OUTCOME #2: "an ability to analyze and design combinational logic circuits."

Multiple Choice – select the <u>single</u> most appropriate response for each question. *Note that "none of the above" MAY be a VALID ANSWER.*

Place answers on the supplied BUBBLE SHEET only – nothing written here will be graded.

- 1. Most logic minimization methods are based on a generalization of:
 - (A) the covering theorem
 - (B) the combining theorem
 - (C) the consensus theorem
 - (D) DeMorgan's Law
 - (E) none of the above
- If the function F(X,Y,Z) is represented by the ON set ∑x,y,z(0,3,4,7), then the dual of this function F^D(X,Y,Z) is represented by the ON set:
 - (A) ∑x,y,z**(0,3,4,7)**
 - (B) ∑x,y,z(1,2,4,6)
 - (C) ∑x,y,z(1,2,5,6)
 - (D) ∑x,y,z(1,2,4,7)
 - (E) none of the above
- 3. The **property** listed below that is **NOT** true for **XOR gates** is:
 - (A) Associativity
 - (B) commutivity
 - (C) distributivity
 - (D) idempotency
 - (E) none of the above
- 4. The circuit shown below exhibits the following type of **hazard** when its input, X, transitions from **high-to-low**:
 - (A) a static-0 hazard
 - (B) a static-1 hazard
 - (C) a dynamic low-to-high hazard
 - (D) a dynamic high-to-low hazard
 - (E) none of the above

- an ability to analyze and uesign co

- 1 -

w' W 0 Z′ 1 d 1 Y' 0 1 1 0 Ζ 0 d 0 1 Υ 1 0 1 Z' d X' Х X'

The following K-map applies to questions 5 through 8:

5. Assuming the availability of **only true** input variables, the **fewest number of 2-input NAND gates** that are needed to realize this function is:

(A) 6 (B) 7 (C) 8 (D) 9 (E) none of the above

6. Assuming the availability of **only true** input variables, the **fewest number of 2-input NOR gates** that are needed to realize this function is:

(A) 6 (B) 7 (C) 8 (D) 9 (E) none of the above

7. Assuming the availability of **only true** input variables, the **fewest number of 2-input open-drain NAND gates** that are needed to realize this function is:

(A) 6 (B) 7 (C) 8 (D) 9 (E) none of the above

8. Assuming the availability of **only true** input variables, the **number of pull-up resistors** required to realize this function using **2-input open-drain NAND gates** is:

(A) 2 (B) 3 (C) 4 (D) 5 (E) none of the above

The following circuit applies to questions 9 and 10:

- 9. The **OFF set** of the function realized by this circuit is:
 - (A) Пх, y, z**(3,4)**
 - (B) Пх, y, z**(1,6)**
 - (C) Пх, y, z(0,2,3,4,5,7)
 - (D) Πx,y,z**(0,1,2,5,6,7)**
 - (E) none of the above
- 10. The **cost** of a **minimal product of sums** realization of this function (assuming **both true and complemented variables** are available) would be:
 - (A) 10 (B) 11 (C) 12 (D) 13 (E) none of the above

The following circuit applies to question 11:

- 11. The **ON set** realized by this circuit, where the LED "on" condition corresponds to F(X,Y,Z)=1, is:
 - (A) $\sum_{X,Y,Z} (3,4,5)$
 - (B) $\sum_{X,Y,Z} (0,1,2,6,7)$
 - (C) $\sum_{X,Y,Z} (0,1,2)$
 - (D) $\sum_{X,Y,Z}$ (6.7)
 - (E) none of the above

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The following circuit applies to questions 12 and 13:

- 12. Expressed in minimum sum-of-products form, the function realized by this circuit is:
 - (A) $W \cdot Y + X \cdot Z$
 - (B) W'·Y' + X'·Z'
 - (C) $X \cdot Y + Y \cdot Z + W \cdot Z + W \cdot X$
 - (D) $W' \cdot Y' + X' \cdot Y \cdot Z' + X' \cdot Y' \cdot Z'$
 - (E) none of the above
- 13. Expressed in minimum product-of-sums form, the function realized by this circuit is:
 - (A) **(W+Y)·(X+Z)**
 - (B) **(W'+Y')·(X'+Z')**
 - (C) (X+Y)·(Y+Z)·(W+Z)·(W+X)
 - (D) **(X'+Y')·(Y'+Z')·(W'+Z')·(W'+X')**
 - (E) none of the above
- 14. The multiplexer circuit shown realizes the following **OFF set:**
 - (A) ∏x,y,z **(0,2,4,7)**
 - (B) **∏**x,y,z **(0,1,6,7)**
 - (C) ∏x,y,z **(1,3,4,7)**
 - (D) ∏x,y,z **(1,3,5,6)**
 - (E) none of the above

The following circuit and timing chart apply to questions 15 and 16. Assume each gate has a propagation delay of 10 ns; use the chart provided as a worksheet.

- 15. Steady-state (static) analysis of the function realized by this circuit for the inputs provided predicts that the output F(X,Y) should:
 - (A) always be low
 - (B) always be high
 - (C) be equal to the input X
 - (D) be equal to the input Y
 - (E) none of the above
- 16. Dynamic analysis of the output F(X,Y) reveals that:
 - (A) a static "0" hazard will be produced whenever the inputs X and Y transition simultaneously
 - (B) a static "1" hazard will be produced whenever the inputs X and Y transition simultaneously
 - (C) a static "0" hazard will be produced <u>only</u> when input X transitions from low-tohigh and input Y transitions from high-to-low
 - (D) a static "1" hazard will be produced <u>only</u> when input X transitions from high-tolow and input Y transitions from low-to-high
 - (E) none of the above

The **ispLever-Generated Reports** below apply to questions 17 through 19.

REDUCED EQUATION REPORT:					CHIP	CHIP REPORT:				
P-Terms Fan-in Fan-out Type Name (attributes)					X =	X = B&D&!A&C # !B&!D&!A&C # B&D&A&!C # !B&!D&A&!C;				
4/4	4	1	Pin	х						
3/4	4	1	Pin	Y		Y = B&D # A&C # !A&!C;				
=======							B221/1 0C			
7/8 Best P-Term Total: 7							++			
Total Pins: 6								\/		
		Total	Nodes	: 0		A	1		24	Vcc
Average P-Term/Output: 3						в	2		23	Y
						С	3		22	
Positive-Polarity Equations:						D	4		21	
							5		20	
X = !B&!D&A&!C # B&D&A&!C # !B&!D&!A&C # B&D&!A&C							6		19	
Y = B&D # !A&!C # A&C isplever operators: AND - & OR - #						7		18		
						8		17		
Reverse-Polarity Equations: NOT - ! XOR - \$							9		16	
							10		15	
!X = B&!D # !B&D # !A&!C # A&C							11		14	x
!Y = !D&A&!C # !B&A&!C # !D&!A&C # !B&!A&C						GND	12		13	
							l			ļ

17. The total number of P terms used by this Verilog program is:

- (A) **3**
- (B) **4**
- (C) **7**
- (D) **8**
- (E) none of these
- 18. The **chip report** indicates that the fitter program chose the following forms of the reduced equations to burn into the PLD:
 - (A) the positive polarity forms of both X and Y
 - (B) the reverse polarity forms of both X and Y
 - (C) the positive polarity form of X and the reverse polarity form of Y
 - (D) the reverse polarity form of X and the positive polarity form of Y
 - (E) none of the above
- 19. A possible Verilog source form of the equation for X is:
 - (A) $X = (B ^ D) \& (A ^ C);$
 - (B) X = (B ^ D) | (A ~ ^ C);
 - (C) $X = (B ~^ D) \& (A ~ C);$
 - (D) X = (B ~^ D) | (A ^ C);
 - (E) none of the above

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The Macrocell Reference Figure below applies to questions 20 through 22.

