
ECE 270 Lab Verification / Evaluation Form

Experiment 11

Evaluation:

IMPORTANT! You must complete this experiment during your scheduled lab period.
All work for this experiment must be demonstrated to and verified by your lab instructor
before the end of your scheduled lab period.

STEP DESCRIPTION MAX SCORE

Pre-lab 1 Block diagram of circuit detailing interconnections 4

Step 1 Scrolling message display modules ported from Lab 10 3

Step 2 Binary up-counter module with integrated state decoder 4

Step 3 Linear feedback shift register module 3

Step 4 Combination match detector module 2

Step 5 Sequence recognizer state machine module 6

Step 6 Thought questions 3

 TOTAL 25

Signature of Evaluator:

Academic Honesty Statement:

“In signing this statement, I hereby certify that the work on this experiment is my own and that I have
not copied the work of any other student (past or present) while completing this experiment.
I understand that if I fail to honor this agreement, I will receive a score of ZERO for this experiment and
be subject to possible disciplinary action.”

Last Name (Printed): ______________________________ Lab Div: _____ Date: ____________

E‐mail: __ __ __ __ __ __ __ __ @purdue.edu Signature: __________________________________

ECE 270 - Experiment 11 Purdue IM:PACT

Little Bits Lab Manual -1- © 2019 by D. G. Meyer

Digital Combinational Lock with Pseudo-Random Combination

Instructional Objectives:
 To practice creating a sequence recognizer

Pre-lab Preparation:
 Read this document in its entirety
 Review the referenced Module 3 lecture material
 Read pp. 736-740 (4th Ed.) or pp. 574-577 (5th Ed.) in the course text

Experiment Description:
In this experiment you will create a digital combinational lock (DCL) that generates a pseudo-
random 8-bit binary combination and “unlocks” when the selected combination is manually
entered. A linear feedback shift register (LFSR) will be used to generate the pseudo-random
combination, which will be displayed on the top row of red LEDs when DIP[5]=1 (and “hidden”
when DIP[5]=0). The randomly-generated combination will keep changing as long as DIP[4]=1;
it will “freeze” when DIP[4]=0. The left pushbutton (S2BC) will be used to asynchronously set
the flip-flops that comprise the LFSR portion of the circuit.

When the DCL is in the initial (“locked”) state, the scrolling string “SECUrE” will be displayed
on the four 7-segment displays. The left pushbutton (S2BC) will be used to asynchronously reset
the flip flops that comprise the sequence recognizer portion of the circuit to enter this initial state.
The randomly-generated binary combination will then be entered into the sequence recognizer
portion of the circuit using DIP[7]; the right pushbutton (S1BC) will be used to “clock in” the
selected data bit entered on DIP[7]. The second row of LEDs (MIDRED) will be used to display
a ring-like counter that advances as each digit of the combination is entered, serving as a “pointer”
to the selected bit of the pseudo-random combination that is to be “matched.” As the combination
is being entered, the 7-segment displays will go blank and the (jumbo) yellow LED will be
illuminated (to signify that “entering combination” is in process).

Once the 8-bit combination has been successfully entered, the scrolling string “OPEn” will be
displayed on the four 7-segment LEDs and the (jumbo) green LED will be illuminated. Once
unlocked, the sequence recognizer will ignore any further data entry from the state machine
clocking pushbutton (S1BC) until the synchronous “relock” input DIP[6] is asserted, at which time
clocking in either a “0” or “1” data bit (entered via DIP[7]) will return the state machine to its
initial locked condition.

If a “mistake” is made at any point while the combination is being entered, however, the lock
should enter the “alarm” state. The alarm condition is indicated by flashing the jumbo red LED
at a 2.5 Hz rate and continuously scrolling the string “Error” across the four 7-segment LEDs.

Pre-lab Step (1):
Referring to the lab11_top_template.v file provided for this experiment on the course
website, sketch a block diagram of the entire circuit on the page that follows, showing the
interconnections among the various modules as well as all the inputs (DIP switches and
pushbuttons) and outputs (LEDs).

