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Lecture Summary – Module 2 

Combinational Logic Circuits 

 
Learning Outcome: an ability to analyze and design combinational logic circuits 
 
Learning Objectives: 
2-1. identify minterms (product terms) and maxterms (sum terms) 
2-2. list the standard forms for expressing a logic function and give an example of each: sum-of-products (SoP), 

product-of-sums (PoS), ON set, OFF set 
2-3. analyze the functional behavior of a logic circuit by constructing a truth table that lists the relationship 

between input variable combinations and the output variable 
2-4. transform a logic circuit from one set of symbols to another through graphical application of DeMorgan’s 

Law 
2-5. realize a combinational function directly using basic gates (NOT, AND, OR, NAND, NOR) 
2-6. draw a Karnaugh Map (“K-map”) for a 2-, 3-, 4-, or 5-variable logic function 
2-7. list the assumptions underlying function minimization 
2-8. identify the prime implicants, essential prime implicants, and non-essential prime implicants of a function 

depicted on a K-map 
2-9. use a K-map to minimize a logic function (including those that are incompletely specified) and express it in 

either minimal SoP or PoS form 
2-10. use a K-map to convert a function from one standard form to another 
2-11. calculate and compare the cost (based on the total number of gate inputs plus the number of gate outputs) of 

minimal SoP and PoS realizations of a given function 
2-12. realize a function depicted on a K-map as a two-level NAND circuit, two-level NOR circuit, or as an open-

drain NAND/wired-AND circuit 
2-13. define and identify static-0, static-1, and dynamic hazards 
2-14. describe how a static hazard can be eliminated by including consensus terms 
2-15. describe a circuit that takes advantage of the existence of hazards and analyze its behavior 
2-16. draw a timing chart that depicts the input-output relationship of a combinational circuit 
2-17. identify properties of XOR/XNOR functions 
2-18. simplify an otherwise non-minimizable function by expressing it in terms of XOR/XNOR operators 
2-19. describe the genesis of programmable logic devices 
2-20. list the differences between complex programmable logic devices (CPLDs) and field programmable gate 

arrays (FPGAs) and describe the basic organization of each 
2-21. list the basic features and capabilities of a hardware description language (HDL)  
2-22. list the syntactic elements of a Verilog module 
2-23. identify operators and keywords used to create Verilog modules 
2-24. write equations using Verilog dataflow syntax 
2-25. define functional behavior by creating truth tables with the casez construct in Verilog 
2-26. define the function of a decoder and describe how it can be use as a combinational logic building block 
2-27. illustrate how a decoder can be used to realize an arbitrary Boolean function 
2-28. define the function of an encoder and describe how it can be use as a combinational logic building block 
2-29. discuss why the inputs of an encoder typically need to be prioritized 
2-30. define the function of a multiplexer and describe how it can be use as a combinational logic building block 
2-31. illustrate how a multiplexer can be used to realize an arbitrary Boolean function 
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Lecture Summary – Module 2-A 
Combinational Circuit Analysis and Synthesis 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 196-210, 5th Ed. 100-117 

 

 overview 

o we analyze a combinational logic circuit by obtaining a formal description of its logic 
function 

o a combinational logic circuit is one whose output depend only on its current combination 
of input values (or “input combination”) 

o a logic function is the assignment of “0” or “1” to each possible combination of its input 
variables 

 examples of formal descriptions (“standard forms”) 

o a literal is a variable or the complement of a variable 

o a product term is a single literal or a logical product of two or more literals 

o a sum-of-products expression is a logical sum of product terms 

o a sum term is a single literal or a logical sum of two or more literals 

o a product-of-sums expression is a logical product of sum terms 

o a normal term is a product or sum term in which no variable appears more than once 

o an n-variable minterm is a normal product term with n literals 

o an n-variable maxterm is a normal sum term with n literals 

o the canonical sum of a logic function is a sum of minterms corresponding to input 
combinations for which the function produces a “1” output 

o the canonical product of a logic function is a product of maxterms corresponding to input 
combinations for which the function produces a “0” output 

 minterm and maxterm identification 
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 on sets and off sets 

o the minterm list that “turns on” an output function is called the on set 

o the maxterm list that “turns off” an output function is called the off set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 combinational analysis 

o truth table 

o on set:  X,Y,Z (1,2,5,7) 

o canonical sum: f (X,Y,Z) = X·Y·Z + X·Y·Z + X·Y·Z + X·Y·Z 

o off set:  X,Y,Z(0,3,4,6) 

o canonical product: f (X,Y,Z) = (X+Y+Z) · (X+Y+Z) · (X+Y+Z) · (X+Y+Z) 
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 graphical application of DeMorgan’s law 

