
ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

1

Lecture Summary – Module 2

Combinational Logic Circuits

Learning Outcome: an ability to analyze and design combinational logic circuits

Learning Objectives:
2-1. identify minterms (product terms) and maxterms (sum terms)
2-2. list the standard forms for expressing a logic function and give an example of each: sum-of-products (SoP),

product-of-sums (PoS), ON set, OFF set
2-3. analyze the functional behavior of a logic circuit by constructing a truth table that lists the relationship

between input variable combinations and the output variable
2-4. transform a logic circuit from one set of symbols to another through graphical application of DeMorgan’s

Law
2-5. realize a combinational function directly using basic gates (NOT, AND, OR, NAND, NOR)
2-6. draw a Karnaugh Map (“K-map”) for a 2-, 3-, 4-, or 5-variable logic function
2-7. list the assumptions underlying function minimization
2-8. identify the prime implicants, essential prime implicants, and non-essential prime implicants of a function

depicted on a K-map
2-9. use a K-map to minimize a logic function (including those that are incompletely specified) and express it in

either minimal SoP or PoS form
2-10. use a K-map to convert a function from one standard form to another
2-11. calculate and compare the cost (based on the total number of gate inputs plus the number of gate outputs) of

minimal SoP and PoS realizations of a given function
2-12. realize a function depicted on a K-map as a two-level NAND circuit, two-level NOR circuit, or as an open-

drain NAND/wired-AND circuit
2-13. define and identify static-0, static-1, and dynamic hazards
2-14. describe how a static hazard can be eliminated by including consensus terms
2-15. describe a circuit that takes advantage of the existence of hazards and analyze its behavior
2-16. draw a timing chart that depicts the input-output relationship of a combinational circuit
2-17. identify properties of XOR/XNOR functions
2-18. simplify an otherwise non-minimizable function by expressing it in terms of XOR/XNOR operators
2-19. describe the genesis of programmable logic devices
2-20. list the differences between complex programmable logic devices (CPLDs) and field programmable gate

arrays (FPGAs) and describe the basic organization of each
2-21. list the basic features and capabilities of a hardware description language (HDL)
2-22. list the syntactic elements of a Verilog module
2-23. identify operators and keywords used to create Verilog modules
2-24. write equations using Verilog dataflow syntax
2-25. define functional behavior by creating truth tables with the casez construct in Verilog
2-26. define the function of a decoder and describe how it can be use as a combinational logic building block
2-27. illustrate how a decoder can be used to realize an arbitrary Boolean function
2-28. define the function of an encoder and describe how it can be use as a combinational logic building block
2-29. discuss why the inputs of an encoder typically need to be prioritized
2-30. define the function of a multiplexer and describe how it can be use as a combinational logic building block
2-31. illustrate how a multiplexer can be used to realize an arbitrary Boolean function

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

2

Lecture Summary – Module 2-A
Combinational Circuit Analysis and Synthesis

Reference: Digital Design Principles and Practices 4th Ed. pp. 196-210, 5th Ed. 100-117

 overview

o we analyze a combinational logic circuit by obtaining a formal description of its logic
function

o a combinational logic circuit is one whose output depend only on its current combination
of input values (or “input combination”)

o a logic function is the assignment of “0” or “1” to each possible combination of its input
variables

 examples of formal descriptions (“standard forms”)

o a literal is a variable or the complement of a variable

o a product term is a single literal or a logical product of two or more literals

o a sum-of-products expression is a logical sum of product terms

o a sum term is a single literal or a logical sum of two or more literals

o a product-of-sums expression is a logical product of sum terms

o a normal term is a product or sum term in which no variable appears more than once

o an n-variable minterm is a normal product term with n literals

o an n-variable maxterm is a normal sum term with n literals

o the canonical sum of a logic function is a sum of minterms corresponding to input
combinations for which the function produces a “1” output

o the canonical product of a logic function is a product of maxterms corresponding to input
combinations for which the function produces a “0” output

 minterm and maxterm identification

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

3

 on sets and off sets

o the minterm list that “turns on” an output function is called the on set

o the maxterm list that “turns off” an output function is called the off set

 combinational analysis

o truth table

o on set: X,Y,Z (1,2,5,7)

o canonical sum: f (X,Y,Z) = X·Y·Z + X·Y·Z + X·Y·Z + X·Y·Z

o off set: X,Y,Z(0,3,4,6)

o canonical product: f (X,Y,Z) = (X+Y+Z) · (X+Y+Z) · (X+Y+Z) · (X+Y+Z)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

