

ECE 270 Lab Verification / Evaluation Form

Experiment 12

Evaluation:

IMPORTANT! You must complete this experiment during your scheduled lab period.
All work for this experiment must be demonstrated to and verified by your lab instructor
before the end of your scheduled lab period.

STEP DESCRIPTION MAX SCORE

Pre-lab 1 Block diagram of circuit detailing interconnections 4

Step 1 Port scrolling message display module from Lab 10 2

Step 2 Port linear feedback shift register module from Lab 11 2

Step 3 4-bit radix adder/subtractor module with condition codes 2

Step 4 4-bit radix magnitude comparator module 2

Step 5 4-bit round counter module 2

Step 6 BCD full-adder module 2

Step 7 2-digit BCD score adder/accumulator module 3

Step 8 Win/lose detector module with programmable threshold 1

Step 9 Functioning game based on “wiring” modules together 1

Step 10 Thought questions 4

 TOTAL 25

Signature of Evaluator: __

Academic Honesty Statement:

 “In signing this statement, I hereby certify that the work on this experiment is my own and

that I have not copied the work of any other student (past or present) while completing this
experiment. I understand that if I fail to honor this agreement, I will receive a score of ZERO
for this experiment and be subject to possible disciplinary action.”

Printed Name: _____________________ Class No. __ __ __ __ - __

Signature: ____________________________________ Date: _______

ECE 270 - Experiment 12 Purdue IM:PACT

Little Bits Lab Manual -1- © 2019 by D. G. Meyer

The “Non-Elite Academic Exercise” Game
-or-

The Radix Price is Right!

Instructional Objectives:
 To practice creating a variety of arithmetic circuits

Prelab Preparation:
 Read this document in its entirety
 Review the referenced Module 4 lecture material

Experiment Description:
In this experiment you will create what is indisputably an “academic exercise” with little social
significance to the “cultural elites” who sit in the back row and text on their smart phones and/or
check social media on their laptops during class. It may, however, provide a unique opportunity
to impress your friends from other majors.

Imagine you are creating a new TV game show called The Radix Price is Right!, in which a
digitally-astute contestant attempts to guess the price of really cheap, perhaps even worthless
“stuff” (like first generation iPhones or Green New Deal posters). The added twist is that some
of the stuff is so cheap that someone would have to pay you to take it (i.e. the price is a negative
number). Like the “real” TV game show upon which this non-elite academic exercise is loosely
fashioned, each time the contestant guesses the (randomly generated) “price” exactly they will
earn 9 points. If the guess is “low” the contestant will earn 4 points, but if the guess is “high” the
contestant will earn zero points. The contestant’s point total will be displayed as a two-digit BCD
number (on DIS4 and DIS3), while the round number (starting at 1) will be displayed as a
single BCD digit (on DIS1). A 4-bit linear feedback shift register (LFSR) will be used to
generate the “radix (two’s complement) price” for each round: here, the radix price will range
from -810 (10002) to +710 (01112) dollars. The contestant will enter their guess using DIP[3:0].
Each guess will be “clocked in” using the right pushbutton (S1BC), which will update the
contestant’s score, advance the round number, and advance the LFSR to its next state. After the
guess for the 9th round is clocked in, the contestant’s score followed by the string “yEAH” or
“LoSEr” will continuously scroll across the 7-segment displays, based on whether a point total
of the specified threshold (given in the lab12_top_template.v file) was earned. For
debugging purposes, DIP[7] will be used to either “hide” the LFSR state and comparator
results (shown on the jumbo LEDs) or display them, enabling one to play in “cheat” mode.
The left pushbutton (S2BC) will be used to asynchronously reset the game.

Pre-lab Step (1):
Referring to the lab12_top_template.v file provided for this experiment on the course website,
sketch a block diagram of the entire circuit on the page that follows, showing the
interconnections among the various modules as well as all the inputs (DIP switches and
pushbuttons) and outputs (LEDs).

