYeZ ' ‘a- . s + WeXsYoZ + WeX'sYeZ '
o100 o1 0 I —
3 7 1 11 z 3 7 15 1 z = (RV)
ol 0 E 0 ol 01| +XoZ o (WY’ + WeY)
Y Y
20 °0 ™o 1@ 7! 2010 [0 101 7'
X' X X' X' X X'
155 156

© 2019 by D. G. Meyer 26

School of Electrical & Computer Engineering ECE 270 Lecture Module 2

Purdue University, College of Engineering Spring 2019 Edition
Example — “Diagonal” K-map Example — “Diagonal” K-map
Factor out XOR/XNOR expressions Write function in terms of XOR/XNOR operators
W' w F(W,X,Y,Z) = W' w F(W,X,Y,Z) =
‘11 0 % [Fo |z wxevz+wxyz 110 % [Fo |z wxyz+wxyz
Y + WeXeYoZ + WeX'sYoZ ' Y + WeXoYoZ + WeX'sYoZ /
1 5 13 9 1 5 13 9
0| 1 0 0 1 0
Z = X'eZ' e (W'sY' + WeY) Z = X'eZ' e (W'sY' + WeY)
o 01" | +xz-wevrwey o0 [f1] | rxzowerewy
Y Y
20 1°0 |0 [|z =0xz +xez)(WreyHWeY) 20 1°0 |0 [|z =0xz +xz)s(wrevswey)
X' X X' X’ X X' =(X@Zy(WaY)
157 158
Example — “Diagonal” K-map Example — “Diagonal” K-map
Realize using XOR/XNOR gates Compare with minimal SoP realization
® W
o
FIWXY,Z)
W
y Xy
FIW.X Y2}
z x5
FIWXYE) z
y S=1D
COST =6 inputs + 3 outputs = 9 150 COST = 20 inputs + 5 outputs = 25 100
Example — “X”-map Example — “X”-map
Minimize function to the extent possible
w' w w’ T
0 4 12 8 0 4 12 8
1100 1]|Z 1" o %o h_ z
Y 1 5 13 9 Y'-1 5 9 i
F(W,X,Y,Z) =
o1 o, 0| '”"1‘] B, xzixz
3 7 15 1 3 7 15 11
0 1 1 0 0 1 1
Y 2 6 14 10 Y 6 14 10,
110170 |2 z 1‘] [V B1) ﬁ‘ 2
X X X' X' X X'
161 162]

© 2019 by D. G. Meyer 27

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

Example — “X”-map
Write function in terms of XOR/XNOR operators

Example — “X”-map

Compare costs

w' W, w’ W,
0 4 12 8 0 4 12 8
1 J 0| o l1 z 1 } 0| o (1 z
Y,-1 5 9 r \ i
4—‘1 F(W,X,Y,Z) = U < J—‘j J F(W,X,Y,Z) =
ol Nfe Z XeZ'+XeZ oI Nfe° Z XZ'+XZ Cost=9

=(X®2) Cost=3

y 30 7&151 110 =(X®2) 30 7&151 110
?ﬂeo 1“9 1oﬁ——z, mso “9 mﬁ——z,

X' X X’ X' X X'

163 164

Clicker Quiz
1. The function realized by this circuit is a:
2-input XOR
2-input XNOR
2-input AND
2-input OR
none of the above

165 166

< x

s

3. The ON set of the function realized by this circuit is:

< x

2. The ON set of the function realized by this circuit is:

none of the above

Zxv(0,2) Zxv2(0,3,4,7)
ZX,Y(ois) ZX,Y,Z(1 !215!6)
ZX,Y(1 72) ZX,Y,Z(07315!6)
Zxv(1,3) Zxvz(1:2,4,7)

none of the above

168

© 2019 by D. G. Meyer

28

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

5. The following is NOT an equivalent symbol
for an XOR gate:
4. The XOR property listed below that is NOT true is: A. jD

A X®0=X B
B.X®1=X e
c. XeX=X
D.X®X =1 Co 9>
E. none of the above

D. ;)Dm

E. none of the above

169 170

Reading Assignment:
DDPP 4™ Ed. pp. 370-383, 840-859; 5" Ed. pp. 246-252

Learning Objectives:
e Describe the genesis of programmable logic devices

e List the differences between complex programmable logic
devices (CPLDs) and field programmable gate arrays
(FPGAs) and describe the basic organization of each

Module 2-E
Programmable Logic Devices

Outline Overview

o Overview e The first programmable logic devices (PLDs) were

i programmable logic arrays (PLAs)
® Programmable Logic Arra-ys (PLAs) e PLAs are combinational, two-level AND-OR devices that can
e Programmable Array Logic (PALs) be programmed to realize and sum-of-products expression
e Generic Array Logic (GALs) e Limitations
e Complex PLDs

e Field Programmable Gate Arrays (FPGAs)
e Summary

— number of inputs (n)
— number of outputs (m)
— number of product (“P”) terms (p)

Such a device might be described as
an n x m PLA with p product terms

© 2019 by D. G. Meyer 29

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Programmable Logic Array
4 x 3 PLA with 6 product terms

et e
B L’h{ ff”@ el L‘_. i]J
i g i

Potential connections indicated by “X”

175

Overview

e Each AND gate’s inputs can be any subset of the primary input
signals and their complements

e Each OR gate’s inputs can be any subset of the AND gate outputs

Programmable Logic Array

4 x 3 PLA programmed to implement three logic equations
113
Iz {3
133
14 {3

BENINE

T Mel2 + 12413514
T 113" + 11713014 + 12
) - Me12 + 1el3 + [17e12'e14"

179

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Overview

e Each input is connected to a buffer that produces both a true and a
complemented version of the signal for use in the array

e Connections are made by fuses, which are actual fusible links (one-
time programmable devices) or non-volatile memory cells (erasable,
re-programmable devices)

Programmable Logic Array
Compact view of 4 x 3 PLA with 6 P-terms
1 {3
12 ¥
2 ¥
143

000U

[¢]]

oz

03

Y

178

Programmable Array Logic

o A special case of PLA is the programmable array logic (PAL)
e Unlike a PLA, a PAL device has a

(i.e. AND gates can not be shared)
e Each output has an individual tri-state enable,

controlled by a dedicated AND gate

There is an inverter between the output

of the OR gate and the external pin

Some of the output pins may also be

used as inputs (called “I/O pins”)

— tri-state buffer OFF, input only

— tri-state buffer ON, either
output-only, output cascaded to
another function input, or
feedback to create a sequential
circuit

30

ECE 270 Lecture Module 2
Spring 2019 Edition

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Generic Array Logic GAL Combinational Macrocell

devices can be configured to emulate the “fuse” matrix P-term router
AND-OR, register (flip-flop), and output structure of combinational
and sequential PAL devices
An output logic macrocell (“OLMC?”) is associated with each 1/0 pin to
provide configuration control
OLMCs include output polarity control (important because it allows
minimization software to “choose” either the SoP or PoS realization

(1:2 demux)

dedicated output
= enable (OE) pin

of a given function)
Erasable/reprogrammable GAL devices use floating gate technology
for “fuses” and are

output
polarity
control

i
‘i < 1/0 pin
i

product terms

GAL devices require a to erase and {P-terms)
reprogram their so-called “fuse maps” (means that they must be %E& Z%

removed for reprogramming and subsequently reinstalled — requires
a socket)

A legacy GAL device () is included in your digital parts kit to
provide an introduction to PLDs 182

<= weureno. dedicated
<2 weurens INPULS

GAL Combinational Macrocell GAL Combinational Macrocell

L P-term router “fuse™ matrl P-term router
fuse” matrix (1:2 demux) fuse” matrix (1:2 demux)
0 1

enable (OE) pin

output
polarity
control

i

product terms
(P-terms)

%Eﬁ = wevimo dedicated

< werems inputs

. dedicated output

dedicated output
<= enable (OE) pin

peo o5 0207] tri-state enable
. selector (4:1 mux)

output
polarity
control

i

product terms
(P-terms)

%Eﬁ < wureno dedicated

S weurews iNUS

183 184
GAL Combinational Macrocell GAL Combinational Macrocell
“fuse” matrix P-term router “fuse” matrix P-term router
(1:2 demux) (1:2 demux)
] dedicated output] dedicated output
| < enable (OE) pin i < enable (OE) pin
! tri-state enable ! 2 _p™ %\ ™| tri-state enable
= selector (4:1 mux) | selector (4:1 mux)
] Bl
1 1/0 pin 1 1/0 pin
output output
polarity polarity
{ control «i control
R product terms T product terms
Eﬁ 4 (P-terms) Eﬁ 4 (P-terms)
éf — sewno edicated éf = wevrens dedicated
<3 weurews iNpUtS <3 weurens INPULS
185 186

