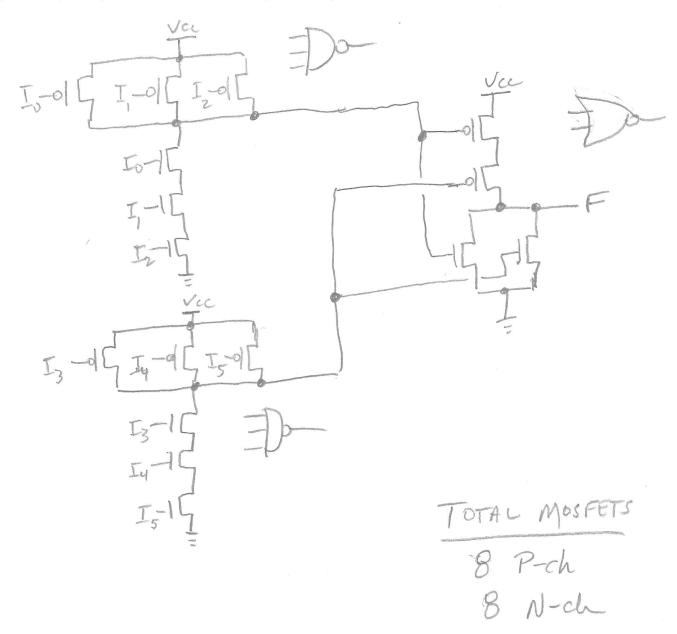

Homework 2

Due at the beginning of your scheduled lab period

Last Name (Printed):	KEY	Lab Div: Date:
E-mail:	@purdue.edu Signature: _	28 pts Max


<u>Printed</u> copies of these pages along with your <u>original</u> (hand-annotated, not photocopied) written solution in the <u>space provided</u> (unless otherwise indicated) are required in order to receive credit. NOTE: The purpose of homework is to provide an opportunity for practicing the kinds of problems you will be asked to solve on quizzes and exams – copying the work of someone else does not accomplish this.

1. [pts] Show a MOSFET-level diagram for a 6-input AND gate realized using a 6-input NAND gate followed by an inverter gate. Label the inputs I₀...I₅ and the output F. Be sure to show the power (Vcc) and ground (GND) connections as well. Determine the total number of N- and P-channel MOSFETs required for this realization (LO 1-10).

8

2. [pts] Show a MOSFET-level diagram for a 6-input AND gate realized using two 3-input NAND gates on the first level and a (single) 2-input NOR gate on the second level. Label the inputs I₀...I₅ and the output F. Determine the total number of N- and P-channel MOSFETs required for this realization. Be sure to show the power (Vcc) and ground (GND) connections as well (LO 1-12).

3. [4 pts] Read the section on *Fan-In* (5th Ed., pp. 741-742; 4th Ed., pp. 92-93) in the course text. Based on this material, list the tradeoffs between the two 6-input AND functions realized in problems 1 and 2, from a practical point of view. Then provide rationale for which realization would be preferable, based on the tradeoffs you have enumerated.

The additive "on" resistance of series transistors

(imits the fan-in of CMOS gates, typically

to 4 for NOZ gates and 6 for NAND gates,

The realization in problem I pushes this

(imit, but is still acceptable. The realization

in problem 2 is well within the fan-in constraints,

but requires 2 more transistors than

problem 1. Therefore, the realization in

problem 1 would be cheaper and therefore preferble.

4. [Opts] Given that the P-channel device in the circuit below has ON and OFF resistances

of 50 \(\Omega \) and 1 M\(\Omega \) (respectively) and that the N-channel device has ON and OFF

4. [In pts] Given that the P-channel device in the circuit below has ON and OFF resistances of 50 Ω and 1 M Ω (respectively) and that the N-channel device has ON and OFF resistances of 20 Ω and 2 M Ω (respectively), complete the table listing the output voltages obtained for each input combination as well as the power dissipation (in milliwatts). Show your calculations (LOs 1-10 and 1-11).

						r	5 V	DN/OFF
1	A	В	V _{out}	Power Dissipation	Series	A —		50/1,000,000
Noff, Pon	0V	0V	4.999	12,5 MW	2,000,050	, -		
both on	0V	5V	1,43	357 mw	50+20=70		-	Vout
both off	5V	0V	3,33	8.3 mW	3,000,000	, L		/
Non, Poff	5V	5V	.0001	25,0 jew	1,000,020	в —		20/2,000,000
,						' -	5	
							√G	SND