
ECE 270 Lab Verification / Evaluation Form

Experiment 9

Evaluation:

IMPORTANT! You must complete this experiment during your scheduled lab period. All
work for this experiment must be demonstrated to and verified by your lab instructor
before the end of your scheduled lab period.

STEP DESCRIPTION MAX SCORE

Step 1 Original source file functionality verification 1

Step 2 Verilog module up_down_counter 5

Step 3 Bouncy switch investigation using up_down_counter 2

Step 4 Independently clocked up_down_counter pair 2

Step 5 Verilog module bintohex and display mode control 6

Step 6 Verilog module ring_counter 5

Step 7 Multi-mode light sequencer instantiation and verification 2

Step 11 Thought Questions 2

 TOTAL 25

Signature of Evaluator:

Academic Honesty Statement:

ECE 270 - Experiment 9 Purdue IM:PACT

Little Bits Lab Manual -1- © 2019 by D. G. Meyer

Introduction to ispMACH 4256ZE Development Board

Instructional Objectives:
 To learn the basic features of a CPLD-based development board
 To learn how to realize state machines on a CPLD

Prelab Preparation:
 Read this document in its entirety
 Review the referenced Module 3 lecture material

Lecture/Demonstration:
Your lab instructor will give a brief presentation that includes the following:
 An overview of the ispMACH 4256ZE
 An overview of ispLEVER procedures for loading and testing compiled HDL programs

Experiment Description:
In this experiment, you will implement and test some basic Verilog modules that illustrate how
the switches and LEDs on the ispMACH 4256ZE development board are interfaced to the CPLD.
A skeleton file containing the I/O pin declarations (“top template”) is provided on the course
website, along with an outline of the code modules that need to be written.

Figure 1. Lattice 4256ZE CPLD Development Board.

TOPRED (LED7 LED0)

MIDRED (LED15 LED8)

7-SEG (DIS4 DIS1)

JUMBO (LED16 LED18)

BOTRED (LED27 LED20)

LED28

S1 S2
DIP7DIP0

LED29

See Appendix A of this document for
instructions on how to program the
CPLD board at your station using
either ispVM System (integrated into
ispLever) or Diamond Programmer
(separate Lattice program).

ECE 270 - Experiment 9 Purdue IM:PACT

Little Bits Lab Manual -2- © 2019 by D. G. Meyer

Step (1):
Carefully examine the lab9_top_template.v file provided for this experiment on the course
website. Rename this file myuserid_lab9.v (where myuserid is your 8-character login name)
and insert your identifying information where indicated. Next, open ispLever and create a new
Verilog project named Lab9, select LC4256ZE-5TN144C as the device to use, and import your
myuserid_lab9.v source file. Click on “Fit Design” to compile the program, then follow the
instructions in Appendix A (at the end of this document) to load the JEDEC file created by
ispLever into the CPLD. Verify that DIP[7] enables/disables the display of GoPU on the four
7-segment displays, and that pressing either pushbutton lights the yellow LED next to it. Also
confirm that the state of the individual DIP switches is indicated on the bottom row of red LEDs.

Step (2):
First, comment out the “always” block used in Step 1. Then, write a Verilog module that realizes a
4-bit binary up/down counter. Instantiate two versions of your counter in the top-level module:
one with its output routed to countL clocked by the internal oscillator output, tmr_out; and the
other with its output routed to countR clocked by the divided clock output, tim_div. Set the
“count direction” for both counters to “up” (dir = 1) and use DIP[0] as the asynchronous reset
(rst) for both counters. Verify that both counters work as expected, and that countL increments
at twice the rate of countR. Also confirm that DIP[1] functions as the enable for the on-chip
oscillator.

Step (3):
First, comment out the counter instantiations used for Step 2. Then, instantiate two new versions
of your up/down counter in the top-level module: one with its output routed to countL clocked
by the right pushbutton de-bounced output, S1BC; and the other with its output routed to
countR clocked by the “raw” (inherently bouncy) switch contact, S1_NO. Set the “count
direction” for both counters to “up” (dir = 1) and use DIP[0] as the asynchronous reset (rst)
for both counters. Note that the counter outputs (countL and countR) are routed to the top
row of red LEDs (TOPRED). Verify that both counters work as expected, and observe the bouncy
behavior of the raw switch contact relative to the one that has been de-bounced. Also, note what
happens if the asynchronous reset (DIP[0]) is asserted while the counters are being clocked.

Checkpoint: Demonstrate Step 3 to your Lab Instructor, including the “bouncy” switch
behavior compared with the “de-bounced” behavior.

Step (4):
First, comment out the counter instantiations used for Step 3. Then, instantiate two new versions
of your up/down counter in the top-level module:
 one configured as an up/down counter, with its count direction controlled by DIP[6] and its

output routed to countL, clocked by the de-bounced left pushbutton (S2BC)
 one configured as an up (only) counter, with its output routed to countR and clocked by the

de-bounced right pushbutton (S1BC)
Use DIP[0] as the asynchronous reset (rst) for both counters. Confirm that both 4-bit binary
counters can be clocked independently using the left (S2) and right (S1) pushbuttons,
respectively. These up/down counter instantiations will remain in place for all subsequent steps
of this experiment.