© 2019 by D. G. Meyer

31

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

GAL Combinational Macrocell GAL Combinational Macrocell

“fuse” matrix P-term router “fuse” matrix

P-term router
(1:2 demux) (1:2 demux)

dedicated output
enable (OE) pin

dedicated output
enable (OE) pin

*] tri-state enable
selector (4:1 mux)

3] tri-state enable
selector (4:1 mux)

output
polarity
control

output
polarity
control

product terms product terms
Eﬁ Z> (P-terms) Eﬁ 4 (P-terms)
éf 7= oo dedicated éf = meweno dedicated
<3 weurens inputs S newrens inputs
. GAL22V10 AND Array (“Fuse Matrix”)
GAL22V10 Block Diagram S
number of AND g = = = = & = = = =
. a_rray ir_lputs . - . . B - - j - - H H H £ ik
LR e e B B O
: r;umbe} of m’r;crocelis andrassocirated I;O pins: : 150 190
GAL22V10 Output Logic Macrocell (“OLMC”) GAL22V10 Output Logic Macrocell (“OLMC”)
— _E \
e / AR
P |
-) o
s a
—_ Ve g
7
" 5F
— F
MUX
Number of P-terms per OLMC ranges from 8 to 16 Single P-term per OLMC dedicated to tri-state buffer enable

© 2019 by D. G. Meyer 32

ECE 270 Lecture Module 2
Spring 2019 Edition

School of Electrical & Computer Engineering
Purdue University, College of Engineering

GAL22V10 Output Logic Macrocell (“OLMC”)

— o
2
{— R
A . o
ATy o4 - pin
s)/ o { 41o: ML -
- | 4TO b
o 4 a ok
3 CLK a fo—e
] /
L -
se

Note: Flip-flops are used to
create sequential circuits

All OLMC edge-triggered D flip-flops utilize common clock (CLK) ,
asynchronous reset (AR), and asynchronous preset (SP) signals

193

GAL22V10 Output Logic Macrocell (“OLMC”)

IIo

4:1 multiplexer selects (routes) true/complemented combinational
true/ registered fi ion to the 1/O pin

194

GAL22V10 Output Logic Macrocell (“OLMC”)

— Note: Tri-state
buffer is turned
off to use /O
pin as an input

l[e}
pin.

2:1 multiplexer selects (routes) true/complemented I/O pin or
true/complemented registered feedback to the P-term array

195

GAL22V10 Pinout

241 Vee
| vora
o

GAL o

I

I

I

| 22V10 [lelle]
1|8 o
I

I

I

I

I

!
A
=
.

18(] roia
| 1oia

rola
| vora
| vore

196

Complex PLDs (CPLDs)

e Modern complex PLDs (CPLDs) contain hundreds of macrocells
and /O pins, and are designed to be erased/reprogrammed
(called “isp”)

Because CPLDs typically contain significantly more macrocells
than I/O pins, capability is provided to use macrocell resources

“internally” (called a node)

Example: The Lattice CPLDs feature

GLBs

A “breakout board” utilizing an device (with
and 144 pins) will be used for the second half of the lab
experiments

© 2019 by D. G. Meyer

iISpPMACH 4000ZE Block Diagral

G : Bie vme [

-~

oooo “. oo oo

Ve 0

]

EEARE) PP
orel i Toge |~
o [

Globsi Routing Pocl

[+

T Bt 1

A global routing pool (GRP) is used to connect generic logic

blocks (GLBs)

Output routing pools (ORPs) connect the GLBs to the

(I0Bs), which contain multiple 1/0 cells

198

33

ECE 270 Lecture Module 2
Spring 2019 Edition

School of Electrical & Computer Engineering
Purdue University, College of Engineering

—=

0 gum
| wom aFe

199

iISpPMACH 4000ZE 36-Input AND Array

Info] -
Inf34]
In{3s]
ses
&b—-PT0)
{ -PT1
4 —’ PT2 = Cluster 0
P13
E-p—-PT4 J
.
.
.
S PT75
PTTE
E-@—-PT77 - Cluster 15
1 ™
& J
& P80 Shared PT Glock
g 3 - PT#1 Shared PT Initiakzation
o - FTa2 Shared PTOEBIE
Hata:

@ Indicates progrmmmatls fuse.

iSpMACH 4000ZE Macrocell

Summary

There are currently two types of programmable logic devices in

common use:

— CPLDs
in-circuit programmable
non-volatile (retains configuration information when powered
down)
“instant on” (no external configuration ROM or boot sequence
required)
less dense (fewer programmable logic blocks) than comparably
sized FPGA

— FPGAs
in-circuit programmable
volatile (loses configuration when powered down)
requires external configuration ROM and “boot” sequence to
initialize
more dense (greater number programmable logic blocks) than
comparably sized CPLD

203

© 2019 by D. G. Meyer

Field Programmable Gate Arrays

A field programmable gate array (FPGA) is “kind of like a CPLD
turned inside-out”
Logic is broken into a large number of programmable blocks
called look-up tables (LUTs) or configurable logic blocks (CLBs)
Programming configuration is stored in

and is therefore , meaning the FPGA configuration is

Programming information must therefore be loaded into an
FPGA (typically from an external ROM chip)
(“initialization/boot” cycle)
LUTs/CLBs are inherently less capable than PLD macrocells, but
will fit on a comparably sized FPGA (than
macrocells on a CPLD)

Module 2-F
Hardware Description Languages

34

ECE 270 Lecture Module 2
Spring 2019 Edition

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Reading Assignment:
DDPP 4th Ed. pp. 237-243, 290-335; 5" Ed. pp. 177-233

Learning Objectives:

e List the basic features and capabilities of a hardware
description language
List the syntactic elements of a Verilog module
Identify operators and keywords used to create Verilog
modules
Write equations using Verilog dataflow syntax
Define functional behavior by creating truth tables with the
casez construct in Verilog

Outline

e Overview

e Verilog and ispLever™

e Verilog coding semantics

e Verilog module structure

e Verilog symbols for logical operations
e Sample Verilog modules

e Structural code in Verilog

Overview Overview

Both VHDL and Verilog started out as simulation languages (later
developments in these languages allowed actual hardware design)

Both languages support modular, hierarchical coding and support

e Hardware description languages (HDLs) are the most common way to
describe the programming configuration of a CPLD or an FPGA

The first HDL to enjoy widespread use was (“PAL Assembler”)

from Monolithic Memories, Inc. (inventors of the PAL device)

Early HDLs only supported equation entry

Next generation languages such as (Compiler Universal for
Programmable Logic) and (Advanced Boolean Expression
Language) added more advanced capabilities:

— truth tables and clocked operator tables

— logic minimization

— high-level constructs such as when-else-then and state diagram
— test vectors

— timing analysis

Verilog and ispLever™

e Because Verilog is so commonly used in industry and you will
need it in future classes, you will be introduced to Verilog in
this course
You will use Verilog to program legacy PLDs (like the 22V10) as
well as current generation CPLDs (like the ispMACH 4256ZE)
We will use the ispLever Classic 1.8 software package in
lab, which includes support for ABEL, Verilog, and VHDL as
well as schematic entry
You can obtain your own free copy of this software from the
Lattice Semiconductor web site (

© 2019 by D. G. Meyer

a wide variety of high-level programming constructs — represents
a
— arrays
— procedures
— function calls
— conditional and iterative statements
— Because VHDL and Verilog have their genesis as _

simulation languages, it is possible to create

using them (i.e., code that can a digital system,
but it)
Advantage — VHDL and Verilog are much better adapted to large
scale system design Verilog has become the most common
language for IC design and verification.

