
ECE 270 Learning Outcome 4 - 1 - Practice Exam B
__

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

OUTCOME #4: “an ability to analyze and design computer logic circuits.”

Multiple Choice – select the single most appropriate response for each question.
Note that “none of the above” MAY be a VALID ANSWER.

1. Assuming the CF condition code bit is initially cleared, a sequence of arithmetic

operations that could be performed on the Raulmatic 716 to verify that CF was
properly being set and subsequently cleared is:
(A) 1111  1110 followed by 1111 + 1110
(B) 0010 – 0011 followed by 0010 + 0011
(C) 0010  0001 followed by 0010 + 0001
(D) 0001  1110 followed by 0001 + 1110
(E) none of the above

2. If the output port pins of the Raulmatic 716 had not been latched, data written to the

output port would remain on its pins:
(A) until another OUT instruction writes different data to the port
(B) only during the execute cycle of an OUT instruction
(C) only while the clock signal is high during the execute cycle of an OUT instruction
(D) until the next instruction is executed
(E) none of the above

3. If a 4-bit adder/subtractor was realized as

shown, the minimum number of product
terms required to realize the equation for
C[0] (when all the nodes are collapsed)
would be:
(A) 2
(B) 4
(C) 6
(D) 8
(E) none of the above

4. If a 4-bit adder/subtractor was realized as
shown, the minimum number of product
terms required to realize the equation for
SD[0] (when all the nodes are collapsed)
would be:
(A) 2
(B) 4
(C) 6
(D) 8
(E) none of the above

Place answers on the supplied BUBBLE SHEET only – nothing
written here will be graded.

module add_sub_4 (X, Y, M, C, SD);

 // 4-bit adder/subtractor
 // M = 0 perform add, M = 1 perform subtract

 input wire [3:0] X, Y; // operands
 input wire M; // add/sub mode
 output wire [3:0] C; // carry
 output wire [3:0] SD; // sum/difference

 wire [3:0] G, P;

 // CLA Generate functions
 assign G = X & (Y ^ {4{M}});

 // CLA Propagate functions
 assign P = X ^ (Y ^ {4{M}});

 // CLA Carry function definitions
 assign C[0] = G[0] | M&P[0];
 assign C[1] = G[1] | G[0]&P[1] | M&P[0]&P[1];
 assign C[2] = G[2] | G[1]&P[2] | G[0]&P[1]&P[2]
 | M&P[0]&P[1]&P[2];
 assign C[3] = G[3] | G[2]&P[3] | G[1]&P[2]&P[3]
 | G[0]&P[1]&P[2]&P[3]
 | M&P[0]&P[1]&P[2]&P[3];

 // CLA Sum/Difference equations
 assign SD[0] = M ^ P[0];
 assign SD[3:1] = C[2:0] ^ P[3:1];

endmodule

ECE 270 Learning Outcome 4 - 2 - Practice Exam B
__

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The following chart applies to questions 5 and 6:

A1 A0 B1 B0 ? C Z N V

0 0 0 0 (A) = (B) 1 1 0 0
0 0 0 1 (A) < (B) 0 0 1 0
0 0 1 0 (A) < (B) 0 0 1 1
0 0 1 1 (A) < (B) 0 0 0 0
0 1 0 0 (A) > (B) 1 0 0 0
0 1 0 1 (A) = (B) 1 1 0 0
0 1 1 0 (A) < (B) 0 0 1 1
0 1 1 1 (A) < (B) 0 0 1 1
1 0 0 0 (A) > (B) 1 0 1 0
1 0 0 1 (A) > (B) 1 0 0 1
1 0 1 0 (A) = (B) 1 1 0 0
1 0 1 1 (A) < (B) 0 0 1 0
1 1 0 0 (A) > (B) 1 0 1 0
1 1 0 1 (A) > (B) 1 0 1 0
1 1 1 0 (A) > (B) 1 0 0 0
1 1 1 1 (A) = (B) 1 1 0 0

5. The function for “A less than or equal to B” (FAB) can be expressed as:
(A) FAB = C·Z
(B) FAB = C + Z
(C) FAB = N·V + N·V
(D) FAB = N·V + N·V
(E) none of the above

6. The function for “A greater than B” (FA>B) can be expressed as:
(A) FA>B = C·Z
(B) FA>B = C + Z
(C) FA>B = N·V + N·V
(D) FA>B = N·V + N·V
(E) none of the above

