Practice Homework Problems for Module 1

- 1. Unsigned base conversions (LO 1-1).
 - (a) (2C9E)₁₆ to base 2

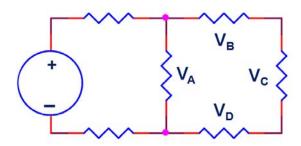
(b) $(1101001)_2$ to base 10

(c) $(1101001)_2$ to base 16

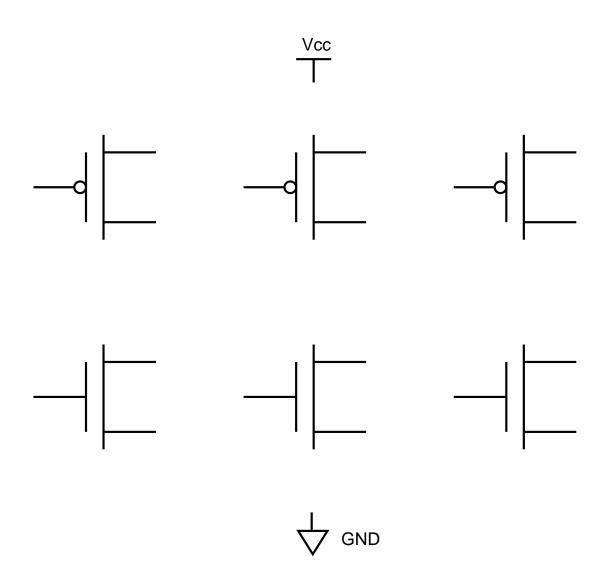
(d) $(8576)_{10}$ to base 16

(e) (A27F)₁₆ to base 8

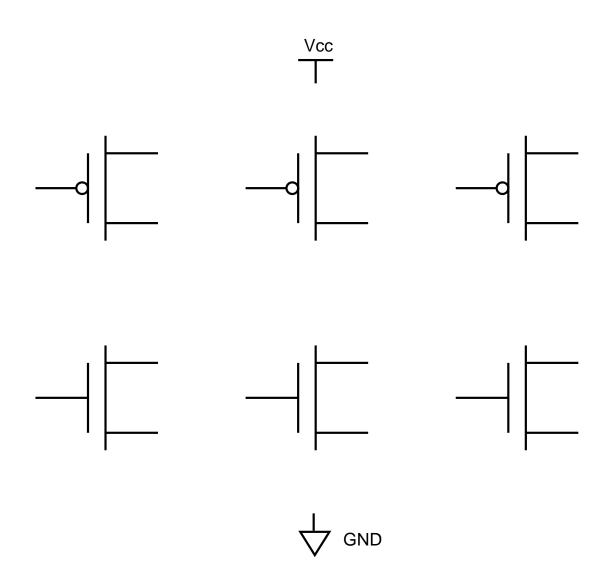
2.	Short answer questions over basic electronic components (LO 1-7).
	(a) Write two different <u>formulas</u> for OHM's LAW:
	(b) Describe what a <u>resistor</u> does:
	(c) Write two different <u>formulas</u> for calculating the power dissipation of a <u>resistor</u> :
	(d) Describe what a <u>diode</u> does.
	(e) Describe what affects the <u>brightness</u> of a light emitting diode (LED):
	(f) Describe what a <u>capacitor</u> does:
	(g) Describe a <u>functional difference</u> between a MOSFET and a BJT:
	(h) When a MOSFET is off, its drain-to-source impedance is on the order of:
	(i) When a MOSFET is <u>on</u> , its drain-to-source impedance is on the order of:
	(j) Describe a <u>functional difference</u> between an N-channel MOSFET and a P-channel MOSFET:


3. Prove DeMorgan's Law (T13) for **n=3** using perfect induction (LO 1-6).

X1	X2	X3	X1 · X2 · X3	(X1 · X2 · X3)	$(X1 \cdot X2 \cdot X3)'$	X1'	X2'	X3'	X1' + X2' + X3'
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							


4. Prove the dual of the Covering theorem (T9^D) using axioms and other theorems (LO 1-3).

$$(\mathbf{T9^D}) \quad \mathbf{X} \cdot (\mathbf{X} + \mathbf{Y}) = \mathbf{X}$$


5. Determine voltages V_A , V_B , V_C , and V_D if each resistor is 100Ω and the voltage source is 10 volts (LO 1-7).

6. Using a total of **three** N-channel MOSFETs and **three** P-channel MOSFETs, draw a circuit schematic for a **two-input AND** gate. The gate inputs should be labeled A and B, and the gate output should be labeled F. Be sure to show the power (Vcc) and ground (GND) connections as well (LO 1-10).

7. Using a total of **three** N-channel MOSFETs and **three** P-channel MOSFETs, draw a circuit schematic for a **three-input NOR** gate. The gate inputs should be labeled A, B and C, and the gate output should be labeled F. Be sure to show the power (Vcc) and ground (GND) connections as well (LO 1-12).