ECE 270 - Experiment 11 Purdue IM:PACT

Little Bits Lab Manual -2- © 2019 by D. G. Meyer

Block Diagram:

ECE 270 - Experiment 11 Purdue IM:PACT

Little Bits Lab Manual -3- © 2019 by D. G. Meyer

Step (1):
Carefully examine the lab11_top_template.v file provided for this experiment on the
course website. Rename this file myuserid_lab11.v (where myuserid is your 8-character login
name) and insert your identifying information where indicated. Next, open ispLever and create a
new Verilog project named Lab11, select LC4256ZE-5TN144C as the device to use, and import
your myuserid_lab11.v source file. Next, import the “scrolling message display” Verilog
modules (msggen.v and dispshift.v) you wrote for Lab 10 into your myuserid_lab11.v
source file. Modify the msggen.v state machine so that a new message will start immediately as
soon as mSEL is changed. Test your modified scrolling message display as outlined in the top
template file. The four message strings should be as follows:

mSEL Scrolling Message Displayed
0 blank …
1 blank  S E  C U rE  blankblank…
2 blank  o P  E nblankblank…
3 blank  E r  r  o  r  blankblank…

Step (2):
Write a Verilog module up_count_decode.v that realizes a 3-bit synchronously resettable
binary up counter with an integrated 3:8 decoder. This counter should also include an enable as
well as the usual asynchronous reset. Test all the modes of your counter/decoder module as
outlined in the top template file.

Checkpoint: Demonstrate Steps 1 and 2 to your Lab Instructor.

Step (3):
Write a Verilog module lfsr.v that realizes an 8-bit linear feedback shift-register that generates
a pseudo-random sequence, as described in the referenced pages of the course text. Use DIP[4] to
enable/disable the sequence generation (when disabled, the current state should be retained). Route
the outputs of the LFSR to the top row of red LEDs (TOPRED), and use DIP[5] to control whether
the LFSR outputs are “hidden” or displayed. Use the left pushbutton (S2BC) to asynchronously
set the flip-flops that comprise the LFSR portion of the circuit.

Step (4):
Write a Verilog module match_detect.v that determines if the current combination data bit
that has been entered on DIP[7] and “clocked in” (using the right pushbutton S1BC) matches the
corresponding digit of the randomly-generated combination (output of the LFSR, displayed on
TOPRED). Whether or not a match has occurred should be signaled on output match_out. Test
your match detector module as outlined in the top template file.

Checkpoint: Demonstrate Steps 3 and 4 to your Lab Instructor.

ECE 270 - Experiment 11 Purdue IM:PACT

Little Bits Lab Manual -4- © 2019 by D. G. Meyer

Step (5):
Write a Verilog module dcl.v that realizes the sequence recognizer portion of the circuit. Use
the left pushbutton (S2BC) to provide an asynchronous reset to all of the sequence recognizer’s
flip-flops. Use the right pushbutton (S1BC) to clock the sequence recognizer, use DIP[7] to enter
the combination digits, and use DIP[6] to provide the (synchronous) “relock” signal. Note that the
data bit entered has to “match” the corresponding bit of the pseudo-random combination generated
by the LFSR in order to advance toward the “open” state, and that the MIDRED LEDs (the decoded
counter outputs) “point” to the bit of the combination that is currently in play. While the
combination is being entered, the jumbo yellow LED should be illuminated. If all eight digits of
the combination are successfully entered, the jumbo green LED should be illuminated signifying
the “open” state. Once the open state is reached, the “combination pointer” should return to its
initial state (and stay there) and the sequence recognizer should ignore any further data entry from
the pushbutton switches until the “relock” input (DIP[6]) is asserted, at which time clocking in
either a “0” or “1” data bit will return the state machine to the initial locked condition. If, however,
a “mistake” is made at any point during entry of the combination, the jumbo red LED should begin
to flash at a 2.5 Hz rate (approximately) to signify an “alarm” condition. Note that an asynchronous
reset (left pushbutton S2BC) is the only means by which the sequence recognizer can be reset once
the alarm state is reached.

Checkpoint: Demonstrate Step 5 to your Lab Instructor.

Step (6): Write your answers to the following Thought Questions in the space provided.

1. Examine the fitter report generated by ispLever and determine the total number of flip- flops
utilized by your design as well as the total number of P-terms and macrocells.

Number of flip-flops:

Number of P-terms:

Number of macrocells:

2. Discuss why use of a Mealy model for the sequence recognizer portion of this design should
be avoided.

__

__

3. Describe how the LFSR could be modified to start in state 00000000 instead of state
11111111.

__

__