 C C

0 4 12 8

V
 N

1 5 13 9

3 7 15 11
V

N
2 6 14 10

V

 Z Z Z

 C C
0 4 12 8

V
 N 1 5 13 9

3 7 15 11
V

N
2 6 14 10

V

 Z Z Z

ECE 270 Learning Outcome 4 - 3 - Practice Exam B
__

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The following circuit (using full-adder cells) applies to questions 7 through 9:

7. The function performed by this circuit is:
(A) multiply a 2-bit unsigned binary number by a 3-bit number
(B) multiply a 3-bit unsigned binary number by a 3-bit number
(C) multiply a 4-bit unsigned binary number by a 2-bit number
(D) multiply a 5-bit unsigned binary number by a 2-bit number
(E) none of the above

8. If each AND gate produces its output in N nanoseconds, and each full adder cell
produces its carry (C) output in 2N nanoseconds and its sum (S) output in 3N
nanoseconds, then the worst case propagation delay for the entire circuit (in
nanoseconds) will be:

(A) 10 N (B) 11 N (C) 12 N (D) 13 N (E) none of these

9. If all of the Xi and Yi inputs are set to 1, the output P5P4P3P2P1P0 produced will be:
(A) 010010
(B) 000110
(C) 101101
(D) 011110
(E) none of the above

ECE 270 Learning Outcome 4 - 4 - Practice Exam B
__

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The following block diagram for a BCD full adder applies to questions 10 and 11:

10. Correction circuit output Cout is equal to:

(A) Z4 + Z3•Z2 + Z3•Z1
(B) Z4 + Z3•Z2 + Z3•Z1
(C) Z4 + Z3•Z2 + Z3•Z1
(D) Z4 + Z3•Z2 + Z3•Z1
(E) none of the above

11. If X[3:0] = 0111, Y[3:0] = 0110, and Cin = 1, the value

output by the correction circuit {Cout S[3:0]} will be:

(A) 0 1 0 1 0
(B) 0 1 0 1 1
(C) 1 0 0 0 0
(D) 1 0 1 0 0
(E) none of the above

Z4 Z3 Z3

Z1

0 4 12 8

Z0

1 5 13 9

Z0

Z1

3 7 15 11

2 6 14 10

Z0

 Z2 Z2 Z2

Z4 Z3 Z3

Z1

16 20 28 24

Z0

17 21 29 25

Z0

Z1

19 23 31 27

18 22 30 26

Z0

 Z2 Z2 Z2

X3 X2 X1 X0 Y3 Y2 Y1 Y0

CinCout

S3 S2 S1 S0

4-bit Adder

Correction Circuit

Z4 Z3 Z2 Z1 Z0

S3 S2 S1 S0Cout

ECE 270 Learning Outcome 4 - 5 - Practice Exam B
__

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The following figure applies to questions 12 through 15. It represents a single bit “i” of an
n-bit ALU. Assume the least significant bit carry in (C-1) is set equal to ALXALY.

12. If the input control combination AOE=0, ALE=1, ALX=0, ALY=0 is applied to this

circuit, the function performed will be:

(A) LDA (B) ADD (C) SUB (D) XOR (E) CLR

13. If the input control combination AOE=0, ALE=1, ALX=0, ALY=1 is applied to this

circuit, the function performed will be:

(A) LDA (B) ADD (C) SUB (D) XOR (E) CLR

14. If the input control combination AOE=0, ALE=1, ALX=1, ALY=1 is applied to this

circuit, the function performed will be:

(A) LDA (B) ADD (C) SUB (D) XOR (E) CLR

15. The equation realized by the multiplexer generating the Xin input to the full adder can

be expressed as a dataflow assignment in Verilog as:

(A) Xin = DBi_z & (~ALX | ~ALY) | (ALX & ALY & ~DBi_z);
(B) Xin = DBi_z & (ALX | ~ALY) | (~ALX & ALY & ~DBi_z);
(C) Xin = DBi_z & (~ALX | ALY) | (ALX & ~ALY & ~DBi_z);
(D) Xin = DBi_z & (ALX | ALY) | (~ALX & ~ALY & ~DBi_z);
(E) none of the above

Instruction mnemonics
(DB) = value on data bus

LDA: (A)(DB)
ADD: (A)(A)+(DB)
SUB: (A)(A)-(DB)
XOR: (A)(A)(DB)
CLR: (A) 0

Assume C-1 = ALXALY

DBi_z
AQi

ECE 270 Learning Outcome 4 - 6 - Practice Exam B
__

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The following tables apply to questions 16 through 19:

Opcode Mnemonic Description Opcode Mnem Description
0 0 0 HLT Stop execution 1 0 0 PPA (A)(A)+((SP)), (SP)(SP)+1
0 0 1 LDA addr (A)(addr) 1 0 1 PPS (A)(A)–((SP)), (SP)(SP)+1
0 1 0 STA addr (addr)(A) 1 1 0 PPX (A)(A)((SP)), (SP)(SP)+1
0 1 1 JMP addr (PC) addr 1 1 1 PSH (SP)(SP)-1, ((SP))(A)

Location Contents Mnemonic
00000 001 01101 LDA data1
00001 111 00000 PSH
00010 001 01110 LDA data2
00011 111 00000 PSH
00100 001 01111 LDA data3
00101 111 00000 PSH
00110 110 00000 PPX
00111 010 10000 STA res1
01000 100 00000 PPA
01001 010 10001 STA res2
01010 101 00000 PPS
01011 010 10010 STA res3
01100 000 00000 HLT
01101 1111 1011 (data1)
01110 1011 1111 (data2)
01111 0110 1110 (data3)
10000 (res1)
10001 (res2)
10010 (res3)

16. The value stored at location 10000 (res1) will be:

(A) 0000 0000 (B) 1111 1111 (C) 1011 0110 (D) 1011 1011 (E) none of these

17. The value stored at location 10001 (res2) will be:
(A) 0000 0000 (B) 1111 1111 (C) 1011 0110 (D) 1011 1111 (E) none of these

18. The value stored at location 10010 (res3) will be:
(A) 0000 0000 (B) 1100 0100 (C) 1011 0110 (D) 1011 1011 (E) none of these

19. When the program stops (“halts”), the condition code bits will be:

(A) CF = 1, NF = 1, VF = 0, ZF = 0
(B) CF = 1, NF = 1, VF = 1, ZF = 0
(C) CF = 0, NF = 0, VF = 0, ZF = 0
(D) CF = 0, NF = 1, VF = 0, ZF = 0
(E) none of the above

Work area for calculations:

ECE 270 Learning Outcome 4 - 7 - Practice Exam B
__

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The following narrative and ALU function table apply to questions 20 through 22:

Assume the ALU function table is modified as shown, in particular the manner in which
the CF and VF condition codes are affected by LDA and AND instructions. Note that CF
is cleared to 0 when an LDA instruction is executed, and set to 1 if execution of an AND
instruction yields a result of 1111. Also note that VF is cleared to 0 when an LDA
instruction is executed, but is unaffected by execution of an AND instruction. Recall that
CY[3:0] are the carries produced by each position, while ALU[3:0] are the “next”
values loaded in the A register (AQ[3:0]) when the ALU is enabled (ALE=1).

Assume the equations you are asked to identify below are included in an always block
with an appropriate sensitivity list.

Modified ALU function table (changes highlighted):

AOE ALE ALX ALY Function Performed CF ZF NF VF

0 1 0 0 LDA: AQ[3:0]  DB_z[3:0] 0   0

0 1 0 1 AND: AQ[3:0]  AQ[3:0]  DB_z[3:0] *   -

0 1 1 0 SUB: AQ[3:0]  AQ[3:0] – DB_z[3:0]    

0 1 1 1 ADD: AQ[3:0]  AQ[3:0] + DB_z[3:0]    

1 0 d d OUT: DB_z[3:0]  AQ[3:0] - - - -

0 0 d d (no operation – retain state) - - - -

* CF = 1 if AND yields result of 1111; else, CF = 0

20. To implement the modification for how the condition code bits are affected, the Verilog

equation for next_CF should be:
(A) next_CF = ALE ? (ALX ? ALY&ALU[3]&ALU[2]&ALU[1]&ALU[0] : CY[3]) : CF;
(B) next_CF = ALE ? (ALY ? ALX&ALU[3]&ALU[2]&ALU[1]&ALU[0] : CY[3]) : CF;
(C) next_CF = ALE ? (ALY ? CY[3] : ALX&ALU[3]&ALU[2]&ALU[1]&ALU[0]) : CF;
(D) next_CF = ALE ? (ALX ? CY[3] : ALY&ALU[3]&ALU[2]&ALU[1]&ALU[0]) : CF;

(E) none of the above

21. To implement the modification for how the condition code bits are affected, the Verilog

equation for next_VF should be:
(A) next_VF = ALE ? ALY&VF : (ALX ? (CY[3] ^ CY[2])) : VF;
(B) next_VF = ALE ? (ALX ? (CY[3] ^ CY[2]) : ALY&VF) : VF;
(C) next_VF = ALE ? ALX&VF : (ALY ? (CY[3] ^ CY[2])) : VF;
(D) next_VF = ALE ? (ALX ? (CY[3] | CY[2]) : ALY&VF) : VF;
(E) none of the above