8.	Given that a (5-volt) CMOS gate's P-channel output pull-up has an "on" resistance of
	160Ω and that its N-channel output pull-down has an "on" resistance of $80Ω$:

(a)	If the desired V _{OHmin} is 4.4 volts and the desired V _{OLmax} is 0.4 volts, what are the
	gate's I _{OHmax} and I _{OLmax} ratings? (LO 1-19)

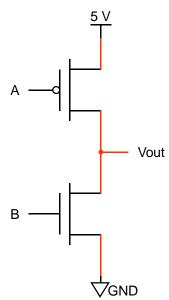
 $I_{OHmax} = \underline{\hspace{1cm}} mA$ $I_{OLmax} = \underline{\hspace{1cm}} mA$

(b) If a DCNM of 1.2 volts is desired for this CMOS gate family, what do its V_{IHmin} and V_{ILmax} specifications need to be, based on the values given in part (a)? (LO 1-14)

 $V_{IHmin} = \underline{\hspace{1cm}} V$ $V_{ILmax} = \underline{\hspace{1cm}} V$

(c) If the I_{IH} and I_{IL} specifications for gates in this family are +0.1 mA and -0.1 mA, respectively, what is the practical fan-out for circuits constructed using these gates, based on values calculated in part (a)? (LO 1-20)

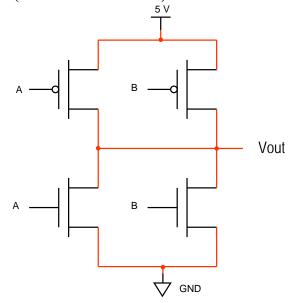
Practical fan-out = _____


(d) Show how an LED (with forward voltage $V_{LED} = 1.5 \text{ V}$) should be interfaced to gates in this family to obtain maximum brightness, and calculate the value of the current limiting resistor required along with its power dissipation. (LO 1-21)

Circuit and calculations:

Current limiting resistor = $\underline{\hspace{1cm}}\Omega$ Resistor power dissipation = $\underline{\hspace{1cm}}$ mW

9. Given that the P-channel device in the circuit below has **ON** and **OFF** resistances of **80** Ω and **2** $M\Omega$ (respectively) and that the N-channel device has **ON** and **OFF** resistances of **60** Ω and **3** $M\Omega$ (respectively), complete the table listing the **output voltages** obtained for each input combination as well as the **power dissipation** (in *milliwatts*). Show your calculations (LOs 1-10 and 1-11).


A	В	V_{out}	Power Dissipation
0V	0V		
0V	5V		
5V	0V		
5V	5V		

10. One of your best friends from another major, "Raul", found some N- and P-channel MOSFETs in your "geek box" and wired them together as shown below. Help Raul figure out what he has created by determining V_{out} for all possible input combinations (for the sake of analysis, assume the **ON** resistance of **each** MOSFET (both P- and N-channel) is 10Ω and that its **OFF** resistance is $1 M\Omega$ (LOs 1-10 and 1-11).

A	В	V_{out}
0V	0V	
0V	5V	
5V	0V	
5V	5V	

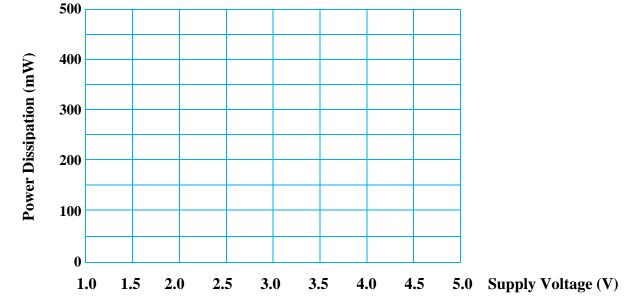
Describe what Raul has created:

11. A common question students have relates to *why* the P-channel device has to serve as a "pull-up" while the N-channel device has to serve as a "pull-down" (i.e., why can't it be the "other way around"?). To convince yourself of this reality, try drawing a CMOS inverter "upside down" (with an N-channel device used as a pull-up and a P-channel device used as a pull-down) and analyze the circuit you have created (i.e., determine its Vi-Vo characteristics). Describe your conclusion. (LO 1-10)

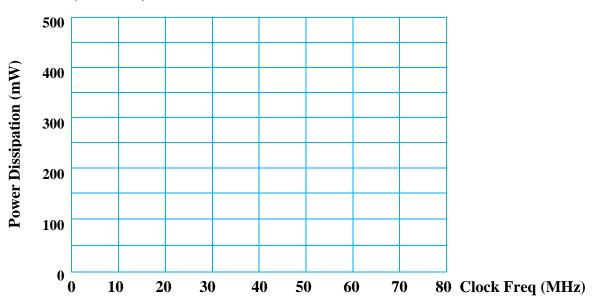
12. Assume two hypothetical logic families have the following D.C. characteristics:

Logic Family "A"