ECE 270 - Experiment 9 Purdue IM:PACT

Little Bits Lab Manual -3- © 2019 by D. G. Meyer

Step (5):
Write a Verilog module that performs a conversion between 4-bit hexadecimal values and their
corresponding 7-segment display code. This module (bintohex) should input a 4-bit binary
value and convert it to the corresponding 7-segment display code. Next, instantiate two versions
of your bintohex module: one that converts countL to hexL, and another that converts
countR to hexR. Finally, write a procedural block that either displays GoPU on the four
segment displays (when DIP[7] = 1); or, when DIP[7]=0, displays hexL on 7-segment
display DIS4 and hexR on DIS1 (DIS2 and DIS3 should be blank when DIP[7]=0). Verify
that your bintohex module and supporting control code operate correctly.

Checkpoint: Demonstrate Steps 4 and 5 to your Lab Instructor.

Step (6):
Write a Verilog module ring_counter that realizes a self-correcting 8-bit ring counter and
route its outputs to the middle row of red LEDs (MIDRED). The behavior of a self-correcting ring
counter is described on page 28 of the Lecture Summary notes. Use tim_div as the clocking
source and DIP[0] as the asynchronous reset for this module. Verify that your ring counter
functions as expected.

Step (7):
Finally, instantiate the moorlsa_sd Verilog module for the 4-mode light sequencer described
in the class notes (included in the source file provided) and route the output variables to the
JUMBO (green/yellow/red) LEDs. Use tim_div as the clocking source and DIP[0] as the
asynchronous reset for this state machine. Use DIP[3] and DIP[2] to provide the “mode
control” inputs M1 and M0, respectively. Confirm that the light sequencer works as anticipated,
and that all four state machines (up/down counter clocked using left pushbutton, up-only counter
clocked using right pushbutton, ring counter clocked using internal oscillator, and light
sequencer clocked using internal oscillator) coexist “peacefully” and operate independently.

Checkpoint: Demonstrate Steps 6 and 7 to your Lab Instructor.

Step (8): Write your answers to the following Thought Questions in the space provided.

1. Based on observed counter behavior in response to the “bouncy” switch contact in Step 3,
estimate the average number of times the pushbuttons used on the demo board bounce
each time they are pressed. Describe any factors that appear to influence the “bounciness”
of the switch contacts.

2. What change would you make if you wanted to clock your state machine(s) even slower
than the “divided” clock (derived from the internal oscillator) utilized in this experiment?

ECE 270 - Experiment 9 Purdue IM:PACT

Little Bits Lab Manual -4- © 2019 by D. G. Meyer

GO

Appendix A: Programming the CPLD Board

There are two different tools that can be used to program the CPLD board: ispVM System
(tool within ispLever) and Diamond Programmer (separate Lattice program).

A. Using ispVM System

1. From the ispLever toolbar, select Tools ispVM System.
2. Click on the Scan icon; ispVM System should find the CPLD.

3. Click on the first line of the New Scan Configuration Setup box (that lists the
LC4256ZE) to bring up the Device Information dialog box; browse for the JEDEC
(.jed) file created by ispLever when you synthesized your Verilog module. Upon
clicking OK, the filename will be filled in.

4. On the ispVM System toolbar, select Project Project Settings; in the Project
Settings dialog box, click on Advanced. In the extension to this dialog box that appears,
enter a TCK Low Pulse Width Delay of 5.

5. After clicking OK, you are now ready to program the CPLD, which can be accomplished
by clicking on the GO icon (shown above).

 5

NOTE: If a “device not found”
error occurs when you click on the
Scan icon, go to the Options pull-
down menu and select Cable and
I/O port setup. In the dialog box
that appears, select USB2 as the
Cable Type, then click OK.

ECE 270 - Experiment 9 Purdue IM:PACT

Little Bits Lab Manual -5- © 2019 by D. G. Meyer

GO

B. Using Lattice Diamond Programmer
1. From the Windows Program menu, select Lattice Diamond Programmer.
2. On the Getting Started dialog box, select Create a new Project from a Scan then click

on the Detect Cable button; after scanning, Diamond Programmer should find the CPLD
board at your station.

3. Next, click on the box under the File Name heading and browse for the JEDEC (.jed) file
created by isp_Lever when you synthesized your Verilog module.

4. Next, go to Edit Settings and select the Programming tab; under the heading Pulse
Width Delay Settings, click on the Use Custom Pulse Width Delay radio button and
enter a TCK Low Pulse Width Delay of 5.

5. After clicking OK, you are now ready to program the CPLD, which can be accomplished
by clicking on the GO icon (shown above).

 5

ECE 270 - Experiment 9 Purdue IM:PACT

Little Bits Lab Manual -6- © 2019 by D. G. Meyer

C. Hierarchical Design and Adding Multiple Verilog Modules

1. The best way to describe hardware is by building your TOP level module with smaller
lower level modules. This is referred to as hierarchical design.

2. Your Verilog description can have multiple lower level modules but should have only
one TOP level module. All lower modules should be instantiated in the TOP module.

3. Modules and use of hierarchical design help in keeping your code organized and concise.
4. Your module hierarchy should appear as shown below when you are finished with this

experiment.

Top module

Lower Modules

NOTE: When large digital systems are designed, it is generally preferable to put
the lower-level modules in separate files. For this course, however, place all of your
lower-level modules in the same Verilog source file as your top-level module. This
will facilitate on-line submission of the code you write for each experiment.