4

 graphical application of DeMorgan’s law

o step 1 – starting at the “output end”, replace the original gate with its dual symbol and
complement all its inputs and outputs

o step 2 – migrate the “inversion bubbles” by applying involution

Note: A two-level
AND-OR circuit is
equivalent to a two-
level NAND-NAND
circuit

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

5

 combinational synthesis

o a circuit realizes (“makes real”) an expression if its output function equals that expression
(the circuit is called a realization of the function)

o typically there are many possible realizations of the same function

 algebraic transformations

 graphical transformations

o starting point is often a “word description”

 example: Design a 4-bit prime number detector (or, Given a 4-bit input combination
M = N3N2N1N0, design a function that produces a “1” output for M = 1, 2, 3, 5, 7,
11, 13 and a “0” output for all other numbers)

 f (N3,N2,N1,N0) = N3,N2,N1,N0(1,2,3,5,7,11,13)

o but…how do we know if a given realization of a function is “best” in terms of:

 speed (propagation delay)

 cost

 total number of gates

 total number of gate inputs (fan-in)

o Need two things:

 a way to transform a logic function to its simplest form (“minimization”)

 a way to calculate the “cost” of different realizations of a given function in order
to compare them

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

6

Lecture Summary – Module 2-B
Mapping and Minimization

Reference: Digital Design Principles and Practices 4th Ed. pp. 210-222, 5th Ed. pp. 117-125

 overview of minimization

o minimization is an important step in both ASIC (application specific integrated circuit)
design and in PLD-based (programmable logic device) design

o minimization reduces the cost of two-level AND-OR, OR-AND, NAND-NAND, NOR-
NOR circuits by:

 minimizing the number of first-level gates

 minimizing the number of inputs on each first-level gate

 minimizing the number of inputs on the second-level gate

o most minimization methods are based on a generalization of the Combining Theorems

o limitations of minimization methods

 no restriction on fan-in is assumed (i.e., the total number of inputs a gate can have
is assumed to be “infinite”)

 minimization of a function of more than 4 or 5 variables is not practical to do “by
hand” (a computer program must be used!)

 both true and complemented versions of all input variables are assumed to be
readily available (i.e., the cost of input inverters is not considered)

 Karnaugh (K) maps

o a Karnaugh map (“K-map”) is a graphical representation of a logic function’s truth
table (an array with 2n cells, one for each minterm)

o features

 minterm correspondence

 on set correspondence

 relationship between pairs of adjacent squares – differ by only one literal

 sides of map are contiguous

 combination of adjacent like squares in groups of 2k

o practice drawing 2-, 3-, and 4-variable K-maps

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

7

 minimization

o theory / terminology

 the minimal sum has the fewest possible product terms (first-level gates / second-
level gate inputs) and the fewest possible literals (first-level gate inputs)

 prime implicants

 a prime implicant is the largest possible grouping of size 2k adjacent, like
squares

 an essential prime implicant has at least one square in the grouping not
shared by another prime implicant, i.e., it has at least one “unique” square,
called a distinguished 1-cell

 a non-essential prime implicant is a grouping with no unique squares

 the cost criterion we will use is that gate inputs and outputs are of equal cost

o procedure for finding minimal SoP expression NAND-NAND realization

 step 1 - circle all the prime implicants

 step 2 - note the essential prime
implicants

 step 3 - if there are still any uncovered
squares, include non-essential prime
implicants

 step 4 - write a minimal, non-
redundant sum-of-products
expression

 (revisit step 3)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

8

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

9

o procedure for finding minimal PoS expression: group 0’s to find a minimal SoP
expression for f, then find an SoP expression for f by applying DeMorgan’s Law
NOR-NOR realization

o procedure for handling NAND-wired AND configuration: note that this configuration
realizes the complement of a NAND-NAND circuit, so find a minimal SoP expression for
f (by grouping 0’s) and implement these terms “directly” (as if it were NAND-NAND)

o procedure for converting from one form of an expression to another: use a K-map!