Verilog and ispLever™

A Verilog module is a text file containing:
— documentation (program name, comments)
— declarations that identify the inputs and outputs of the logic
functions to be performed
— statements that specify the logic functions to be performed

Because you need to be able to program a PLD or CPLD, your
to syntax that translates neatly

into logic circuitry

Verilog source files are transformed into a fuse map file by the
compiler integrated into ispLever

A universal programmer is used to burn the fuse map file into a
legacy PLD device (an device can be programmed directly from
the integrated tool via a USB cable)

35

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Verilog Program Semantics

e identifiers (module names, signal/variable names) must begin with a
or and can include and

identifiers are
single line comments begin with
comments can also be done this way

input and output declarations tell the compiler about symbolic names
associated with the external pins of the device

each assign statement describes a small piece of logic circuitry

Constant values can be described as where n is the bit-width
of the signal and x is 0 or

Verilog BITWISE Operators

not

~A or A~ exclusive nor

You will learn about logical vs. bitwise operators later
(similar to C)

Verilog ASSIGN Statements

statements are used to continuously assign the value
of the expression on the right of the = to the signal on the left
3-bit wires A, B, X, and Y
A is assigned the constant 3-bit value of 110
B is assigned the constant 3-bit value of 101

wire X is assigned the value of A bitwise
AND-ed with B i.e. 100

wire Y is assigned the value of A bitwise OR-
ed with Bi.e. 111

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Verilog WIRE Type

wire is a basic data type in Verilog

Similar to an actual wire, these variables
and are used to connect signals between
inputs, outputs and logic elements such as gates

wire is used to model combinational logic
wire can take on four basic values

0 - logical zero

1 - logical one

X — unknown value

Z - high-impedance state

iISPLEVER Operators

Reports generated by ispLever use a different notation
for some of the bitwise operators

operation ispLEVER

AND
OR
NOT
XOR

Verilog MODULE Structure (Example 1)

comments start with .
or they can be bounded with as in C
nand_nor(Sel ,A,B,Y);

Sel. A, B: Describes a circuit called nand_nor
= R with inputs Sel, A, B, and output Y

Y1, ¥2, Y3, Y4; 4 individual wire names Y1 .. Y4

Each assign statement describes a
separate piece of logic with the output
on the left and operations on inputs on
the right

Y4 = (~Y2) & (=Sel);

36

ECE 270 Lecture Module 2
Spring 2019 Edition

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Verilog MODULE Structure (Example 1)

nand_nor(Sel ,A,B,Y);
Sel, A, B ="4,5,6"

Verilog MODULE Structure (Example 1)

nand_nor(Sel ,A,B,Y);

Sel, A, B /* ="4,5,6" */:

synthesis loc is a compiler directive
Y H that tells ispLever to connect Sel, A, Y /*

B, and Y to pins 4, 5, 6, and 7

(respectively) on the PLD

="7,8" */;
va3.y4: The index range [1:0] makes Y into a 2-bit vector
I Y[1] assigned to pin 7, Y[0] pin 8
wire is one of several signal variable Y3,Y4}:
The concatenation operator { } makes
a bit vector out of multiple wires
(-Y1) & Sel;

types you will learn to use A&B :
(-Y2) & (=Sel);

., Y2, Y3, Y4;

Y = Y3 | Y4;
YL=A&B ;

Y2 = A | B;

Y3 = (~Y1) & Se
Y4 = (~Y2) & (~Se

assign statements are not the only A | B:
way of describing your logic, but they ’
are the simplest for very small
combinational logic designs

Example Verilog Module #1A

/* Verilog Combinational Example for GAL22V10 */

Verilog BIT Literals
wire a,b;
wire [2:0] Y;

module verilog_exA(A,B,C,D,X,Y,Z); e

input A,B,C,D /* synthesis loc="2,3,4,5" */;
output X,Y,Z /* synthesis lot 14,15,16" */;

// dataflow style logic equations ' W} ron
1 bit equal to binary 0 assign X = (A & B) | ~(C & D); '

assign Y = ~(B &D) | ~(A & B & D); . .
assign Z = A & ~(B & C & -D); " e
// use parenthesis for readability N ali
// and to make sure order of operations
// (precedence) are as intended

assign a = 1"b0;

assign b 1"b1; 1 bit equal to binary 1

3"b100; Note: Explicit pin declarations can be
? omitted and automatically assigned by

the “fitter” program (part of ispLever)

assign Y 3 bits equal to 100,

Y[2]=1’b1 Y[1]=1’b0 Y[0]=1’b0 PN

Example Verilog Module #1B

/* Verilog Combinational Example for GAL22V10
with active low inputs */

// "n" prefix is just a naming convention
module verilog_exA(nA,nB,nC,nD,X,Y,Z);

input nA,nB,nC,nD /* synthesis
output X,Y,Z /* synthesis loc='

wire A,B,C, '
assign A = // to treat inputs as I
assign B = // active low, you must k| .
assign C = // invert them ls i
assign D = |
assign X = (A & B) | ~(C &D);

assign Y = ~(B & D) | ~(A & B & D); 1
assign Z = A & ~(B & C & ~D); e |
endmodule

221

Example Verilog Module #1C

/* Verilog Combinational Example for GAL22V10
with active low inputs and outputs */

module verilog_exA(nA,nB,nC,nD,nX,nY,nZ);
input nA,nB,nC,nD /* synthesis loc="2,3,4,5" */;
output nX,nY,nZ /* synthesis loc="14,15,16" */;

wire A,B,C,D; i =]
assign A = ~nA; // to treat inputs as | -
assign B = ~nB; // active low, you must | §
assign C = ~nC; // invert them

assign D = ~nD;

// to make outputs active low, invert the
// value assigned to the output
assign nX = ~C (A & B) | ~(C &D));

assign nY = ~(~(B &D) | ~(A & B &D));
assign nZ = ~(A & ~(B & C & -D));
endmodule

© 2019 by D. G. Meyer

37

School of Electrical & Computer Engineering
Purdue University, College of Engineering

rilog REG Data Types

Similar data type to , but can be used to store information

Unlike b can be used to model both combinational and
sequential logic

For behavioral code using an
type

For dataflow code with

type

Examples:

block, the output must be

statements, the outputs must be of

Il one bit variable called
n variable called

ALWAYS Block in Verilog

Example blocks:
@ (A,B,C) begi

All statements will be evaluated
whenever A, B, or C change their values

@ (posedge CLK) begin

All statements will be evaluated on the
positive (rising) edge of CLK signal
(use negedge for falling edge of CLK)

@ (*) begin

All statements will be evaluated
whenever any input signal in the
always block changes

Verilog MODULE Structure (Example 2)

nand_nor(Sel ,A,B,Y);
Sel, A, B /*

always block
reg Y /*

available in Verilog to a

_ traditional “truth table”
@ (Sel,A,B)

ECE 270 Lecture Module 2
Spring 2019 Edition

ALWAYS Block in Verilog
* An block lets you write "behavioral” style
code, similarto C

Should have a sensitivity list associated wit
all statements in the block will be evaluated

when the conditions in this list are triggered

Conditions may be to the signal or

of the signals

Verilog CASE Syntax

Similar to the case structure in C
Compares expression to a set of cases and evaluates the
statement(s) associated with first matching case
All cases defined between ®
Multiple statements for a case must be enclosed in a

block
Multiple comparison signals can be concatenated as
({signal1,signal2...signaln}) and compared against values of their
total bit width
If the logic does not cover all possible bit combinations of the
comparison signal(s), a must be added. e.g. a 3-bit

signal for comparison will need a default case if 8 cases are not
provided

Y must be declared as reg
type to be an output of an

This is the closest structure

@(Sel,A,B) is a sensitivity list
For combinational logic, list all inputs

({Sel,A,BH)
37b000: Y = 17b1;

3"b001: Y = 1%b1;
3"b010: Y = 1%b1;

value of Y based on matching case, e.g.
3’b001 matches Sel= ,B=1
default: Y = 1°b0;

© 2019 by D. G. Meyer

Compares each case against a concatenated
3-bit vector with Sel at bit position 2, A at
position 1 and B at position 0 and evaluates

Example Verilog Module #2

/* Truth table example */ o T
module ttex(E,R,S,T,A,B,C,D,F); {
input E,R,S,T /* synthesis loc="2,3,4,5" */; |
output A,B,C,D,F /* synthesis loc="14,15,16,17,18" */;
reg [4:0] abcdf /* bit vector to assign to output pins */;

always @(E,R,S,T) begin
case ({E,R,S,T}
47b0000: abcdf

"b01000; { o

"b00010; | g

*b00100; E -

*b00010; g 1

"b10000;

*b10000; .

-woo100: ~Compares each case against a concatenated
‘paoooc: 4-bit vector with E at bit position 3, R at
-potoco: Position 2, S at position 1 and T at position 0
*b00100;

*booo01; e.g. 4’b1011 matches E=1,R=0,5=1,T=1

*b10000;

"b10000;

*b00100;

*b10000;

47b1110: abedf
47b1111: abcdf
endcase

aaaaaaaaaaaaaaaa

assign {A.B,C.D.F} = abcdf;
endmodule

assign A = abcdf[4], B = abcdf[3], etc.