22. The Verilog equation for next_AQ should be:

(A) next_AQ = ALE ? ALU : AQ;
(B) next_AQ = ALE ? AQ : ALU;
(C) next_AQ = ALU ? ALE : AQ;
(D) next_AQ = AQ ? ALE : ALU;
(E) none of the above

ECE 270 Learning Outcome 4 - 8 - Practice Exam B
__

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The Reference Sheet on the page that follows applies to questions 23 through 30:

23. A “load A” (LDA) instruction is performed by the opcode:

(A) 000 (B) 001 (C) 010 (D) 011 (E) none of these

24. A “store A” (STA) instruction is performed by the opcode:
(A) 000 (B) 001 (C) 010 (D) 011 (E) none of these

25. The instruction performed by opcode 011 is:

(A) PSH (push the contents of A onto the stack)
(B) POP (pop the top stack item and load it into A)
(C) STA (store the contents of A)
(D) HLT (halt execution)
(E) none of the above

26. The instruction performed by opcode 100 is:

(A) POP (add the contents of the memory location to A)
(B) PPA (pop the top stack item and add it to A)
(C) PPS (pop the top stack item and subtract it from A)
(D) RTS (return from subroutine)
(E) none of the above

27. The instruction performed by opcode 110 is:

(A) POP (add the contents of the memory location to A)
(B) PPA (pop the top stack item and add it to A)
(C) PPS (pop the top stack item and subtract it from A)
(D) RTS (return from subroutine)
(E) none of the above

28. The instruction performed by opcode 111 is:

(A) PSH (push the contents of A onto the stack)
(B) POP (pop the top stack item and load it into A)
(C) JSR (jump to subroutine)
(D) RTS (return from subroutine)
(E) none of the above

29. The stack convention used by this computer is:

(A) stack pointer points to top stack item
(B) stack pointer points to next available location
(C) stack pointer points to first item pushed on stack
(D) stack pointer points to last item pushed on stack
(E) none of the above

30. Changing the stack convention used by this computer (to the “other one”) would:

(A) increase the number of execute states required by 1
(B) decrease the number of execute states required by 1
(C) improve the performance (speed of execution)
(D) reduce the performance (speed of execution)
(E) none of the above

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

Tables and Figures that Apply to Questions 23 through 30

State

Opcode M
S
L

M
O
E

M
W
E

I
R
L

I
R
A

A
O
E

A
L
E

A
L
X

A
L
Y

P
C
C

P
O
A

P
L
A

P
O
D

P
L
D

S
P
I

S
P
D

S
P
A

R
S
T

S0  H H H H H

S1 000

S1 001 H H H H H H

S1 010 H H H H H

S1 011 H H H H H H

S1 100 H

S1 101 H

S1 110 H

S1 111 H H H H H

S2 100 H H H H H

S2 101 H H H H H

S2 110 H H H H H H

S2 111 H H H

AOE ALE ALX ALY Function CF ZF NF VF

0 1 0 0 Add    
0 1 0 1 Subtract    
0 1 1 0 Load    
1 0 d d Output    
0 0 d d <none>    

Name Description
START Asynchronous Machine Reset

MSL Memory Select

MOE Memory Output Tri-State Enable

MWE Memory Write Enable

PCC Program Counter Count Enable

POA Program Counter Output on Address Bus Tri-State Enable

PLA Program Counter Load from Address Bus Enable

POD Program Counter Output on Data Bus Tri-State Enable

PLD Program Counter Load from Data Bus Enable

IRL Instruction Register Load Enable

IRA Instruction Register Output on Address Bus Tri-State Enable

AOE A-register Output on Data Bus Tri-State Enable

ALE ALU Function Enable

ALX ALU Function Select Line “X”

ALY ALU Function Select Line “Y”

SPI Stack Pointer Increment

SPD Stack Pointer Decrement

SPA Stack Pointer Output on Address Bus Tri-State Enable

RST Synchronous State Counter Reset
RUN Machine Run Enable

Memory
A

d
d

re
ss

D
at

a

Program
Counter

A
d

d
re

s
s

B
u

s

Instruction
Register

Data Bus

Opcode Address

ALU

D
at

a

Flags

SP

Instruction Decoder
and Micro-Sequencer

Start Clock