o procedure for handling incompletely specified functions (logic functions that do not assign
a specific binary output value (0/1) to each of the 2n input combinations)
 unused combinations – called “don’t cares” or “d-set”
 rules for grouping

 allow d’s to be included when circling sets of 1’s, to make the sets as large
as possible

 do not circle any sets that contain only d’s
 look for distinguished 1-cells only, not distinguished d-cells

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

10

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

11

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

12

Lecture Summary – Module 2-C
Timing Hazards

Reference: Digital Design Principles and Practices 4th Ed. pp. 224-229, 5th Ed. pp. 122-126

 introduction

o gate propagation delay may cause the transient behavior of logic circuit to differ from
that predicted by steady state analysis

o short pulse – glitch/hazard

 definitions

o a static-1 hazard is a pair of input combinations that: (a) differ in only one input variable
and (b) both produce a “1” output, such that it is possible for a momentary “0” output to
occur during a transition in the differing input variable

o a static-0 hazard is a pair of input combinations that: (a) differ in only one input variable
and (b) both produce a “0” output, such that it is possible for a momentary “1” output to
occur during a transition in the differing input variable (the dual of a static-1 hazard)

 prediction of static hazards from a K-map

o important: the existence or nonexistence of static hazards depends on the circuit design
(i.e., realization) of a logic function

o cause of hazards: it is possible for the output to momentarily glitch to “0” if the AND gate
that covers one of the combinations goes to “0” before the AND gate covering the other
input combination goes to “1” (referred to as break before make)

o use of consensus term(s) to eliminate hazards

2:1 multiplexer circuit

The extra product
term is the consensus
of the two original
terms – in general,
consensus terms must
be added to eliminate
hazards

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

13

 A dynamic hazard is the possibility of an output changing more than once as the result of a single
input transition (can occur if there are multiple paths with different delays from the changing
input to the changing output)

 “useful” hazards – example: “leading edge” detector

 designing hazard-free circuits
o very few practical applications require the design of hazard-free combinational circuits

(e.g., feedback sequential circuits)

o techniques for finding hazards in arbitrary circuits are difficult to use

o if cost is not a problem, then a “brute force” method of obtaining a hazard-free
realization is to use the complete sum (i.e., all prime implicants)

o functions that have non-adjacent product terms are inherently hazardous when subjected
to simultaneous input changes

For a dynamic hazard, the output
level is different before and after
the hazard occurs

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

14

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

15

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

16

Lecture Summary – Module 2-D
XOR/XNOR Functions

Reference: Digital Design Principles and Practices 4th Ed. pp. 447-448, 5th Ed. pp. 320-322

 introduction

o an Exclusive-OR (XOR) gate is a 2-input gate whose output is “1” if exactly one of its
inputs is “1” (or, an XOR gate produces an output of “1” if its inputs are different)

o an Exclusive-NOR (XNOR) gate is the complement of an XOR gate – it produces an output
of “1” if its inputs are the same

o an XNOR gate is also referred to as an Equivalence (or XAND) gate

o although XOR is not one of the basic functions of switching algebra, discrete XOR gates
are commonly used in practice

o the “ring sum” operator is used to denote the XOR function: XY = X•Y + X•Y
o the XNOR function can be thought of as either the dual or the complement of XOR

 XOR properties

o X X = X•X + X•X = 0 + 0 = 0

o X X = X•X + X•X = 0 + 0 = 0

o X 1 = X •1 + X•0 = X
o X 1 = X•1 + X•0 = X

o (X Y) = X Y 1

o X Y = Y X

o X (Y Z) = (X Y) Z

o X•(Y Z) = (X•Y) (X•Z)

o “checkerboard” K-map non-reducible function

o common/equivalent symbols

 N-variable XOR/XNOR functions – tree and cascade circuits

o the output of an n-variable XOR function is 1 if an odd number of inputs are 1
o the output of an n-variable XNOR function is 1 if an even number of inputs are 1
o realization of an n-variable XOR/XNOR function will require 2n-1 P-terms