38

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

Example Verilog Module #3A
/* 4 variable XOR on 22V10 */
module xor_exA (1, X);

input [3:0] I;

output X;

// if synthesis_loc not given,

// then 1SPlever will choose pin #

// bitwise &, |, ” can be used as
// reduction operators on a vector

assign X = "I

// you could also write this as
/7 X = 1[3]171[2]71[1]71[0] 5

PROGRAMMABLE
AND-ARRAY
(1320044)

endmodule

NOTE: Each XOR gate increases P-terms by a
factor of 2 (number of P-terms = 2")

Equation requires 8 P-terms — can be realized
on any 22V10 macrocell (any I/O pin)

229

1 v 3 i
- oy T 1vem 23
Example Verilog Module #3B 2 o= ———
] 3 1o e L7
/* 5 variable XOR on 22V10 */ - '|l| .
module xor_exA (I, X); e 4
i B - 4 o= L g0 wst 21
input [4:0] I;
output X; {]
p P ; el gwea 20
assign X = ~I; g;»—- " t
6 i %3 o e e v 19
endmodule z.gﬂ
7 o wQPR L l_ v 18
gz =TT
g a o< T
Equation requires 16 P-terms — LI e e chr i 0 17
can be realized on macrocells i"H—)
associated with I/O pins 18 & 19 9 o= Iuel:'_—-—(_ o 16
10 1O—= " l 1
—=_.__ e w3 15
1 o= — L
Iuﬁcj‘; 1 e 14
[_)

Example Verilog Program #3C

/* 10 variable XOR on 22V10 */
module xor_exC(l,X,Y,Z) O

input [9:0] 1I;
output X,Y,Z /* synthesis loc="18,19,23" */; 4 ‘'0—=
wire Xi,Yi

5 o= o
// notice the index ranges m;_‘
assign Xi= ~[4:0]; // 16 P-terms 6 1= gmi
assign Yi= ~[9:5]; // 16 P-terms E%N
assign Z = XinYi; // 2 P-terms 7 e 522
// outputs can"t be directly used 8 e g(
// like an input inside the code o
assign X = Xi; 9 | =t
assign Y = Yi;
endmodule 10 1C—oee]

NOTE: Requires two “passes” through the 11 1o—=
PLD (which doubles the propagation delay)

Structural Code in Verilog

e Structural code relies on instantiating every module and
connecting their inputs and outputs manually

o Logic can be described without the use of boolean operators,

logical constructs (if-else, case), always blocks or assign
statements

instance_name (si

instantiate a module of type

List) ;| will
called

instance_name (the signal_list corresponds to the inputs and

Verilog Built-in Primitives

Usage of built-in primitives is
illustrated in the next slide. The
same syntax can be used for user-
defined modules as well.

For more information, refer to
Section 5.7 in the Wakerly text.

© 2019 by D. G. Meyer

outputs, also called the)

L] AND2 OV, X Y);|will instantiate an AND gate with

inputs X and Y with output XY

L] OR CC Y. X, V) ;| will instantiate a 2-input XOR gate

Structural Code in Verilog

e Example illustrating multiple modules connected
module structural_ex(A,B,C,D,X,Y);

input wire A, B, C, D;
output wire X, Y;

wire AB, CD;

AND2a (AB, A, B);
AND2b (CD, C, D);
OR2a (X, AB, CD);

X : Structural style/code
Y : Dataflow style/code

Y=(A&B) | (C&D);

endmodule

Xand Y evaluate the same function

39

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

Clicker Quiz

235

1. Which of the following is not a valid Verilog identifier?
X2
2X
XY
XY
none of the above

2. Which of the following specifies a range of bits within
a bit vector X in Verilog?
X3..X1
X(3:1)
[3:1]
X[3:1]
none of the above

3. For input or output port declarations, which of the following
statements is not true?
"synthesis loc" declarations associate the device's physical
pins with symbolic port names
pin numbers are optional

if pin numbers are not specified, the pin numbers are assigned
by the “fitter” program based on the PLD characteristics

the pin may be declared active high or active low
none of the above

4. The order in which different assign expressions are
placed in the body of a Verilog module does not matter.
true
false

239

© 2019 by D. G. Meyer

Example — Your BFFAM’s “Crazy Grader”

Your “best friend from another major” (BFFAM) has been
asked to design a t that determines grades based on
the characters (E, T) in a student’s last name, as follows:

e Give a grade of “A” if name containsanRanda T
an Rand notan S
e Give a grade of “B” if name contains an E and not an R

and nota S does not contain an R and not a T and
notan S

e Give a grade of “C” if name contains an S and nota T

e Give a grade of “D” if name contains a T and not an E
and notan R

e Give a grade of “F” if none of the above (name
contains an E and an S and a T and not an R)

40

School of Electrical & Computer Engineering

ECE 270 Lecture Module 2
Purdue University, College of Engineering

Spring 2019 Edition

K-Map of “Grade Distribution” Options

e Map and minimize all 5 functions, implement with

several discrete CMOS ICs, subject to the following
limitations:

—only “true” variables are available
—only SSI chips in digital kit can be used
* 7400 quad 2-input NAND
* 7402 quad 2-input NOR
* 7404 hex inverter
* 7410 triple 3-input NAND
e Create a Verilog file that specifies the desired

functionality using a truth table, implement with a
single 22V10 PLD

Working K-Map for “A” — SoP

Working K-Map for “A” — PoS
A=S'eR + TeR

A'=R’'+SeT'
A=Re(S'+T)

COST = 6 inputs
+ 3 outputs =9

COST =4 inputs
+ 2 outputs = 6

Working K-Map for “B”

Working K-Map for “B” — PoS

B = EeS'sR’ +
R’eS'eT’

B'=S+R+FE'eT
B = S'e R'¢(E+T’)

COST = 8 inputs
+ 3 outputs = 11

COST = 5 inputs
+ 2 outputs =7
Cheaper than SoP

© 2019 by D. G. Meyer

41

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

Working K-Map for “C” — SoP Working K-Map for “C” - PoS

= >

COST = 3 inputs L COST = 2 inputs
+ 2 outputs = 5 + 1 output =3

Cheaper than SoP

Working K-Map for “D” — SoP Working K-Map for “D” — PoS

E' E
& D = E'eTeR’ D = E'eTeR'

E
T —
R

COST =4 inputs COST = 3 inputs
+ 2 outputs = 6 + 1 output = 4

Cheaper than SoP

Working K-Map for “F” - SoP Working K-Map for “F” - PoS

F' = E+S'4R+T’

F=EeSeR'eT F = EeSeR'eT

COST =5 inputs
+ 2 outputs =7 0 COST =4 inputs
+ 1 output=5

/’
Cheaper than SoP

© 2019 by D. G. Meyer 42

ECE 270 Lecture Module 2
Spring 2019 Edition

School of Electrical & Computer Engineering
Purdue University, College of Engineering

SSI “final answer”... s .
T
1/4 - 7402
E
D : ;[r o
23 - 7404 1/3 - 7410
E 1/6 - 7404
jD}D** |
1/2 - 7402 ‘
£ [} 1/2 - 7400
N 1/4 - 7402
B
g 3/4 - 7400 5/6 - 7404
T 2/3-7410 1 -7402 1-7410
1/4 - 7400

4 integrated circuits total

253

Verilog “final answer”

/* Who Wants to be a Digijock */
module gameshow(E,R,S,T,A,B,C,D,F);

input wire synthesis loc="2,3,4,5" */;
output wire el E o synthesis loc="14,15.16,17,18" */;

reg [4:0] ABCDF;

always @ (E, R, S, T) begin
case (fE.R.5:T1}
4

assign {A,B,C,D,F} = ABCDF;

endmodule

Are you sure that’s your final answer?