 

 

 

 

 

 

o step 1 – starting at the “output end”, replace the original gate with its dual symbol and 
complement all its inputs and outputs 

 

 

 

 

 

 

o step 2 – migrate the “inversion bubbles” by applying involution 
  

Note:  A two-level 
AND-OR circuit is 
equivalent to a two-
level NAND-NAND 
circuit 
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 combinational synthesis 

o a circuit realizes (“makes real”) an expression if its output function equals that expression 
(the circuit is called a realization of the function) 

o typically there are many possible realizations of the same function 

 algebraic transformations 

 graphical transformations 

o starting point is often a “word description” 

 example: Design a 4-bit prime number detector (or, Given a 4-bit input combination 
M = N3N2N1N0, design a function that produces a “1” output for M = 1, 2, 3, 5, 7, 
11, 13 and a “0” output for all other numbers)  

 f (N3,N2,N1,N0) = N3,N2,N1,N0(1,2,3,5,7,11,13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o but…how do we know if a given realization of a function is “best” in terms of: 

 speed (propagation delay) 

 cost  

 total number of gates 

 total number of gate inputs (fan-in) 

o Need two things: 

 a way to transform a logic function to its simplest form (“minimization”) 

 a way to calculate the “cost” of different realizations of a given function in order 
to compare them  
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Lecture Summary – Module 2-B 
Mapping and Minimization 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 210-222, 5th Ed. pp. 117-125 
 

 overview of minimization 

o minimization is an important step in both ASIC (application specific integrated circuit) 
design and in PLD-based (programmable logic device) design 

o minimization reduces the cost of two-level AND-OR, OR-AND, NAND-NAND, NOR-
NOR circuits by: 

 minimizing the number of first-level gates 

 minimizing the number of inputs on each first-level gate 

 minimizing the number of inputs on the second-level gate 

o  most minimization methods are based on a generalization of the Combining Theorems 

o limitations of minimization methods 

 no restriction on fan-in is assumed (i.e., the total number of inputs a gate can have 
is assumed to be “infinite”) 

 minimization of a function of more than 4 or 5 variables is not practical to do “by 
hand” (a computer program must be used!) 

 both true and complemented versions of all input variables are assumed to be 
readily available (i.e., the cost of input inverters is not considered) 

  Karnaugh (K) maps 

o a Karnaugh map ( “K-map”) is a graphical representation of a logic function’s truth 
table (an array with 2n cells, one for each minterm) 

o  features 

 minterm correspondence 

 on set correspondence 

 relationship between pairs of adjacent squares – differ by only one literal 

 sides of map are contiguous 

 combination of adjacent like squares in groups of 2k 

o practice drawing 2-, 3-, and 4-variable K-maps  
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 minimization 

o theory / terminology 

 the minimal sum has the fewest possible product terms (first-level gates / second-
level gate inputs) and the fewest possible literals (first-level gate inputs) 

 prime implicants 

 a prime implicant is the largest possible grouping of size 2k adjacent, like 
squares 

 an essential prime implicant has at least one square in the grouping not 
shared by another prime implicant, i.e., it has at least one “unique” square, 
called a distinguished 1-cell 

 a non-essential prime implicant is a grouping with no unique squares 

 the cost criterion we will use is that gate inputs and outputs are of equal cost 

 

 

o procedure for finding minimal SoP expression  NAND-NAND realization 

 step 1 - circle all the prime implicants 

 step 2 - note the essential prime 
implicants 

 step 3 - if there are still any uncovered 
squares, include non-essential prime 
implicants 

 step 4 - write a minimal, non-
redundant sum-of-products 
expression 

 (revisit step 3) 
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o procedure for finding minimal PoS expression: group 0’s to find a minimal SoP 
expression  for f, then find an SoP expression for f by applying DeMorgan’s Law  
NOR-NOR realization 

 

 

 

 

 

 

 

 

 

 

o procedure for handling NAND-wired AND configuration: note that this configuration 
realizes the complement of a NAND-NAND circuit, so find a minimal SoP expression for 
f (by grouping 0’s) and implement these terms “directly” (as if it were NAND-NAND) 

o procedure for converting from one form of an expression to another: use a K-map! 