Tree circuit: n
is a power of 2

Cascade circuit:
n is arbitrary

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

17

 simplification of special classes of functions using XOR/XNOR gates

o functions that cannot be significantly reduced using conventional minimization
techniques can sometimes be simplified by implementing them with XOR/XNOR gates

o candidate functions that may be simplified this way have K-maps with “diagonal 1’s”

o Technique: Write out function in SoP form, and “factor out” XOR/XNOR expressions

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

18

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

19

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

20

Lecture Summary – Module 2-E
Programmable Logic Devices

Reference: Digital Design Principles and Practices 4th Ed. pp. 370-383, 840-859; 5th Ed. pp. 246-252

 overview -– programmable logic devices

o first were programmable logic arrays (PLAs)
 two-level, AND-OR, SoP
 limitations: inputs, outputs, P-terms
 both true and complemented version of each input available
 connections made by “fuses” (non-volatile memory cells)
 each AND gate’s inputs any subset of true/complemented input variables
 each OR gate’s inputs any subset of AND gate outputs

o special case of PLA is programmable array logic (PAL)
 fixed OR array (AND gates cannot be shared)
 each output includes (inverting) tri-state buffer
 some pins may be used for either input or output (“I/O pins”)

o generic array logic (GAL) devices (essentially PALs)
 generic array logic (GAL) devices can be configured to emulate the AND-OR,

register (flip-flop), and output structure of combinational and sequential PAL
devices

 an output logic macrocell (“OLMC”) is associated with each I/O pin to provide
configuration control

 OLMCs include output polarity control (important because it allows minimization
software to “choose” either the SoP or PoS realization of a given function)

 erasable/reprogrammable GAL devices use floating gate technology (flash
memory) for “fuses” and are non-volatile (i.e., retain programming without
power)

 GAL devices require a “universal programmer” to erase and reprogram their so-
called “fuse maps” (means that they must be removed for reprogramming and
subsequently reinstalled – requires a socket)

 GAL combinational macrocell structure

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

21

 example – GAL22V10

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

22

o complex PLDs (CPLDs)
 modern complex PLDs (CPLDs) contain hundreds of macrocells and I/O pins, and

are designed to be erased/reprogrammed in-circuit (called “isp”)
 because CPLDs typically contain significantly more macrocells than I/O pins,

capability is provided to use macrocell resources “internally” (called a node)
 a global routing pool (GRP) is used to connect generic logic blocks (GLBs)
 output routing pools (ORPs) connect the GLBs to the I/O blocks (IOBs), which

contain multiple I/O cells
 example: ispMACH4000ZE-series

o field programmable gate arrays (FPGAs)
 a field programmable gate array (FPGA) is “kind of like a CPLD turned inside-

out”
 logic is broken into a large number of programmable blocks called look-up tables

(LUTs) or configurable logic blocks (CLBs)
 programming configuration is stored in SRAM-based memory cells and is

therefore volatile, meaning the FPGA configuration is lost when power is removed
 programming information must therefore be loaded into an FPGA (typically from

an external ROM chip) each time it is powered up (“initialization/boot” cycle)
 LUTs/CLBs are inherently less capable than PLD macrocells, but many more of

them will fit on a comparably sized FPGA (than macrocells on a CPLD)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

23

Lecture Summary – Module 2-F
Hardware Description Languages

Reference: Digital Design Principles and Practices 4th Ed. pp. 237-255, 5th Ed. pp. 177-233

 overview

o hardware description languages (HDLs) are the most common way to describe the
programming configuration of a CPLD or an FPGA

o the first HDL to enjoy widespread use was PALASM (“PAL Assembler”) from
Monolithic Memories, Inc. (inventors of the PAL device)

o early HDLs only supported equation entry
o next generation languages such as CUPL (Compiler Universal for Programmable Logic)

and ABEL (Advanced Boolean Expression Language) added more advanced capabilities:
 truth tables and clocked operator tables
 logic minimization
 high-level constructs such as when-else-then and state diagram
 test vectors
 timing analysis

o VHDL and Verilog
 started out as simulation languages (later developments in these languages allowed

actual hardware design)
 support modular, hierarchical coding and support a wide variety of high-level

