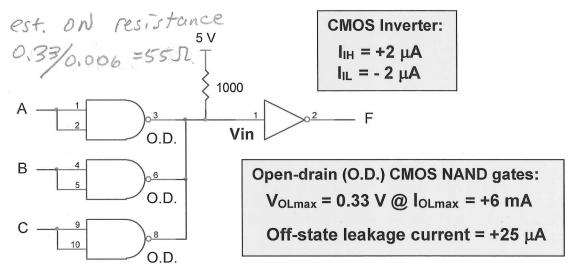
1


Homework 4

Due at the beginning of your scheduled lab period

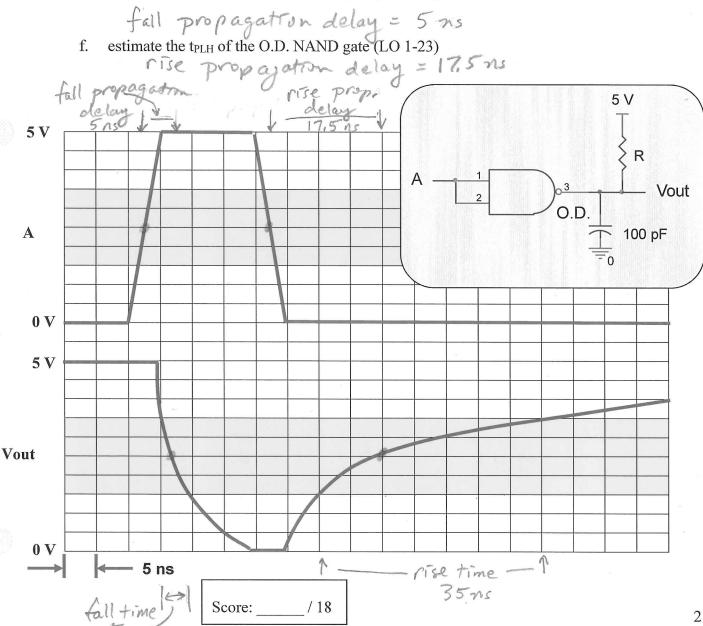
Last Name (Printed):	KEY	Lab Div: _	Date:
E-mail:	@purdue.edu Signature:_	18	PTS

<u>Printed</u> copies of these pages along with your <u>original</u> (hand-annotated, not photocopied) written solution in the <u>space provided</u> (unless otherwise indicated) are required in order to receive credit. NOTE: The purpose of homework is to provide an opportunity for practicing the kinds of problems you will be asked to solve on quizzes and exams – copying the work of someone else does not accomplish this.

1. [12 pts] Given the circuit, below, calculate V_{in} (the CMOS inverter input voltage) for each of the cases indicated along with the current *individually* sunk by each active open drain gate. *Show your calculations*. (LOs 1-34 and 1-35).

A	В	С	O.D. Equivalent ON Resistance	V _{in} to Inverter	Current Sunk by Each Active O.D. Gate
0 V	0 V	0 V		4.923v	25 uA - beakage
5 V	0 V	0 V	10552	0,261V	4.74 mA
5 V	5 V	0 V	1027.52	0,1341	2.43 mA
5 V	5 V	5 V	1018.3s	0.090V	1.64 mA

leakage = $3 \times 25 \mu A + I_{1H} = 77 \mu A$ $Vin = 5 - (77 \times 10^{-6}) \times 10^{3} = 4.923 V$


- [6 pts] Given the circuit, below, along with its Vi-Vo (input output voltage) relationship, determine the following (show calculations where applicable):
 - estimate the ON resistance of the O.D. NAND gate (LO 1-25)

b. estimate the value of the pull-up resistor (LO 1-36)

estimate the t_{TLH} of the O.D. NAND gate (LO 1-25)

d. estimate the t_{THL} of the O.D. NAND gate (LO 1-25)

e. estimate the t_{PHL} of the O.D. NAND gate (LO 1-23)