o procedure for handling incompletely specified functions (logic functions that do not assign 
a specific binary output value (0/1) to each of the 2n input combinations) 
 unused combinations – called “don’t cares” or “d-set” 
 rules for grouping 

 allow d’s to be included when circling sets of 1’s, to make the sets as large 
as possible 

 do not circle any sets that contain only d’s  
 look for distinguished 1-cells only, not distinguished d-cells  
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Lecture Summary – Module 2-C 
Timing Hazards 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 224-229, 5th Ed. pp. 122-126 
 

 introduction 

o gate propagation delay may cause the transient behavior of logic circuit to differ from 
that predicted by steady state analysis 

o short pulse – glitch/hazard 

 definitions 

o a static-1 hazard is a pair of input combinations that: (a) differ in only one input variable 
and (b) both produce a “1” output, such that it is possible for a momentary “0” output to 
occur during a transition in the differing input variable 

 

 

 

 

 

 

 

o a static-0 hazard is a pair of input combinations that: (a) differ in only one input variable 
and (b) both produce a “0” output, such that it is possible for a momentary “1” output to 
occur during a transition in the differing input variable (the dual of a static-1 hazard) 

 prediction of static hazards from a K-map 

o important: the existence or nonexistence of static hazards depends on the circuit design 
(i.e., realization) of a logic function 

o cause of hazards: it is possible for the output to momentarily glitch to “0” if the AND gate 
that covers one of the combinations goes to “0” before the AND gate covering the other 
input combination goes to “1” (referred to as break before make) 

 

 

 

 

o use of consensus term(s) to eliminate hazards 

 

 

 

 

2:1 multiplexer circuit 

The extra product 
term is the consensus 
of the two original 
terms – in general, 
consensus terms must 
be added to eliminate 
hazards  
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 A dynamic hazard is the possibility of an output changing more than once as the result of a single 
input transition (can occur if there are multiple paths with different delays from the changing 
input to the changing output) 

 

 

 

 

 

 

 

 

 “useful” hazards – example: “leading edge” detector 

 

 

 

 

 

 

 

 

 

 

 designing hazard-free circuits 
o very few practical applications require the design of hazard-free combinational circuits 

(e.g., feedback sequential circuits) 

o techniques for finding hazards in arbitrary circuits are difficult to use  

o if cost is not a problem, then a “brute force” method of obtaining a hazard-free 
realization is to use the complete sum   (i.e., all prime implicants) 

o functions that have non-adjacent product terms are inherently hazardous when subjected 
to simultaneous input changes 

 

  
 
 
 
 
 
 

For a dynamic hazard, the output 
level is different before and after 
the hazard occurs 
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Lecture Summary – Module 2-D 
XOR/XNOR Functions 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 447-448, 5th Ed. pp. 320-322 

 introduction 

o an Exclusive-OR (XOR) gate is a 2-input gate whose output is “1” if exactly one of its 
inputs is “1” (or, an XOR gate produces an output of “1” if its inputs are different) 

o an Exclusive-NOR (XNOR) gate is the complement of an XOR gate – it produces an output 
of “1” if its inputs are the same 

o an XNOR gate is also referred to as an Equivalence (or XAND) gate 

o although XOR is not one of the basic functions of switching algebra, discrete XOR gates 
are commonly used in practice 

o the “ring sum” operator  is used to denote the XOR function:  XY = X•Y + X•Y  
o the XNOR function can be thought of as either the dual or the complement of XOR 

 XOR properties 

o X  X = X•X + X•X = 0 + 0 = 0 

o X  X = X•X + X•X = 0 + 0 = 0 

o X  1 = X •1 + X•0 = X  
o X  1 = X•1 + X•0 = X 

o (X  Y) = X  Y  1 

o X  Y = Y  X              

o X  (Y  Z) = (X  Y)  Z 

o X•(Y  Z) = (X•Y)  (X•Z) 

o  “checkerboard” K-map  non-reducible function 

o common/equivalent symbols 

 

 

 

 

 
 N-variable XOR/XNOR functions – tree and cascade circuits 

o the output of an n-variable XOR function is 1 if an odd number of inputs are 1  
o the output of an n-variable XNOR function is 1 if an even number of inputs are 1  
o realization of an n-variable XOR/XNOR function will require 2n-1 P-terms 

 
   