programming constructs represents a higher level of abstraction
 arrays
 procedures
 function calls
 conditional and iterative statements

 potential pitfall – because VHDL and Verilog have their genesis as simulation
languages, it is possible to create non-synthesizable HDL code using them (i.e., code
that can simulate a digital system, but not actually realize it)

 concentration on use of Verilog
o You will use Verilog to program legacy PLDs (like the 22V10) as well as current

generation CPLDs (like the ispMACH 4256ZE)
o We will use the Lattice ispLever Classic 1.8 software package in lab, which includes

support for Verilog free copy of software package available at latticesemi.com
o Verilog program contents

 documentation (program name, comments)
 declarations that identify the inputs and outputs of the logic functions to be

performed
 statements that specify the logic functions to be performed

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

24

o Verilog program semantics
 identifiers (module names, signal/variables names) must begin with a letter or

underscore and can include digits and dollar signs ($)
 identifiers are case sensitive
 single line comments begin with //
 /* comments can also be done this way */
 input and output declarations tell the compiler about symbolic names associated

with the external pins of the device
 each assign statement describes a small piece of logic circuitry
 Constant values can be described as n’bxxxx where n is the bit-width of the signal

and x is 0 or 1

o Verilog wire type
 wire is a basic data type in Verilog
 Similar to an actual wire, these variables cannot store logic value and are used to

connect signals between inputs, outputs and logic elements such as gates
 wire is used to model Combinational Logic
 wire can take on four basic values

 0 – logical zero
 1 – logical one
 X – Unknown value
 Z – High-Impedance state

o Verilog Bitwise Operators

 & AND
 | OR
 ^ XOR
 ~^ or ^~ XNOR
 ~ NOT
(similar to bitwise operators in C - you will learn about logical Verilog operators later,
and the difference between the two)

o ispLEVER Operators

 ispLEVER reports use different notation for some operators
 & AND
 # OR
 ! NOT
 $ XOR
 !$ XNOR

o Verilog assign statements

 assign statements are used to continuously assign the value of the expression on
the right of the “=“ to the signal on the left

 assigning constant bits to a variable
 assign A = 3’b110;
 assign B = 3’b101;

 assigning logic to a variable
 assign X = A & B;
 assign Y = A | B;

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

25

o Verilog Module Structure

 synthesis loc is a compiler directive that tells ispLEVER to use specific pins for
input or output.

 input wire Sel, A, B /* synthesis loc=“4,5,6” */; tells compiler to connect Sel, A, and
B, to pins 4, 5 and 6, respectively on the PLD

o example Verilog program with equations

o reg data types
 similar to wire, but reg can be used to store information like registers
 unlike wire, “reg” can be used to model both Combinational and Sequential logic
 For behavioral code using an always block, the output must be type reg
 For dataflow code with assign statements, the outputs must be of type wire

o always block

 always block lets you write "behavioral" style code, similar to C
 should have a sensitivity list associated with it, all statements in the always block

will be evaluated when the conditions in this list are triggered
 conditions may be any change to the signal or rising or falling edges of the signals
 examples of always block:

 always @ (A,B,C) begin
o all statements will be evaluated whenever A, B, or C change their

values
 always @ (posedge CLK) begin

o all statements will be evaluated on the positive (rising) edge of the CLK
signal

 always @ (*) begin
o all statements will be evaluated whenever any input signal in the

always block changes

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

26

o case syntax
 similar to the case structure in C
 compares expression to a set of cases and evaluates the statement(s) associated

with first matching case
 all cases defined between case (signal) .. endcase
 multiple statements for a case must be enclosed in a begin and end block
 multiple comparison signals can be concatenated as case ({signal1, signal2