/* Who Wants to be a Digijock */
module gameshow(E,R,S,T,A,B,C,D,F);

input wire E,R,S,T /* synthesis loc="2
output wire A,8,¢,D,F %~ synthesis |oc:'14 15 16 17 18" */;

/% Quick and easy way in Verilog */
/% by inspection” from problen statement */
assign A= (R&T) | R&~S);

assign B = (E & R & ~S) | (R & ~T & ~S);
assign € = § & ~T;

assign D = T & ~E & ~R;

assign F = ~A & ~B & ~C & ~D;

7/ or assign F = E &S & T & ~R;

endmodule

Reading Assignment:
DDPP 4t Ed. pp. 384-390, 403-409; 5" Ed. pp. 250-256, 260-

Learning Objectives:

o Define the function of a decoder (demultiplexer) and
describe how it can be used as a combinational
building block

o lllustrate how a decoder can be used to realize an
arbitrary Boolean function

© 2019 by D. G. Meyer

Module 2-G
Combinational Building Blocks: Decoders / Demultiplexers

Outline

e Overview

e Binary decoders

e Decoders in Verilog

e Special purpose decoders

43

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

Overview Overview
Definition: A decoder is a multiple-input, multiple-output e The most commonly used input code is an n-bit
logic circuit that converts coded inputs into coded outputs binary code, where an n-bit word represents one of 2"
The input code generally has fewer bits than the output code different coded values
In a one-to-one mapping, each input code word produces a e Sometimes an n-bit binary code is truncated to
different output code word represent fewer than 2" values (e.g., BCD)
Desoder e The most commonly used output code is a 1-out-of-m
—— code, which contains m bits, where only one bit is
code viord | Qﬂ\ = ot asserted at any time (the output code bits are
B {i code word mutually exclusive)
inputs

259

Binary Decoders Example: 2-to-4 (2:4) Decoder

o 1o 11" 1 EN
e The most common decoder circuit is an n-to-2" decoder o 444[)7 Yo
or binary decoder Select

2]
e Binary decoders have an n-bit binary input code and a lines | §.
1-out-of-2" output code i " D "3
e Application: Used to activate exactly one of 2" outputs I vol— D 3
based on an n-bit value —|n vif— D vz 8
e Analogy: Electronically-controlled rotary selector switch e :i N §
A device that routes an E::ble
input to one of 2" outputs
isgypically referred topas a Note that EN can also be construed as a digital input
I I I I (1-t0-2") demultiplexer that is routed to the selected output, in which case the
circuit would be referred to as a (1:4) demultiplexer 262
Example: 2-to-4 (2:4) Decoder Example: 2-to-4 (2:4) Decoder
o 1o 1" 11 EN 0" o " 11 EN
doT w?D*“?O 0|0T>W?D7m1
2-10-4 D vi 0 2-1o-4 D v 0
decoder dn I >G decoder 0n I >D
— o YOo|— —lo Yo|—
—n i DYZO —n vil— szo
Yo |— Yo l—
— EN Y3 |— 0 —EN Yaf— 0
0= 7j} b 1o ;j} v

263 264

© 2019 by D. G. Meyer 44

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

Example: 2-to-4 (2:4) Decoder Example: 2-to-4 (2:4) Decoder
1 o o 1o 1" 11 EN . 0 0 o " 1o 1" nEN . 0
] oo [H | iepeJ O
—n :;: szo —n :;: Dv21
—{EN Y3 |l— —EN Yap—
o D T

Example: 2-to-4 (2:4) Decoder Key Observations

« Key Observation #1: each output of an n to 2" binary decoder represents a

o 1o 17 11 EN minterm of an n-variable Boolean function; therefore, any arbitrary Boolean
o o "

1m0 function of n-variables can be realized with an n-input binary decoder by
vo simply “OR-ing” the needed outputs
« Key Observation #2: if the decoder outputs are active low, a NAND gate can
P D) be used to “OR” the minterms of the function (representing its ON set)
decoder 1n « Key Observation #3: if the decoder outputs are active low, an AND gate can
— o Yo |— be used to “OR” the minterms of the complement function (representing its
—n Y1 f— D vz 0 OFF set)
e :i : « Key Observation #4: a NAND gate (or AND gate) with at most 2" inputs is
] va 1 needed to implement an arbitrary n-variable function using an n to 2" binary
1en decoder (that has active low outputs)
267 268
Example — Arbitrary Function Realization Example — Arbitrary Function Realization
circuit for i ing an arbitrary n-variable function General circuit for implementing an arbitrary n-variable function
using a decoder with active low outputs and a NAND gate with using a decoder with active low outputs and a NAND gate with
2" inputs, for case where the ON set has < 2" members 271 inputs, for case where the ON set has < 2" members
lllustration for n=3, lllustration for n=3,
YO — F(X,Y,2) YO H— F(X,Y,Z)
Y1 |(O— Y1 Here, output of NAND
Z — 10 Y2 Z — 10 v2 gate is ACTIVE HIGH
Y —11 Y —11
Jimze T S S
—_12 Y4 — 12 Y4
F(X,Y,2) F(X,Y.2)
Y5 (— X Y5 N
1 —EN Y6 o = 1 —EN Y6 o =
Y7 0— Y7 o—_— ON set = %, ,,(1,2,4,7)
F(X,Y,2)= XYSZ
269 270

© 2019 by D. G. Meyer 45

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

circuit for i

Example — Arbitrary Function Realization

an arbitrary n-variable function
using a decoder with active low outputs and a NAND gate with
21 inputs, for case where the ON set has > 2"' members

lllustration for n=3,

Decoders in Verilog

/* 3:8 Decoder / 1:8 Demultiplexer with Active-Low Outputs */

module dec38L(EN, I, nY);

input wire EN; /7 Enable input pin

input wire [2:0] 1; /7 Select input pins
YO FX.Y.Z) output wire [7:0] nY; // Active-low output pins Y0 k—
Y1 O— Here, output of NAND - R . ¥ip—
Z—10 - gate is ACTIVE LOW wire [7:01 V3 —1n ..
Yy =11 - vee assign nY = -Y; // Active low assignment —i: g BI—
3:8 ol ¥4 —
X —12 Y[O0] = EN & ~1[2] & ~I[1] & ~I[0]:
Y4 0— R F&Y.D Y[1] = EN & ~I[2] & ~I[1] & 1[0]: - g
Y5 Y[2] = EN & ~I[2] & I[1] & ~I[0]; it n—
1 EN Y[3] = EN & ~1[2] & I[1] & I[0]; 7 -
- Y6 Y[4] = EN & 1[2] & ~I[1] & ~1[0];
ON set = 1,3,4,5,6 v[5] = EN & 1[2] & -I[1] & 1[0];
Y7 vl) Y[6] = EN & 1[2] & I[1] & ~1[0]:
OFF set =Ty y,(0,2,7) Y[7] = EN & 1[2] & I[1] & I[0];
F(X,Y,Z) = X'Z + X+Y' + X+Z' endmodule
271 272
Decoders/Demultiplexers in Verilog Decoders/Demultiplexers in Verilog
/* 3:8 Decoder / 1:8 Demultiplexer with Active-High Outputs */
/* 3:8 Decoder / 1:8 Demultiplexer with Active-High Outputs */
module dec38H(EN, I, Y);
module dec38H(EN, 1, Y): Yo —
input wire EN; // Enable input pin Yol— =
input wire [2:0] I; // Select input pins input wire EN; // Enable input pin —i10 P
output wire [7:0] Y; // Active-high output pins . input wire [2:0] 1; /7 select input pins it —
o ¥2 output reg [7:0] Y: /7 Active-high output pins - T
assign Y[0] = EN & ~I[2] & ~I[1] & ~1[0]; —1 ol L R
assign Y[1] = EN & ~1[2] & ~I[1] & 1[0]; - always @* begin // @* instead of listing inputs =
assign Y[2] = EN & ~I[2] & 1[1] & ~1[0]; Y = 87b0; /7 assign all bits of Y to 0 —tm
assign Y[3] = EN & ~1[2] & I1[1] & 1[0]; B Y[11= EN; /7 overwrite the 1™ bit with EN e
assign Y[4] = EN & 1[2] & ~1[1] & ~1[0]; = v — end n—
assign Y[5] = EN & I[2] & ~I[1] & 1[0]; ¥
assign Y[6] = EN & 1[2] & I[1] & ~1[0]; endmodule
assign Y[7] = EN & I[2] & I[1] & 1[0];
endmodule
273 274
YO
Y1 (0—
Z—10 Y2
Y —11 Y3l .
X —12 3:8 >
— F(X,Y,2)
Y5 B
. . 1 —EN Y6 =
Clicker Quiz k
1. The OFF set realized by this decoder-based circuit is:
HX,Y,Z(0525517)
Ty vz(1,3,4,6)
Ty v2(1,2,4,5)
Ty v2(0,3,4,6)
none of the above
275 276

© 2019 by D. G. Meyer

46

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

YO [————

vee
Y1o—
7 —
10 V2 FCGLY.2)
Y —11 Y3 N
Xx—2 ¥y
Y5
1 —EN Y6 o
%

2. The ON set realized by this decoder-based circuit is:

Special Purpose Decoders

A seven-segment decoder has 4-bit BCD or hexadecimal
data as its input code and “seven-segment code” as its
output code