Tree circuit: n 
is a power of 2 

Cascade circuit: 
n is arbitrary 
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 simplification of special classes of functions using XOR/XNOR gates 

o functions that cannot be significantly reduced using conventional minimization 
techniques can sometimes be simplified by implementing them with XOR/XNOR gates 

o candidate functions that may be simplified this way have K-maps with “diagonal 1’s” 

o Technique: Write out function in SoP form, and “factor out” XOR/XNOR expressions 
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Lecture Summary – Module 2-E 
Programmable Logic Devices 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 370-383, 840-859; 5th Ed. pp. 246-252 
 
 overview -– programmable logic devices 

o first were programmable logic arrays (PLAs) 
 two-level, AND-OR, SoP 
 limitations: inputs, outputs, P-terms 
 both true and complemented version of each input available 
 connections made by “fuses” (non-volatile memory cells) 
 each AND gate’s inputs any subset of true/complemented input variables 
 each OR gate’s inputs any subset of AND gate outputs 

o special case of PLA is programmable array logic (PAL) 
 fixed OR array (AND gates cannot be shared) 
 each output includes (inverting) tri-state buffer 
 some pins may be used for either input or output (“I/O pins”) 

o generic array logic (GAL) devices (essentially PALs) 
 generic array logic (GAL) devices can be configured to emulate the AND-OR, 

register (flip-flop), and output structure of combinational and sequential PAL 
devices 

 an output logic macrocell (“OLMC”) is associated with each I/O pin to provide 
configuration control 

 OLMCs include output polarity control (important because it allows minimization 
software to “choose” either the SoP or PoS realization of a given function) 

 erasable/reprogrammable GAL devices use floating gate technology (flash 
memory) for “fuses” and are non-volatile (i.e., retain programming without 
power) 

 GAL devices require a “universal programmer” to erase and reprogram their so-
called “fuse maps” (means that they must be removed for reprogramming and 
subsequently reinstalled – requires a socket) 

 GAL combinational macrocell structure 
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 example – GAL22V10 
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o complex PLDs (CPLDs) 
 modern complex PLDs (CPLDs) contain hundreds of macrocells and I/O pins, and 

are designed to be erased/reprogrammed in-circuit (called “isp”) 
 because CPLDs typically contain significantly more macrocells than I/O pins, 

capability is provided to use macrocell resources “internally” (called a node) 
 a global routing pool (GRP) is used to connect generic logic blocks (GLBs) 
 output routing pools (ORPs) connect the GLBs to the I/O blocks (IOBs), which 

contain multiple I/O cells 
 example: ispMACH4000ZE-series 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o field programmable gate arrays (FPGAs) 
 a field programmable gate array (FPGA) is “kind of like a CPLD turned inside-

out” 
 logic is broken into a large number of programmable blocks called look-up tables 

(LUTs) or configurable logic blocks (CLBs) 
 programming configuration is stored in SRAM-based memory cells and is 

therefore volatile, meaning the FPGA configuration is lost when power is removed  
 programming information must therefore be loaded into an FPGA (typically from 

an external ROM chip) each time it is powered up (“initialization/boot” cycle) 
 LUTs/CLBs are inherently less capable than PLD macrocells, but many more of 

them will fit on a comparably sized FPGA (than macrocells on a CPLD) 
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Lecture Summary – Module 2-F 
Hardware Description Languages 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 237-255, 5th Ed. pp. 177-233 

 
 overview 

o hardware description languages (HDLs) are the most common way to describe the 
programming configuration of a CPLD or an FPGA 

o the first HDL to enjoy widespread use was PALASM (“PAL Assembler”) from 
Monolithic Memories, Inc. (inventors of the PAL device)  

o early HDLs only supported equation entry 
o next generation languages such as CUPL (Compiler Universal for Programmable Logic) 

and ABEL (Advanced Boolean Expression Language) added more advanced capabilities: 
 truth tables and clocked operator tables 
 logic minimization 
 high-level constructs such as when-else-then and state diagram 
 test vectors 
 timing analysis 

o VHDL and Verilog 
 started out as simulation languages (later developments in these languages allowed 

actual hardware design) 
 support modular, hierarchical coding and support a wide variety of high-level 

programming constructs  represents a higher level of abstraction 
 arrays 
 procedures 
 function calls 
 conditional and iterative statements 

 potential pitfall – because VHDL and Verilog have their genesis as simulation 
languages, it is possible to create non-synthesizable HDL code using them (i.e., code 
that can simulate a digital system, but not actually realize it) 
 