…signaln}) and compared against values of their total bit width
 If the logic does not cover all possible bit combinations of the comparison signal(s),

a default case must be added.
o example Verilog program with truth table

o example Verilog program with multi-input XOR

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

27

 structural code
o relies on instantiating every module and connecting their inputs and outputs manually
o logic can be described without the use of boolean operators, logical constructs (if-else,

case), always blocks or assign statements
 module_name instance_name (signal_list); will instantiate a module of type

module_name called instance_name (the signal_list corresponds to the inputs and
outputs, also called the port list)

 and AND2 (XY, X, Y); will instantiate an AND gate with inputs X and Y with output
XY

 xor OR (X_Y,X,Y); will instantiate a 2-input XOR gate
o built-in primitives: and, or, nand, nor, xor, xnor, not, buf,bufif0, bufif1, notif0, notif1
o example:

module structural_ex(A,B,C,D,X,Y);
 input wire A, B, C, D;
 output wire X, Y;
 wire AB, CD;
 and AND2a (AB, A, B); // AB = A & B
 and AND2b (CD, C, D); // CD = C & D
 or OR2a (X, AB, CD); // X = AB | CD
 assign Y = (A & B) | (C & D);
endmodule

X and Y evaluate the
same function

X : Structural style/code

Y : Dataflow style/code

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

28

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

E E

R RR

S

S

T

T

T

A A

A A

A A

B B

B

C C C C

D

D F

 detailed example – “crazy grader” (a.k.a. “arbitrary uniformed grading hack” –or– “AUGH”)

o four input variables (E, R, S, T)
o five output functions (A, B, C, D, F)
o “stick built” (using SSI parts) vs. GAL22V10 (programmed using Verilog)

/* Who Wants to be a Digijock */
module gameshow(E,R,S,T,A,B,C,D,F);
 input wire E,R,S,T /* synthesis loc=“2,3,4,5” */;
 output wire A,B,C,D,F /* synthesis loc=“14,15,16,17,18” */;
 /* Quick and easy way in Verilog */
 /* …“by inspection” from problem statement */
 assign A = (R & T) | (R & ~S);
 assign B = (E & ~R & ~S) | (~R & ~T & ~S);
 assign C = S & ~T;
 assign D = T & ~E & ~R;
 assign F = ~A & ~B & ~C & ~D;
 // or assign F = E & S & T & ~R;
endmodule

vs.

vs. 5

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

29

Lecture Summary – Module 2-G
Combinational Building Blocks: Decoders/Demultiplexers

Reference: Digital Design Principles and Practices 4th Ed. pp. 384-398, 5th Ed. pp. 250-256, 260-278

 overview

o a decoder is a multiple-input, multiple-output logic circuit that converts coded inputs into
coded outputs (in a one-to-one mapping, each input code word produces a different
output code word)

o n-bit binary input code most common

o 1-out-of-m output code most common (note: output code bits are mutually exclusive)

o binary decoder: n to 2n (n-bit binary input code, 1-out-of-2n output code)

o example: 2-to-4 (2:4) binary decoder or 1-to-4 (1:4) demultiplexer

 key observations

o each output of an n to 2n binary decoder represents a minterm of an n-variable Boolean
function; therefore, any arbitrary Boolean function of n-variables can be realized
with an n-input binary decoder by simply “OR-ing” the needed outputs

o if the decoder outputs are active low, a NAND gate can be used to “OR” the minterms of
the function (representing its ON set)

o if the decoder outputs are active low, an AND gate can be used to “OR” the minterms of
the complement function (representing its OFF set)

o a NAND gate (or AND gate) with at most 2n-1 inputs is needed to implement an arbitrary
n-variable function using an n to 2n binary decoder (that has active low outputs)

 general circuit for implementing an arbitrary n-variable function using a decoder, for case
where ON set has 2n-1 members

Note that EN can also be
construed as a digital input
that is routed to the selected
output, in which case the
circuit would be referred to
as a demultiplexer

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

30

 decoders/demultiplexers in Verilog

 special purpose decoders (e.g., 7-segment display)

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

31

Lecture Summary – Module 2-H
Combinational Building Blocks: Encoders and Tri-State Outputs

Reference: Digital Design Principles and Practices 4th Ed. pp. 408-415, 430-432; 5th Ed. 279-280, 308-310

 overview

o an encoder is an “inverse decoder” – the role of inputs and outputs is reversed, and there
are more input code bits than output code bits

o common application: encode “device number” associated with service request

o problem: more than one device may be requesting service at a given instant – motivation
for “priority encoder”

 priority encoders

o inputs are numbered, priority is assigned based on number (usually lowest number
lowest priority, etc., but not always)

o easiest way to do this in Verilog is using casez construct

o example – 8:3 priority encoder with “strobe output” to indicate if any of the encoder
inputs have been asserted