Zxv2(0,2,5,7)
Txvz(1,3,4,6)
Zxvz(1,2:4,5)
Zxv,2(0,3,4,6)
none of the above
277 278
Example: Hexadecimal 7-Segment Decoder Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */ /* Hexadecimal 7-Segment Decoder for 22V10 */
module hexadec(l, A, B, C, D, E, F, G); module hexadec(l, A, B, C, D, E, F, G);
input wire [3:0] I /* synthesis loc="2,3,4,5" */; input wire [3:0] I /*synthesis loc="2,3,4,5"*/;
output e A, B, C, D, E, F, G; outpur e A, . C, D, E, F, G;
reg [6:0] SEG7; reg [6:0] SEG7;
always @ (1) begin always @ (1) begin
case (1)
= 7°b1111110;
= 77b0110000;
= 7°b1101101; 3
= 7°b1111001; 77b1111001; &
= 77b0110011; 4"b0100: 77b0110011;
= 7°b1011011; 47b0101; 77b1011011;
= 7°b1011111; 47b0110: 7°b101111 F b
= 77b1110000; 4"b0111; 77b1110000; g
= 7°b1111111; 4"b1000: 7°b1111111;
= 7"b1111011; 4"b1001 H a c
= 7°b1110111; 47b1010
= 77b0011111; 4"b1011;
= 7"b1001110; 4"b1100
7°b0111101; 47b1101 d
= 7°b1001111; 4"b1110:
= 77b1000111; 4"b1111; 7°b1000111;
endcase
end
assign {A,B,C,D,E,F,G} = SEG7; assign {A,B,C,D,E,F,G} = SEG7;
endmodule 279 endnodule 280
Example: Hexadecimal 7-Segment Decoder Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */ /* Hexadecimal 7-Segment Decoder for 22v10 */
module hexadec(l, A, B, C, D, E, F, G); module hexadec(l, A, B, C, D, E, F, G);
input wire [3:0] I /*synthesis loc="2,3, input wire [3:0] I /*synthesis loc="2,3,4,5"*/;
output wire A, B, C, D, E, F, G; output wire A, B, C, D, E, F, G;
reg [6:0] SEG7; reg [6:0] SEG7;
always @ (1) begin always @ (1) begin
7°b1111001
77b0110011; 0110011;
77b1011011; 77b1011011;
4"b011 SEG7 7°b1011111; 7°b1011111;
4"b011. SEG7 77b1110000; 77b1110000;
4"b100(SEG7 7°b1111111; 7°b1111111;
4"b100: SEG7 7°b1111011; 7°b1111011;
4"b101 SEG7 7°b1110111; 7°b1110111;
47b101. SEG7 77b0011111; 77b001111.
4"b110(SEG7 77b1001110; 77b1001110;
4"b110: SEG7 77b0111101; 7°b0111101;
47b111 SEG7 77b1001111; N 77b1001111;
4"b111 SEG7 77b1000111; 4"b1111: SEG7 = 7°b1000111;
endcase endcase
en end
assign {A,8,C,D,E,F,G} = SEG7; assign {A,B,C,D,E,F,G} = SEG7;
281 endmodule 282

endmodule

© 2019 by D. G. Meyer

47

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2

Spring 2019 Edition

Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22V10 */
module hexadec(l, A, B, C, D, E, F, G);

input wire [3:0] | /*synthesis loc="2,3,4,5"*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;
always @ (1) begin
case (1)

Example: Hexadecimal 7-Segment Decoder

/* Hexadecimal 7-Segment Decoder for 22V10 */
module hexadec(l, A, B, C, D, E, F, G);

input wire [3:0] | /*synthesis loc="2,3,4,5"*/;
output wire A, B, C, D, E, F, G;

reg [6:0] SEG7;
always @ (1) begin
case (1)

4*b0000: SEG7 = 7"b1111110; 4*b0000: SEG7 = 7"b1111110;
4" b00(= 7"b0110000; 4"b0001: 7"
4" - 4°b0010:
4" & 4"b0011: &
4° 4"b0100:
4" = 4"
- [3 . b
b g b g
a L 4
4 a { c 4 c
= 7'b1001110;
= 77b0111101; d
= 7"b1001111;
4°b1111: SEG7 = 7"b1000111;
endcase
end
assign {A,B,C,D,E,F,G} = SEG7; assign {A,B,C,D,E,F,G} = SEG7;
endmodule 283 endmodule 284
Example: Hexadecimal 7-Segment Decoder
/* Hexadecimal 7-Segment Decoder for 22v10 */
module hexadec(l, A, B, C, D, E, F, G);
input wire [3:0] | /*synthesis loc="2,3,4,5"*/;
output wire A, B, C, D, E, F, G;
reg [6:0] SEGT7;
always @ (1) begin
case (1)
4" H = 7"b1111110;
4* = 7"b0110000;
47D 77b1101101;
4" = 7"b1111001;
4" = 7"b0110011;
4" = 7"b1011011;
4" = 7"b1011111;
4" = 7"b1110000;
4" = 7"b1111111;
4" *b1111011;
4" b1110111;
2" 77b0011111} Module 2-H
4" b1001110;
Combinational Building Blocks: Encoders and Tri-State Outputs
end
assign {A,B,C,D,E,F,G} = SEG7; 285

endmodule

Reading Assignment:
DDPP 4" Ed. pp. 408-412, 430-432; 5" Ed. 279-280, 308-310

Learning Objectives:

o Define the function of an encoder and describe how
it can be used as a combinational building block

e Discuss why the inputs of an encoder typically need
to be prioritized

© 2019 by D. G. Meyer

Outline

e Overview

e Priority Encoders
e Tri-State Outputs
e Keypad Encoders

48

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Overview

e Definition: An encoder is an “inverse decoder” — the role
of inputs and outputs is reversed, and there are more
input code bits than output code bits

e The simplest encoder to build is a 2"-to-n or binary
encoder

Brary
encrzian

@

IERED N

FrEEEICE
L~

Priority Encoders

e Solution: Assign to the input lines, such that
when multiple inputs are asserted simultaneously, the
highest priority (i.e.) input “wins” —
such a device is called a priority encoder

e An easy way to specify this functionality in Verilog is to
use the casez construct

e Example: An 8-to-3 encoder with active high inputs and
outputs, including a “strobe” output (G) to indicate if any
input has been asserted

ECE 270 Lecture Module 2
Spring 2019 Edition

Priority Encoders

e A common application is to encode the number of a device
requesting service from a microprocessor-based system

Request
encoder

Requasts Requestor's
for service number

Problem: More than one device may be
requesting service at any given time

Verilog CASEZ Construct

e use ? as “wild card”

e beware of non-unique expressions - first matching
expression wins

({Sel ,A,B})
3°b007: ¥ = 1°b1;
3"b010: Y = 1%b1;
3"b011: Y = 17b0;
// etc.

/* 8-to0-3 Priority Encoder Using a GAL22V10 */

module pri_enc(l, E, G):
input wi [7:0]1 1; // Input O - lowest priority, Input 7 - highest priority
output wire [2:0] E; // Encoded output
output wire G; // Strobe output (asserted if any input is asserted)
reg [3:0] EG;

always @ (1) begin
casez (1)

8"b00000000: EG = 4~ No inputs asserted
87b00000001: EG = 4% Input 0 wins
87b00000017: EG = 4% Input 1 wins
8"b00000177: EG = 4~ Input 2 wins
8"b000017??: EG = 4"b0111; // Input 3 wins
8"b00017???: EG = 4°b1001; // Input 4 wins
8"b001??7???: EG = 4°b1011; // Input 5 wins
8°b017?7???: EG = 4°b1101; // Input 6 wins
8°b177?7???: EG = 4°b1111; // Input 7 wins
endcase

end
assign {E,G} = EG;

endmodulle

293

Title: 8-to-3 Priority Encoder Using GAL 22V10 (isplever Reduced Equation Report)

P-Terns Fan-in Fan-out Type Name (attributes)

4 1 Pin- E2
8 1 Pin- G
6 1 Pin- E1
7 1 Pin EO
ISpLEVER operators:
Best P-Term Total: 9
Total Pins: 12 AND - &, OR - #.
Total Nodes: O
Average P—T:r:/ou[t’pzi: 2 NOT = ! E] XOR - $

Positive-Polarity (SoP) Equations:

E2 = (I7 # 16 # 15 # 14);

G = (17 # 16 # 15 # 14 # 13 # 12 # 11 # 10);

EL= (17 # 16 # 115 & 114 & 13 # 115 & 114 & 12);

EO = (17 # 116 & 15 # 116 & 114 & 13 # 116 & 114 & 112 & 11);

Reverse-Polarity Equations:

1E2 = (17 & 116 & 115 & 114);
16 = (17 & 116 & 115 & 113 & 112 & 111 & 110);
TEL = (117 & 106 & 15 # 117 & 116 & 14 # 117 & 116 & 113 & 112);