ECE 270 - Experiment 12 Purdue IM:PACT

Little Bits Lab Manual -2- © 2019 by D. G. Meyer

 Block Diagram:

ECE 270 - Experiment 12 Purdue IM:PACT

Little Bits Lab Manual -3- © 2019 by D. G. Meyer

Step (1):
Carefully examine the lab12_top_template.v file provided for this experiment on the
course website. Rename this file myuserid_lab12.v (where myuserid is your 8-character
login name) and insert your identifying information where indicated. Next, open ispLever and
create a new Verilog project named Lab12, select LC4256ZE-5TN144C as the device to use,
and import your myuserid_lab12.v source file. Next, import the “scrolling message display”
Verilog modules (msggen.v and dispshift.v) you wrote for Lab 10 into your
myuserid_lab12.v source file. Modify the msggen.v state machine so that mSEL is a one-
bit value (instead of two), and include an enable (EN) signal. The characters denoted “#” are the
contestant’s final score (at the conclusion of the game), which gets scrolled along with the
win/lose message string. Test your modified scrolling message display as outlined in the top
template file. The two message strings should be as follows:

mSEL Scrolling Message Displayed
0 blank  # #  blankL o SE r  blankblank…
1 blank  # #  blanky E  A Hblankblank…

Step (2):
Import the linear feedback shift register Verilog module you wrote for Lab 11 and modify it so
that it is 4-bits wide. Use the feedback described on page 739 (4th Ed.) or p. 575 (5th Ed.) that
causes the LFSR to cycle through all 16 possible states (including 0000). Use the right
pushbutton (S1BC) to clock the LFSR and the left pushbutton (S2BC) to provide it with an
asynchronous reset. Route the LFSR outputs to MIDRED[3:0], and use DIP[7] to control
whether the LFSR state is “hidden” or displayed. Verify that the LFSR visits all 16 possible
states in pseudo-random order.

Checkpoint: Demonstrate Steps 1 and 2 to your Lab Instructor.

Step (3):
Create a 4-bit adder/subtractor Verilog module that generates CF, NF, ZF, VF condition codes.
Signed 4-bit operand X[3:0] will be entered using DIP[7:4], while Y[3:0] will be entered
using DIP[3:0]. The add/subtract mode will be controlled by the left pushbutton (S2BC): “not
pressed” for add, “pressed” for subtract. Route the 4-bit sum/difference to TOPRED[3:0], and
route the CF, ZF, NF, and VF condition codes to TOPRED[7:4], respectively. Verify
adder/subtractor and condition code functionality using the sample test cases shown below (plus
any other test cases you deem necessary):

 1 0 1 1
 + 1 0 1 0
 ––––––––––-
 1 0 1 0 1

C=1, Z=0, N=0, V=1

 1 0 0 1
 - 1 0 1 1
 ––––––––––-

 1 0 0 1
 0 1 0 0
 + 0 0 0 1
 ––––––––––-
 1 1 1 0

C=0, Z=0, N=1, V=0

 0 0 0 1
 + 1 1 1 1
 ––––––––––-
 1 0 0 0 0

C=1, Z=1, N=0, V=0

ECE 270 - Experiment 12 Purdue IM:PACT

Little Bits Lab Manual -4- © 2019 by D. G. Meyer

Step (4):
Create a magnitude comparator Verilog module that determines if X > Y, X = Y, or X < Y based
on the condition codes generated by the 4-bit adder/subtractor module realized in Step 3. For the
game to be implemented in this experiment, the adder/subtractor module will be set for subtract
mode, X will be the (LFSR-generated) price, and Y will be the contestant’s guess. For testing
purposes, if X > Y, then the jumbo yellow LED should be illuminated (indicating that the
contestant’s guess was too low); if X = Y, the jumbo green LED should be illuminated (guess
was correct); and if X < Y, the jumbo red LED should be illuminated (guess was too high). Your
magnitude comparator module should also generate the “points earned” based on each condition:
4 points if the guess was too low, 9 points if the guess was exactly right, and 0 points if the guess
was too high. Verify that the magnitude comparator works as expected for various price/guess
combinations (for testing purposes, values for X and Y will be entered on DIP switches, as
detailed in the lab12_top_template.v file). Recall that X and Y are signed 4-bit numbers.