 concentration on use of Verilog  
o You will use Verilog to program legacy PLDs (like the 22V10) as well as current 

generation CPLDs (like the ispMACH 4256ZE) 
o We will use the Lattice ispLever Classic 1.8 software package in lab, which includes 

support for Verilog  free copy of software package available at latticesemi.com 
o Verilog program contents 

 documentation (program name, comments) 
 declarations that identify the inputs and outputs of the logic functions to be 

performed 
 statements that specify the logic functions to be performed  
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o Verilog program semantics 
 identifiers (module names, signal/variables names) must begin with a letter or 

underscore and can include digits and dollar signs ($) 
 identifiers are case sensitive 
 single line comments begin with // 
 /* comments can also be done this way */ 
 input and output declarations tell the compiler about symbolic names associated 

with the external pins of the device 
 each assign statement describes a small piece of logic circuitry 
 Constant values can be described as n’bxxxx where n is the bit-width of the signal 

and x is 0 or 1 
 

o Verilog wire type 
 wire is a basic data type in Verilog 
 Similar to an actual wire, these variables cannot store logic value and are used to 

connect signals between inputs, outputs and logic elements such as gates 
 wire is used to model Combinational Logic  
 wire can take on four basic values  

 0 – logical zero 
 1 – logical one 
 X – Unknown value 
 Z – High-Impedance state 

 
o Verilog Bitwise Operators 

 &   AND 
 |  OR 
 ^   XOR 
 ~^ or ^~ XNOR 
 ~   NOT 
(similar to bitwise operators in C - you will learn about logical Verilog operators later, 
and the difference between the two) 

 
o ispLEVER Operators 

 ispLEVER reports use different notation for some operators 
 &  AND 
 #   OR   
 !   NOT 
 $   XOR   
 !$ XNOR   

 
o Verilog assign statements 

 assign statements are used to continuously assign the value of the expression on 
the right of the “=“ to the signal on the left 

 assigning constant bits to a variable 
 assign A = 3’b110; 
 assign B = 3’b101; 

 assigning logic to a variable 
 assign X = A & B; 
 assign Y = A  |  B; 
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o Verilog Module Structure 

 synthesis loc is a compiler directive that tells ispLEVER to use specific pins for 
input or output. 

 input wire Sel, A, B /* synthesis loc=“4,5,6” */;  tells compiler to connect Sel, A, and 
B, to pins 4, 5 and 6, respectively on the PLD 

 
o example Verilog program with equations 

                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o reg data types 
 similar to wire, but reg can be used to store information like registers  
 unlike wire, “reg” can be used to model both Combinational and Sequential logic 
 For behavioral code using an always block, the output must be type reg 
 For dataflow code with assign statements, the outputs must be of type wire   

 
o always block 

 always block lets you write "behavioral" style code, similar to C 
 should have a sensitivity list associated with it, all statements in the always block 

will be evaluated when the conditions in this list are triggered 
 conditions may be any change to the signal or rising or falling edges of the signals 
 examples of always block: 

 always @ (A,B,C) begin  
o all statements will be evaluated whenever A, B, or C change their 

values 
 always @ (posedge CLK) begin  

o all statements will be evaluated on the positive (rising) edge of the CLK 
signal 

 always @ (*) begin 
o all statements will be evaluated whenever any input signal in the 

always block changes 
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o case syntax 
 similar to the case structure in C 
 compares expression to a set of cases and evaluates the statement(s) associated 

with first matching case  
 all cases defined between case (signal) .. endcase 
 multiple statements for a case must be enclosed in a begin and end block 
 multiple comparison signals can be concatenated as case ({signal1, signal2 

…signaln}) and compared against values of their total bit width 
 If the logic does not cover all possible bit combinations of the comparison signal(s), 

a default case must be added.  
o example Verilog program with truth table 

        
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o example Verilog program with multi-input XOR 
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 structural code 
o relies on instantiating every module and connecting their inputs and outputs manually 
o logic can be described without the use of boolean operators, logical constructs (if-else, 

case), always blocks or assign statements 
 module_name instance_name (signal_list); will instantiate a module of type 

module_name called instance_name (the signal_list corresponds to the inputs and 
outputs, also called the port list) 

 and AND2 (XY, X, Y); will instantiate an AND gate with inputs X and Y with output 
XY 

 xor OR (X_Y,X,Y); will instantiate a 2-input XOR gate  
o built-in primitives: and, or, nand, nor, xor, xnor, not, buf,bufif0, bufif1, notif0, notif1 
o example: 

 
module structural_ex(A,B,C,D,X,Y); 
  input wire A, B, C, D; 
  output wire X, Y;  
  wire AB, CD; 
  and AND2a (AB, A, B);  // AB = A & B 
  and AND2b (CD, C, D);  // CD = C & D 
  or OR2a (X, AB, CD);   // X = AB | CD 
  assign Y = (A & B) | (C & D); 
endmodule 