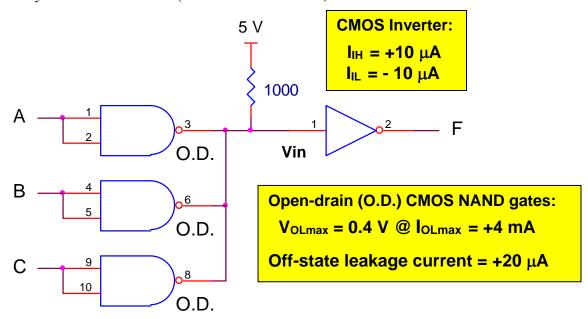
$V_{CC} = 5 \text{ V}$	$V_{OH} = 4.4 \text{ V}$	$V_{OL} = 0.40 \text{ V}$	$V_{IH} = 3.60 \text{ V}$	$V_{\rm IL}=1.60~\rm V$
$V_{TH} = (V_{OH} - V_{OL})/2$	$I_{OH} = -4 \text{ mA}$	$I_{OL} = 4 \text{ mA}$	$I_{IH} = 0.4 \mu A$	$I_{IL} = -0.4~\mu A$


Logic Family "B"

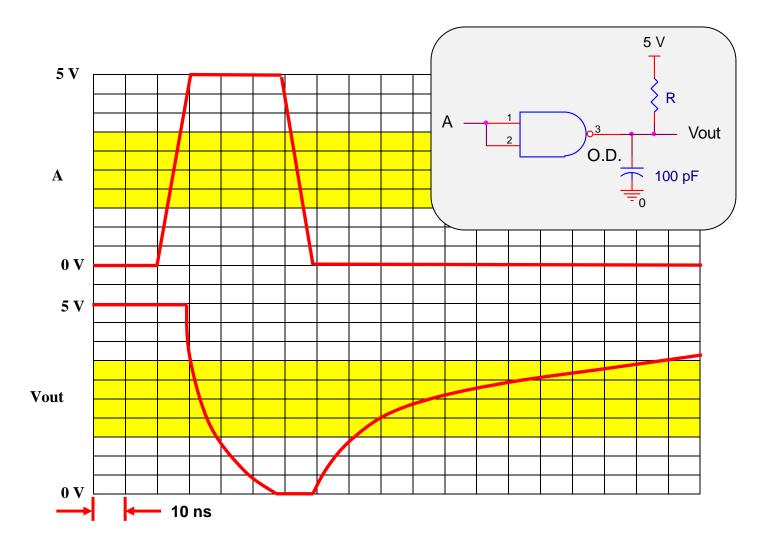
$V_{\rm CC} = 5 \text{ V}$	$V_{OH} = 3.3 \text{ V}$	$V_{OL} = 0.30 \text{ V}$	$V_{IH} = 2.60 \text{ V}$	$V_{\rm IL} = 1.60 \text{ V}$
$V_{TH} = (V_{OH} - V_{OL})/2$	$I_{OH} = -400 \mu A$	$I_{OL} = 8 \text{ mA}$	$I_{IH} = 40 \ \mu A$	$I_{IL} = -0.4 \text{ mA}$


- (a) Calculate the following (*show work*):
 - (LO 1-14) DCNM _{A→B}
 - (LO 1-14) DCNM $_{B\rightarrow A}$
 - (LO 1-20) Practical Fanout $A\rightarrow B$
 - (LO 1-20) Practical Fanout $B \rightarrow A$
- (b) Draw the circuit and calculate the **value of the current limiting resistor** for a **Type "A"** gate driving an LED to the maximum brightness possible in a *current* sourcing configuration. Assume V_{LED} is 1.5V. (LO 1-21)

(c) Draw the circuit and calculate the **value of the current limiting resistor** for a **Type "B"** gate driving an LED to the maximum brightness possible in a *current sinking* configuration. Assume V_{LED} is 1.5V. (LO 1-21)


- 13. A particular CMOS microcontroller is designed to operate over a supply voltage range of **1.0 V** to **5.0 V** and at a maximum clock frequency of **80 MHz** (no minimum clock frequency is specified). The *maximum power dissipation* over this range of supply voltage and clock frequency is specified to be **500 milliwatts**.
 - (a) Plot the relationship between *power dissipation* and *supply voltage* for this microcontroller (LO 1-29).

(b) Plot the relationship between *power dissipation* and *clock frequency* for this microcontroller (LO 1-28).



14. Given the circuit, below, calculate V_{in} (the CMOS inverter input voltage) for each of the cases indicated along with the current *individually* sunk by each active open drain gate. *Show your calculations*. (LOs 1-34 and 1-35).

A	В	С	V _{in} to Inverter	Current Sunk by Each Active O.D. Gate
0 V	0 V	0 V		
5 V	0 V	0 V		
5 V	5 V	0 V		
5 V	5 V	5 V		

- 15. Given the circuit, below, along with its Vi-Vo (input output voltage) relationship, determine the following (show calculations where applicable):
 - a. estimate the ON resistance of the O.D. NAND gate (LO 1-25)
 - b. estimate the value of the pull-up resistor (LO 1-36)
 - c. estimate the t_{TLH} of the O.D. NAND gate (LO 1-25)
 - d. estimate the t_{THL} of the O.D. NAND gate (LO 1-25)
 - e. estimate the t_{PHL} of the O.D. NAND gate (LO 1-23)
 - f. estimate the t_{PLH} of the O.D. NAND gate (LO 1-23)