 Verilog casez construct

o use ? as wild card

o beware of non-unique expressions: 1st matching expression wins

module pri_enc(I, E, G);

 input wire [7:0] I; // Input 0 - lowest priority, Input 7 - highest priority
 output wire [2:0] E; // Encoded output
 output wire G; // Strobe output (asserted if any input is asserted)

 reg [3:0] EG;

 always @ (I) begin
 casez (I)
 8'b00000000: EG = 4'b0000; // No inputs asserted
 8'b00000001: EG = 4'b0001; // Input 0 wins
 8'b0000001?: EG = 4'b0011; // Input 1 wins
 8'b000001??: EG = 4'b0101; // Input 2 wins
 8'b00001???: EG = 4'b0111; // Input 3 wins
 8'b0001????: EG = 4'b1001; // Input 4 wins
 8'b001?????: EG = 4'b1011; // Input 5 wins
 8'b01??????: EG = 4'b1101; // Input 6 wins
 8'b1???????: EG = 4'b1111; // Input 7 wins
 endcase
 end

 assign {E,G} = EG;

endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

32

 examine the “reduced equation report” produced by ispLever

 tri-state (three-state) outputs
o in Verilog, an output value of 'bZ (High- Impedance or Hi-Z) assigned to an output port

disables the output
o “tri” is the datatype used for tri-state variables
o can use the conditional operator "? :" to implement a tri-state buffer
o example: Create a Verilog module that implements a 4:2 priority encoder with tri-state

encoded outputs (E1, E0) - design should include an active high output strobe (G) that is
asserted when any input is asserted

Note on ispLEVER operators: AND - &, OR - #, NOT - !, XOR - $
Title: 8-to-3 Priority Encoder Using GAL 22V10

 P-Terms Fan-in Fan-out Type Name (attributes)
--------- ------ ------- ---- -----------------
 4/1 4 1 Pin- E2
 8/1 8 1 Pin- G
 4/3 6 1 Pin- E1
 4/4 7 1 Pin E0
=========
 20/9 Best P-Term Total: 9
 Total Pins: 12
 Total Nodes: 0
 Average P-Term/Output: 2

Positive-Polarity (SoP) Equations:
E2 = (I7 # I6 # I5 # I4);
G = (I7 # I6 # I5 # I4 # I3 # I2 # I1 # I0);
E1 = (I7 # I6 # !I5 & !I4 & I3 # !I5 & !I4 & I2);
E0 = (I7 # !I6 & I5 # !I6 & !I4 & I3 # !I6 & !I4 & !I2 & I1);

Reverse-Polarity Equations:
!E2 = (!I7_& !I6_& !I5 & !I4);
!G = (!I7 & !I6 & !I5 & !I4 & ! 13 & !I2 & !I1 & !I0);
!E1 = (!I7 & !I6 & I5 # !I7 & !I6 & I4 # !I7 & !I6 & !I3 & !I2);
!E0 = (!I7 & I6 # !I7 & !I5 & I4 # !I7 & !I5 & !I3 & I2 # !I7 & !I5 & !I3 & !I1);

module prienc42(I, E_z, G, EN);

 input wire [3:0] I; // Input 0 - lowest priority,
 // Input 3 - highest priority
 input wire EN; // Tri-state enable control input
 output tri [1:0] E_z; // Encoded tri-state enabled output
 output wire G; // Strobe output (high if any input is asserted)
 reg [2:0] EG; // EGS = {E,G}
 always @ (I) begin
 casez (I)
 4'b0000: EG = 3'b000; // No inputs active
 4'b0001: EG = 3'b001; // Input 0 wins
 4'b001?: EG = 3'b011; // Input 1 wins
 4'b01??: EG = 3'b101; // Input 2 wins
 4'b1???: EG = 3'b111; // Input 3 wins
 endcase
 end
 assign GS = EG[0];
 assign E_z = EN ? EG[2:1] : 2'bZ;

endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

33

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

34

X Y F(X,Y)