  

X and Y evaluate the 
same function 

X : Structural style/code  

Y : Dataflow style/code   
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 detailed example – “crazy grader” (a.k.a. “arbitrary uniformed grading hack” –or– “AUGH”) 

o four input variables (E, R, S, T)  
o five output functions (A, B, C, D, F) 
o “stick built” (using SSI parts) vs. GAL22V10 (programmed using Verilog) 

 
 

/* Who Wants to be a Digijock */ 
module gameshow(E,R,S,T,A,B,C,D,F); 
  input wire E,R,S,T  /* synthesis loc=“2,3,4,5” */; 
  output wire A,B,C,D,F /* synthesis loc=“14,15,16,17,18” */; 
  /* Quick and easy way in Verilog */ 
  /* …“by inspection” from problem statement */ 
  assign A = (R & T) | (R & ~S); 
  assign B = (E & ~R & ~S) | (~R & ~T & ~S); 
  assign C = S & ~T; 
  assign D = T & ~E & ~R; 
  assign F = ~A & ~B & ~C & ~D;  
  // or assign F = E & S & T & ~R; 
endmodule 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

vs. 

vs. 5 
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Lecture Summary – Module 2-G 
Combinational Building Blocks: Decoders/Demultiplexers 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 384-398, 5th Ed. pp. 250-256, 260-278 
 
 overview 

o a decoder is a multiple-input, multiple-output logic circuit that converts coded inputs into 
coded outputs (in a one-to-one mapping, each input code word produces a different 
output code word) 

o n-bit binary input code most common 

o 1-out-of-m output code most common (note: output code bits are mutually exclusive) 

o binary decoder: n to 2n  (n-bit binary input code, 1-out-of-2n output code) 

o example: 2-to-4 (2:4) binary decoder or 1-to-4 (1:4) demultiplexer 

 

 

 

 

 

 

 

 key observations 

o each output of an n to 2n binary decoder represents a minterm of an n-variable Boolean 
function; therefore, any arbitrary Boolean function of            n-variables can be realized 
with an n-input binary decoder by simply “OR-ing” the needed outputs  

o if the decoder outputs are active low, a NAND gate can be used to “OR” the minterms of 
the function (representing its ON set)  

o if the decoder outputs are active low, an AND gate can be used to “OR” the minterms of 
the complement function (representing its OFF set)  

o a NAND gate (or AND gate) with at most 2n-1 inputs is needed to implement an arbitrary 
n-variable function using an n to 2n binary decoder (that has active low outputs)  

 general circuit for implementing an arbitrary n-variable function using a decoder, for case 
where ON set has  2n-1 members 

 

 

 

  

Note that EN can also be 
construed as a digital input 
that is routed to the selected 
output, in which case the 
circuit would be referred to 
as a demultiplexer 
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 decoders/demultiplexers in Verilog 

 

 

 

 

 

 

 

 

 

 

 

 special purpose decoders (e.g., 7-segment display)  
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Lecture Summary – Module 2-H 
Combinational Building Blocks: Encoders and Tri-State Outputs 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 408-415, 430-432; 5th Ed. 279-280, 308-310 
 
 overview 

o an encoder is an “inverse decoder” – the role of inputs and outputs is reversed, and there 
are more input code bits than output code bits  

o common application: encode “device number” associated with service request  

o problem: more than one device may be requesting service at a given instant – motivation 
for “priority encoder” 

 priority encoders 

o inputs are numbered, priority is assigned based on number (usually lowest number  
lowest priority, etc., but not always) 

o easiest way to do this in Verilog is using casez construct 

o example – 8:3 priority encoder with “strobe output” to indicate if any of the encoder 
inputs have been asserted 