Checkpoint: Demonstrate Step 4 to your Lab Instructor.

Step (5):
Create a 4-bit binary “round counter” Verilog module that initializes to state 0001 (upon game
reset) and increments by one each time it is clocked until it reaches state 1010, at which point it
“freezes” (i.e. advances no further). Use the left pushbutton (S2BC) to asynchronously reset the
counter to its initial state, and the right pushbutton (S1BC) to clock it. Use an instantiation of the
bcd2dis module (provided) to convert the round counter output to display code; route the
output to DIS1. The round counter should also generate a “game over” signal that can be used to
select the 7-segment display mode. Verify that the “round counter” works as expected.

Step (6):
Create a BCD full-adder Verilog module based on the design presented in the Lecture Summary
notes (two instantiations of this module will be used to realize the 2-digit BCD adder module in
Step 7). Verify that your BCD full adder works as expected for a representative set of operand
combinations (for testing purposes, the two BCD operands will be entered on DIP switches, and
CIN will be set to “1”).

Checkpoint: Demonstrate Steps 5 and 6 to your Lab Instructor.

Step (7):
Create a two-digit BCD adder Verilog module that will successively add the points earned by the
contestant in each round to their “running total” (stored in an 8-bit register). The points earned
on each round are supplied by the magnitude comparator module, described in Step 4. When the
game is reset, the point total should be cleared to 00; use the left pushbutton (S2BC) to
asynchronously reset the running total register to zero. Use instantiations of the bcd2dis
module (provided) to convert the two “running total” BCD digits to display code; route the
outputs to 7-segment displays DIS4 and DIS3. Note that the maximum point total possible is 81,
based on making exact guesses in each of the 9 rounds. Verify that the point total display updates
on each round as expected (and “freezes” once round 9 is completed).

ECE 270 - Experiment 12 Purdue IM:PACT

Little Bits Lab Manual -5- © 2019 by D. G. Meyer

Step (8):
Create a Verilog module that determines “win/lose” status based on the “winning threshold”
specified in its instantiation. Its only job is to output a single bit that can be used to determine
which message string to scroll once the game is over. Note that this module simply performs an
unsigned comparison between the “fixed” (2-digit BCD) threshold indicated in the
lab12_top_template.v file and (2-digit BCD) myscore earned by the contestant. Test it by
following the instructions in the lab12_top_template.v file, and verify it works as expected.

Step (9):
You are now ready to “wire” together all the modules previously tested to create a functioning
game that you can play and test your prescient skills. Verify that the final point total followed by
the appropriate string is continuously scrolled on the 7-segment displays once the game is
completed. Note: As a quick test, if the guess is set to 0000 for all 9 rounds, the point total
should be 29. With “cheat” mode enabled, verify your ability to both “win” and “lose”
The Radix Price is Right!

Checkpoint: Demonstrate Step 9 to your Lab Instructor.

Step (10): Write your answers to the following Thought Questions in the space provided.

1. Examine the fitter report generated by ispLever and determine the total number of flip-
flops utilized by your design as well as the total number of P-terms and macrocells.

Number of flip-flops: __

Number of P-terms: __

Number of macrocells: __

2. Write down the sequence of states (as signed decimal numbers) generated by the LFSR
(these are the “prices” the contestant is attempting to guess on each round):

__

__

3. Try playing the game in “non-cheat” mode (i.e. with the LFSR state and comparator
display disabled) and determine your maximum score. Write down your series of guesses.

__

4. Empirically determine the maximum score one can obtain with a single “fixed” guess
(i.e. same guess used for each round).

__

__