0 0 a0

0 1 a1

1 0 a2

1 1 a3

D0

D1

D2

D3

F(X,Y)

i1 i0

X Y

F

Functional values
assigned to each

combination

Lecture Summary – Module 2-I
Combinational Building Blocks: Multiplexers

Reference: Digital Design Principles and Practices 4th Ed. pp. 432-440, 445-446; 5th Ed. pp. 281-289, 290-291

 overview

o a multiplexer is a digital switch that uses s select lines to determine which of n = 2s inputs
is connected to its output

o each of the input paths may be b bits wide

o equation implemented by s-select line mux is the SoP form of a general s-variable Boolen
function: F(X,Y) = a0•X•Y + a1•X•Y + a2•X•Y + a3•X•Y

o general structure

 truth table analogy

 example: 8-to-1 (8:1) multiplexer

Number of different
functions of s
variables possible:

module mux811(D, EN, S, Y);
 input wire [7:0] D; // Data inputs
 input wire EN; // Function enable
 input wire [2:0] S; // Select lines
 output wire Y; // Output
 assign Y = EN & (!S[2] & !S[1] & !S[0] & D[0] |
 !S[2] & !S[1] & S[0] & D[1] |
 !S[2] & S[1] & !S[0] & D[2] |
 !S[2] & S[1] & S[0] & D[3] |
 S[2] & !S[1] & !S[0] & D[4] |
 S[2] & !S[1] & S[0] & D[5] |
 S[2] & S[1] & !S[0] & D[6] |
 S[2] & S[1] & S[0] & D[7]);
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

35

 example – multiplexer function realization

 multiplexers in Verilog (8-bit wide 4:1 mux example)

module mux418a(EN, S, A, B, C, D, Y_z);
 input wire EN; // Tri-state output enable line
 input wire [1:0] S; // Select inputs
 input wire [7:0] A, B, C, D; // 8-bit input buses
 output tri [7:0] Y_z; // 8-bit output bus
 wire [7:0] Y;
 assign Y = !S[1] & !S[0] & A |
 !S[1] & S[0] & B |
 S[1] & !S[0] & C |
 S[1] & S[0] & D;
 assign Y_z = EN ? Y : 8'bZZZZZZZZ;
endmodule

module mux418b(EN, S, A, B, C, D, Y_z);
 input wire EN; // Tri-state output enable line
 input wire [1:0] S; // Select inputs
 input wire [7:0] A, B, C, D; // 8-bit input buses
 output tri [7:0] Y_z; // 8-bit output bus
 reg [7:0] Y;
 assign Y_z = EN ? Y : 8’bZZZZZZZZ;
 always @ (S) begin
 // Y = 8’b00000000;
 if (S == 2'b00) Y = A;
 else if (S == 2'b01) Y = B;
 else if (S == 2'b10) Y = C;
 else if (S == 2'b11) Y = D;
 // else Y = 8’b00000000;
 end
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

36

/* Big Multiplexer */
module bigmux(EN, S, A, B, C, D, Y_z);
 input wire EN;
 input wire [1:0] S;
 input wire [7:0] A, B, C, D;
 output tri [7:0] Y_z;
 wire [7:0] Y;
 assign Y_z = EN ? Y : 8'bZZZZZZZZ;
 assign Y = ~S[1] & ~S[0] & A |
 ~S[1] & S[0] & B |
 S[1] & ~S[0] & C |
 S[1] & S[0] & D;
endmodule

ECE 270 IM:PACT Introduction to Digital System Design © 2019 by D. G. Meyer

37

Lecture Summary – Module 2-J
Top Level (Hierarchical) Models

Reference: Digital Design Principles and Practices (4th Ed.), pp. 306-308

 definition: A top level module is the highest level module in a design hierarchy that instantiates

other modules and connects them
 separating logic across multiple modules serves the advantage of reusability for modules and

removing redundant logic
 example: If two modules use a 4-to-1 mux, create a separate module for the mux, and simply

instantiate it in the other modules
 follows structural style of instantiation: module_name instance_name (signal_list);
 signals in signal_list will be connected in the order of that module’s portlist – this is called port

mapping by order
 alternatively, port mapping by name can be used, which is a more error-free method – here, each

signal passed to the instantiated module uses the name of the signal in the module’s port list to
indicate where it is connected