 Verilog casez construct 

o use ? as wild card 

o beware of non-unique expressions: 1st matching expression wins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

module pri_enc(I, E, G); 
 
  input wire [7:0] I;  // Input 0 - lowest priority, Input 7 - highest priority 
  output wire [2:0] E; // Encoded output 
  output wire G;       // Strobe output (asserted if any input is asserted) 
 
  reg [3:0] EG; 
 
  always @ (I) begin 
    casez (I) 
      8'b00000000:  EG = 4'b0000;  // No inputs asserted 
      8'b00000001:  EG = 4'b0001;  // Input 0 wins 
      8'b0000001?:  EG = 4'b0011;  // Input 1 wins 
      8'b000001??:  EG = 4'b0101;  // Input 2 wins 
      8'b00001???:  EG = 4'b0111;  // Input 3 wins 
      8'b0001????:  EG = 4'b1001;  // Input 4 wins 
      8'b001?????:  EG = 4'b1011;  // Input 5 wins 
      8'b01??????:  EG = 4'b1101;  // Input 6 wins 
      8'b1???????:  EG = 4'b1111;  // Input 7 wins 
    endcase 
  end 
 
  assign {E,G} = EG; 
 
endmodule 
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 examine the “reduced equation report” produced by ispLever  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 tri-state (three-state) outputs 
o in Verilog, an output value of 'bZ (High- Impedance or Hi-Z) assigned to an output port 

disables the output 
o “tri” is the datatype used for tri-state variables 
o can use the conditional operator "? :" to implement a tri-state buffer 
o example: Create a Verilog module that implements a 4:2 priority encoder with tri-state 

encoded outputs (E1, E0) - design should include an active high output strobe (G) that is 
asserted when any input is asserted  

 

  

Note on ispLEVER operators: AND - &, OR - #, NOT - !, XOR - $ 
Title: 8-to-3 Priority Encoder Using GAL 22V10   
 
 P-Terms   Fan-in  Fan-out  Type  Name (attributes) 
---------  ------  -------  ----  ----------------- 
   4/1        4        1    Pin-  E2  
   8/1        8        1    Pin-  G  
   4/3        6        1    Pin-  E1  
   4/4        7        1    Pin   E0  
========= 
  20/9          Best P-Term Total: 9 
                       Total Pins: 12 
                      Total Nodes: 0 
            Average P-Term/Output: 2 
 
Positive-Polarity (SoP) Equations: 
E2 = (I7 # I6 # I5 # I4); 
G  = (I7 # I6 # I5 # I4 # I3 # I2 # I1 # I0); 
E1 = (I7 # I6 # !I5 & !I4 & I3 # !I5 & !I4 & I2); 
E0 = (I7 # !I6 & I5 # !I6 & !I4 & I3 # !I6 & !I4 & !I2 & I1); 
 
Reverse-Polarity Equations: 
!E2 = (!I7_& !I6_& !I5 & !I4); 
!G  = (!I7 & !I6 & !I5 & !I4 & ! 13 & !I2 & !I1 & !I0); 
!E1 = (!I7 & !I6 & I5 # !I7 & !I6 & I4 # !I7 & !I6 & !I3 & !I2); 
!E0 = (!I7 & I6 # !I7 & !I5 & I4 # !I7 & !I5 & !I3 & I2 # !I7 & !I5 & !I3 & !I1); 

module prienc42(I, E_z, G, EN);
 
  input wire [3:0] I;   // Input 0 - lowest priority,  
                        // Input 3 - highest priority 
  input wire EN;        // Tri-state enable control input 
  output tri [1:0] E_z; // Encoded tri-state enabled output 
  output wire G;       // Strobe output (high if any input is asserted) 
  reg [2:0] EG;        // EGS = {E,G} 
  always @ (I) begin 
    casez (I) 
      4'b0000:  EG = 3'b000; // No inputs active 
      4'b0001:  EG = 3'b001; // Input 0 wins 
      4'b001?:  EG = 3'b011; // Input 1 wins 
      4'b01??:  EG = 3'b101; // Input 2 wins 
      4'b1???:  EG = 3'b111; // Input 3 wins 
    endcase 
  end 
  assign GS = EG[0]; 
  assign E_z = EN ? EG[2:1] : 2'bZ; 
 
endmodule 
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X Y F(X,Y)
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i1 i0