TEO = (Y17 & 16 # 117 & 115 & 14 # 117 & 115 & 113 & 12 # 117 & 115 & 113 & 111); 294

© 2019 by D. G. Meyer

49

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Tri-State Outputs

e Tri-state outputs can be assigned one of three values:
logical 1, logical 0 or (high impedance)

e Hi-Z is a state that is not driven to any value and can be
seen as an open circuit

o Example: ENABLE asserted
will allow the input (logic 1 or 0)
to be seen on the OUPUT

(ENABLE negated will float
OUTPUT to Hi-Z)

Example: 4-to-2 Priority Encoder with Tri-State Outputs

/* 4-to-2 Priority Encoder With Tri-State Enable */

module prienc42(l, E_z, G, EN);

47b01??: EG
4"b1???: EG
endcase
end

3"b101; // Input 2 wins
3"b111; // Input 3 wins

assign G = EG[0];
assign E_z = EN ? EG[2:1] : 2°bzz;

endmodule

input wire [3:0] 1; // input O - lowest priority,
/7 input 3 - highest priority
input wire EN; /7 tri-state enable control input
output tri [1:0] E_z; // encoded tri-state enabled output
output wire G; /7 strobe “go” output (high if any input is asserted)
reg [2:0] EG; /7 EG = {E,G}
always 8 (1) begin
casez (

47b0000: EG = 3b000; // No inputs active

4°b0001: EG = 3"b001; // Input O wins

4*b001?: EG = 3"b011; // Input 1 wins

ECE 270 Lecture Module 2
Spring 2019 Edition

Tri-State Outputs

e In Verilog, an output value of 'bZ (high- impedance or Hi-Z)
assigned to an output port disables (“floats”) the output

e triisa used for tri-state values

e Can use the conditional operator ? : to implement a tri-state buffer

= output tri D_z; input wire D,EN;
massign Dz = EN ? D : 1%bZ

>1Ff EN 1,Dz=0D

»1f EN == 0, D_z=1"bZ (disabled)

e Example: Create a Verilog module that implements a 4:2 priority
encoder with tri-state encoded outputs (E1, E0). This design
should include an active high output strobe (G) that is asserted
when any input is asserted

Keypad Encoders

e Another common use for encoders is to encode keypads
and keyboards

e Example: Design a 10-to-4 priority encoder for encoding a
BCD keypad using a 22V10

e Solution: Modify the 8-to-3 priority encoder Verilog file
described previously (include tri-state output capability)

/* 10-to-4 BCD Priority Keypad Encoder */
module bcd_enc(K, EN, E_z, KS);

assign G = KGEO]:
assign E_z = EN ? KG[4:1] : 4"bzZzZzZZ;
always @ &K) begin
casez g
10°b0000000000

10"b0000000001 :
10"b0000000017?

10"b00000001
10" b0000O0
0" 0.

1
107b000!
107000 P
107b01? IOKG = 5° E
: KG = 57b10011;

endmodule

input wire EN; // Tri-state enable L N

input wire K; 7/ Keg,mputs (0 - lowest priority, 9 - highest)
output tri H E_z; // 4-bit encoded tri-state enabled BCD output
output wire G; // Key strobe (asserted high when any key pressed)
reg [4:0] KG;

299

Clicker Quiz

© 2019 by D. G. Meyer

50

ECE 270 Lecture Module 2
Spring 2019 Edition

School of Electrical & Computer Engineering
Purdue University, College of Engineering

/* Different Priority Encoder */

module diff_pri(A,B,C,D,E,G);

always @ (A, B, C, D) begin
casez ({A,B,C,D})

1. The highest priority input is:

input wire A, B, C, D; A d X R
output wire [1:0] E; ou:pu::: wire E.U] ES
output wire G; B output wire G;

reg [2:0] EG; C reg [2:0] EG;
T . i e S
G0 6 & Eelti e none of the above :

/* Different Priority Encoder */
module diff_pri(A,B,C,D,E,G);

input wire A, B, C, D;

always @ (A, B, C, D) begin
casez ({A,B,C,D.
4*b0000: EG

47b0000: EG = 3°b000; . : =
4°b0001: EG = 37b1ll; 1-283‘3: Eg =
4°b001?: EG = 3°b101 e Be
47b01??: EG = b011; — ae M
4°b1772: EG = 3"b00L: 28 & glieils
endcase
end
endmodule e 1
301 302
/* Different Priority Encoder */ /* Different Priority Encoder */
2. The lowest priority input is: module diff_pri(A,B,C,D,E,G); 3. 1If inputA is asserted, modulle diff_pri(A,B,C,D,E,G);
A input wire A, B, C, D; the outputs will be: input wire A, B, C, D;
output wire [1:0] E; _ _ _ output wire [1:0] E;
B output wire G; E1—O, EO—0| G—O output wire G;
reg [2:0] EG: =0, =0, = reg [2:0] EG:
p E1=0, E0=0, G=1
D assign E = EG[2:1]; El=1, EO=1, G=0 assign E = EG[2:1];
none of the above assign G = EG[0]; Elzl, E0=1, G=1 assign G = EG[0];
always @ (A, B, C, D) begin none of the above always @ (A, B, C, D) begin
casez ({A,B casez ({A
4*b0000: EG = 37b000; 4*b0000: =
47b0001: 3°bl11l; 4*b0001: =
47b001?: 37b101; 47b001?: =
47b01??: 37b011; 47b01??: =
47b1?77: = 37b001; 47b1???: EG = 3"b001;
endcase endcase
end end
endmodule endmodule
303 304
/* Different Priority Encoder */
4. When inputs B and C are Eeciichotitoni (G R CRE L)
asserted simultaneously input wire A, B, C, D;
H output wire [1:0] E;
(and Alis negated) the S e B
outputs will be:
E1=0, E0=0, G=1 D) L)
E1=0, EO=1, G=1 assign E = EG[2:1];
E1=1 EO0=0 G=1 assign G = EG[0];
El:ly EO:l‘ G:l always @(2:,356 g)'.)D) begin
casez .B.C,
none of the abov 47H0000: EG = 3°h000;
47b0001: 37bl111;
47b001?: 37b101; I
47b017?: 37b011; -
4°b1???: EG = 37b001; MOdu e 2 I
endcase g A HP*H B
end Combinational Building Blocks: Multiplexers
endmodule
305

© 2019 by D. G. Meyer

o1

School of Electrical & Computer Engineering ECE 270 Lecture Module 2
Purdue University, College of Engineering Spring 2019 Edition

Reading Assignment: outli
DDPP 41 Ed. pp. 432-440, 445-446; 5 Ed. pp. 281-289, 290-291 utline
e Overview

Ll (Oloje o e General multiplexer structure

e Define the function of a multiplexer and describe how it

can be used as a combinational building block e Multiplexer truth table analogy
o lllustrate how a multiplexer can be used to realize an e Multiplexer function generation

arbitrary Boolean function e Multiplexers in Verilog

General Multiplexer Structure
Overview ; n inputs (each b bits wide) % — |
e Definition: A multiplexer is a digital switch that uses with s select lines, where M 5 W
s select lines to determine which of n = 2% inputs is s = logpn 10—
connected to its output - =
e It is often called a mux for short —Ien n —_\1 ;
e Each of the input paths may be b bits wide T .
e An overall enable signal is usually provided i k
(if EN negated, all outputs are “0”) : " e00- 1
e The equation implemented by an s select line o i i — =3 o —oy 5 o
multiplexer is the sum-of-products form of a general i P o 5 :
s-variable function R
SEL EN
310

Multiplexer Truth Table Analogy

Multiplexer Truth Table Analogy

g -
ud
)
ad

Functional values
assigned to each
combination

© 2019 by D. G. Meyer 52

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

Multiplexer Truth Table Analogy

Gl

Multiplexer Truth Table Analogy

HIEa

Multiplexer Truth Table Analogy

X[¥) Foxn.

Multiplexer Truth Table Analogy

This is very similar to the look-up
. 150 @ NI tables (LUTs) used in FPGAs

g -

b
Hd -
Hg

Question: How many
different functions of
S variables are
possible?