X   Y
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Functional values 
assigned to each 

combination

Lecture Summary – Module 2-I 
Combinational Building Blocks: Multiplexers 

 
Reference:  Digital Design Principles and Practices 4th Ed. pp. 432-440, 445-446; 5th Ed. pp. 281-289, 290-291 
 
 overview 

o a multiplexer is a digital switch that uses s select lines to determine which of n = 2s inputs 
is connected to its output 

o each of the input paths may be b bits wide 

o equation implemented by s-select line mux is the SoP form of a general s-variable Boolen 
function:  F(X,Y) = a0•X•Y + a1•X•Y + a2•X•Y + a3•X•Y 

o general structure 

 

 

 

 

 

 

 truth table analogy 

 

 

 

 

 

 

 

 

 

 

 example: 8-to-1 (8:1) multiplexer 

 

 

 

 

 

 

  

Number of different 
functions of s 
variables possible: 
 

 

module mux811(D, EN, S, Y); 
  input wire [7:0] D; // Data inputs 
  input wire EN;  // Function enable 
  input wire [2:0] S; // Select lines 
  output wire Y;  // Output 
  assign Y = EN & (!S[2] & !S[1] & !S[0] & D[0] | 
            !S[2] & !S[1] &  S[0] & D[1] | 
        !S[2] &  S[1] & !S[0] & D[2] | 
        !S[2] &  S[1] &  S[0] & D[3] | 
         S[2] & !S[1] & !S[0] & D[4] | 
         S[2] & !S[1] &  S[0] & D[5] | 
         S[2] &  S[1] & !S[0] & D[6] | 
         S[2] &  S[1] &  S[0] & D[7] ); 
endmodule 
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 example – multiplexer function realization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 multiplexers in Verilog (8-bit wide 4:1 mux example) 

 

  

 

 

 

 

 

 

 

 

 

 

 

module mux418a(EN, S, A, B, C, D, Y_z);
  input wire EN;     // Tri-state output enable line 
  input wire [1:0] S;   // Select inputs 
  input wire [7:0] A, B, C, D; // 8-bit input buses 
  output tri [7:0] Y_z;    // 8-bit output bus 
  wire [7:0] Y;  
  assign Y = !S[1] & !S[0] & A |  
             !S[1] &  S[0] & B | 
              S[1] & !S[0] & C | 
              S[1] &  S[0] & D; 
  assign Y_z = EN ? Y : 8'bZZZZZZZZ; 
endmodule 

module mux418b(EN, S, A, B, C, D, Y_z);
  input wire EN;                // Tri-state output enable line 
  input wire [1:0] S;        // Select inputs 
  input wire [7:0] A, B, C, D;  // 8-bit input buses 
  output tri [7:0] Y_z;        // 8-bit output bus 
  reg [7:0] Y; 
  assign Y_z = EN ? Y : 8’bZZZZZZZZ; 
  always @ (S) begin 
  // Y = 8’b00000000; 
    if (S == 2'b00)      Y = A; 
    else if (S == 2'b01) Y = B; 
    else if (S == 2'b10) Y = C; 
    else if (S == 2'b11) Y = D; 
  // else Y = 8’b00000000; 
  end 
endmodule 
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/* Big Multiplexer */ 
module bigmux(EN, S, A, B, C, D, Y_z); 
  input wire EN; 
  input wire [1:0] S; 
  input wire [7:0] A, B, C, D; 
  output tri [7:0] Y_z; 
  wire [7:0] Y; 
  assign Y_z = EN ? Y : 8'bZZZZZZZZ; 
  assign Y = ~S[1] & ~S[0] & A |  
             ~S[1] &  S[0] & B |  
              S[1] & ~S[0] & C |  
              S[1] &  S[0] & D; 
endmodule 
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Lecture Summary – Module 2-J 
Top Level (Hierarchical) Models 

 
Reference:  Digital Design Principles and Practices (4th Ed.), pp. 306-308 
 
 definition: A top level module is the highest level module in a design hierarchy that instantiates 

other modules and connects them 
 separating logic across multiple modules serves the advantage of reusability for modules and 

removing redundant logic 
 example: If two modules use a 4-to-1 mux, create a separate module for the mux, and simply 

instantiate it in the other modules 
 follows structural style of instantiation:  module_name instance_name (signal_list); 
 signals in signal_list will be connected in the order of that module’s portlist – this is called port 

mapping by order 
 alternatively, port mapping by name can be used, which is a more error-free method – here, each 

signal passed to the instantiated module uses the name of the signal in the module’s port list to 
indicate where it is  connected 

 

 