Example: 8-to-1 (8:1) Multiplexer Example: Multiplexer Function Realization
Determine the multiplexer data input values for
— D, realizing the function F(X,Y,Z) = X-Z + X'+(Y®Z)
—pt D1
—|D, D, —+{D,
— D D, —+b,
_datet! * 81 F — output D, —+D,
b D, B % g4 F—F(XY2)
= D; D, =By
D, —* D,
—> D¢ Dg —* D,
0 i, i i D, =D i, iy
2 1%
t1t i
XYz
select lines
317 318

© 2019 by D. G. Meyer

53

School of Electrical & Computer Engineering
Purdue University, College of Engineering

ECE 270 Lecture Module 2
Spring 2019 Edition

Example: Multiplexer Function Realization

Determine the multiplexer data input values for
realizing the function F(X,Y,Z) = XZ + X'«(Y®Z)

D, —iD,
D, —=D,
D, —+ D,
D, —* D,

D, 7™ b

8:11 F — F(X,Y,Z) = XoZ + X'«(Y®Z)

D, ——ell] = XoZ + X's(Y'*Z + Y*Z')
s t
D, —* D, = XoZ + X'eY'sZ + X'oYZ'
o, & Bl
1
XYz

319

Example: Multiplexer Function Realization

Determine the multiplexer data input values for
realizing the function F(X,Y,Z) = X-Z + X'+(Y®Z)

0 —iDj

1 —=D, F(X,Y,Z) = XoZ + X'+(Y®Z)
1 —p, = XoZ 4 Xo(Y'Z + YoZ')

O TTIB gy F s =XZHXYRZ+XNYZ

00

1 =D, X X
0 — by z|lo]l1]ofo
1 =R
it II‘ I zl1fo|1]1
XYz Y Y Y

F(X,Y,Z) = Ty v2(1,2,5,7)

Multiplexers in Verilog

e Multiplexer functionality can be expressed in Verilog

in several different ways:

Ousing conventional sum-of-products expressions
Ousing case structures
Ousing if-else constructs or ternary operators

o Example: 8-to-1 X 1-bit multiplexer using a 22V10 PLD
(conventional SoP)
e Example: 4-to-1 X 8-bit multiplexer using a CPLD (two
advanced methods)

Example: 8-to-1 x 1-bit Multiplexer

/* 8-to-1 X 1-bit Multiplexer Using 22V10 */
module mux811(D, EN, S, Y);
input wire [7:0] D; // Data inputs

input wire EN; // Function enable
input wire [2:0] S; // Select lines

output wire Y; // Output

assign Y = EN & (-S[2] & ~S[1] & ~S[0] & D[O0] |
~s[2] & ~S[1] & S[0] & D[1] |
~s[2] & S[1] & ~S[0] & D[2] |
~s[2] & S[1] & S[0] & D[3] |
s[2] & ~S[1] & -S[0] & D[4] |
s[2] & ~S[1] & S[O0] & D[5] |
S[2] & S[1] & ~S[0] & D[6] |
S[2] & S[1] & S[0] & D[7])

endmodule

322

input wire EN;
input wire [1:0] S;

output tri [7:0] Y_z;

reg [7:0] Y;

always @ (S) begin
// Y = 87b00000000;
if (S == 2°b00) Y
else if (S == 2"b01) Y
else if (S == 2°b10) Y
else if (S == 2"b11) Y
// else Y = 87b00000000;
end

endmodule

oow>

input wire [7:0] A, B, C, D;

Example: 4-to-1 x 8-bit Multiplexer — Method 1
/* 4-to-1 X 8-bit Multiplexer Using CPLD */

module mux418b(EN, S, A, B, C, D, Y_z);

// tri-state output enable line
// select inputs

// 8-bit input buses

// 8-bit output bus

assign Y_z = EN ? Y : 8°bzzz77777;

Similar to case statements, a default
value for the signal should be provided
in an else statement or above the if-else
if block as needed

323

Example: 4-to-1 x 8-bit Multiplexer — Method 2

/* 4-to-1 X 8-bit Multiplexer Using CPLD */
module mux418b(EN, S, A, B, C, D, Y_2);

input wire EN; // Tri-state output enable line
input wire [1:0] S; // Select inputs

input wire [7:0] A, B, C, D; // 8-bit input buses

output tri [7:0] Y_z; // 8-bit output bus

reg [7:0] Y;:
assign Y_z = EN ? Y : 8°bZZ777777;

always @ (S) begin
Y = 87h00000000;
case (S)
27do: Y
27d1i: Y
27d2: Y
27d3: Y = D;
// default: Y = 87b00000000;
endcase
end

// d stands for decimal

oow>

endmodule

324

© 2019 by D. G. Meyer

54

ECE 270 Lecture Module 2

School of Electrical & Computer Engineering
Spring 2019 Edition

Purdue University, College of Engineering

Clicker Quiz

/* Big Multiplexer */

input wire EN;
input wire [1:0] S;

output tri [7:0] Y_z;
wire [7:0] Y;

assign Y_z = EN ? Y :

endmodule

module bigmux(EN, S, A, B, C, D, Y_z);

input wire [7:0] A, B, C, D;

8%bz7777777;

assign Y = ~S[1] & ~S[0] & A |
~S[1] & S[0] & B |
S[1] & ~S[0] & C |
S[1] & S[0] & D;

325 326
/* Big Multiplexer */ /* Big Multiplexer */
1. The number of equations generated S BHE TG, & fo B € B L2k 2. When EN=0, S[1]=1, and S[0]=1, the TR BTG € Ao B € B Y5
by this program (that would be o output 2 FERE
H H H input wire [7:0] A, B, C, D; . 1 . i i H H
burned into a PLD that realized this oveput wire [7:01 ¥z} will all be Hi-Z i o T v 0 8
design) is: wire [7:01 v; will all be zero wire [7:0] Y;
2 Zz:g: :,f fsal?&Vé[gihiZiZiZZZ: will all be one assign Y_z = EN ? Y : 81b22222277;
8 Sl sl will be equal to the inputs D e e
9 2[1] & ~S[0] & C-l S[1] & ~S[0] & C |
[1] & s[o] & D; none of the above S[1] & S[O] & 0;
16 f th b endmodule
none of the above
327 328
7* Big Multiplexer */
3. When EN=1, S[1]=1, and S[0]=1, module bigmux(EN, S, A, B, C, D, Y_2);
the output Y ::,‘;:i ﬁ:ii ETED] s;
will all be Hi-Z S o T Bo G BF
will all be zero wire [7:0] Y;
will all be one assign Y_z = EN ? Y : 87b22272772;
will be equal to the input D S R e e e
none of the above Sh1 & ofo) & o'
endmodule
Module 2-J
Top Level (Hierarchical) Modules
329

© 2019 by D. G. Meyer

55

School of Electrical & Computer Engineering
Purdue University, College of Engineering

Reading Assignment:
DDPP 4t Ed. pp. 306-308, 5" Ed. 198-201

Learning Objectives:

e Understand the need for using top level (hierarchical)
modules

e Understand how top level modules are created in Verilog
using structural Verilog syntax

Overview

o Definition: A top level module is the highest level module
in a design hierarchy that instantiates other modules and
connects them

e Separating logic across multiple modules serves the
advantage of reusability for modules and removing
redundant logic

e Example: If two modules use a 4-to-1 mux, create a
separate module for the mux, and simply instantiate it in
the other modules

Example Top Level Modules

module and_or(A,B,C,D);
input wire A, B;
output wire C, D;

assign C = A & B;
assign D = A | B;
endmodule

module top_order(w,X,y,z);
input wire w, X; input wire w, x;
output wire y, z; output wire y, z;

module top_name(w,X,y,z);

assign a = 17b0; assign a = 17b0;
assign b = 1°bl; assign b = 1°b1;
and_or DUT1(w, X, Y, 2); and_or DUT1(.B(x), -A(W), .D(2), -C(¥)):

endmodule endmodule

Port mapping by order assigns A=w, B =Xx, Port mapping by name allows the signals to be listed
C =y, D =2z based on how they are ordered in in any order with A=w,B=x,C=y,D=2z
the instantiation

© 2019 by D. G. Meyer

ECE 270 Lecture Module 2
Spring 2019 Edition

Outline

e Overview
e Instantiating modules
e Example top level modules

Instantiating Modules

e Follows structural style of instantiation:

instance_name (signal_list);

e Signals in signal_list will be connected in the
order of that module’s — this is called port
mapping by order

e Alternatively, port mapping by name can be used,
which is a more error-free method — here, each signal
passed to the instantiated module uses the name of
the signal in the module’s port list to indicate where
itis connected

Module 2 Combinational Logic Circuits

. Combinational Circuit Analysis and Synthesis

. Mapping and Minimization

Timing Hazards

XOR/XNOR Functions

Programmable Logic Devices

Hardware Description Languages

. Combinational Building Blocks: Decoders

. Combinational Building Blocks: Encoders and Tri-State Outputs
Combinational Building Blocks: Multiplexers

Top Level Modules

crIeMmMOUOwW)R

56