- 20. The possibilities for controlling the tri-state buffer enable do **<u>not</u>** include:
 - (A) always OFF
 - (B) always ON
 - (C) controlled by an expression comprised of one product term
 - (D) controlled by an expression comprised of two product terms
 - (E) none of the above
- 21. If **D=0** and **E=1**, the **maximum number** of **product terms** that can be utilized by a function realized by the macrocell I/O pin is:
 - (A) 2 (B) 4 (C) 5 (D) 6 (E) none of these
- 22. To realize the **positive polarity equation** of a function with an **active low** output, the following settings should be used:
 - (A) C=0, B=0, A=1
 - (B) C=0, B=1, A=0
 - (C) C=1, B=0, A=1
 - (D) C=1, B=1, A=0
 - (E) none of the above

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

The following Verilog program applies to questions 23 through 25:

22	The number of equations concreted				
23.	by this program is:	/* Mid-Size Multiplexer */			
	(A) 2(B) 4	<pre>module midmux(TEN,S,A,B,C,D,Y_z);</pre>			
	 (C) 8 (D) 16 (E) none of the above 	<pre>input wire TEN; input wire [1:0] S;</pre>			
24.	When TEN is negated, S [1]=1, and S [0]=1, the outputs Y _ z [3:0] will:	input wire [3:0] A, B, C, D; output tri [3:0] Y_z; wire [3:0] Y;			
	(A) all be zero(B) all be one	assign Y_z = TEN ? Y : 4'bZZZZ;			
	(C) all be Hi-Z	always @ (S) begin			
	(D) be equal to the inputs A[3:0]	Y = 4'b0000;			
	(E) none of the above	case (S)			
		2'd0: Y = A;			
25.	When TEN is asserted, s[1]=1 , and	2'd1: Y = B;			
	$s[0]=0$, the outputs $Y_z[3:0]$ will:	2'd2: Y = C;			
	(A) be equal to the inputs A[3:0]	2'd3: Y = D;			
	(B) be equal to the inputs B[3:0]	endcase			
	(C) be equal to the inputs C[3:0]	end			
	 (D) be equal to the inputs D[3:0] (E) none of the above 	endmodule			

The following Verilog program applies to questions 26 and 27:

```
26. If input I[0] is asserted and all the
                                        /* Mid-Size Priority Encoder */
   other inputs are negated, the output
                                        module prienc(I, E_z, G, TEN);
   produced will be:
                                          input wire [3:0] I;
                                          input wire TEN;
   (A) E_z[1]=0, E_z[0]=0, G=0
                                          output tri [1:0] E_z;
   (B) E_z[1]=0, E_z[0]=0, G=1
                                          output wire G;
   (C) E_z[1]=Hi-Z, E_z[0]=Hi-Z, G=Hi-Z
                                          reg [2:0] EG;
   (D) E_z[1]=Hi-Z, E_z[0]=Hi-Z, G=1
                                          always @ (I) begin
   (E) none of the above
                                            casez (I)
                                              4'b0000: EG = 3'b000;
27. If inputs I[1], I[2], and TEN are
                                              4'b0001: EG = 3'b001;
                                              4'b001?: EG = 3'b011;
   asserted and all the other inputs are
                                              4'b01??: EG = 3'b101;
   negated, the output produced will be:
                                              4'b1???:
                                                         EG = 3'b111;
   (A) E_z[1]=0, E_z[0]=0, G=0
                                            endcase
   (B) E_z[1]=0, E_z[0]=1, G=1
                                          end
   (C) E_z[1]=1, E_z[0]=0, G=1
                                          assign G = EG[0];
   (D) E_z[1]=Hi-Z, E_z[0]=Hi-Z, G=1
                                          assign E_z = TEN ? EG[2:1] : 2'bzz;
   (E) none of the above
                                        endmodule
```

The following Verilog program and 22V10 diagram apply to questions 28 through 30.

```
/* Big XOR Attempt on 22V10 */
module bigxor (I, BXOUT);
input wire [11:0] I;
output wire BXOUT;
assign BXOUT = ^I;
endmodule
```

- 28. Just when you thought the exam was safe from your well-intentioned "best friend from another major" (BFFAM), you discover a Verilog program they have written for a 22V10. It looks like this time your BFFAM is attempting to create a 12-variable XOR function. The **number** of product terms required to realize the equation for **BXOUT**, given the Verilog program <u>as written</u>, is:
 - (A) 24
 - (B) 1024
 - (C) 2048
 - (D) 4096
 - (E) none of these

Pins	14	&	23	-	8	P-terms	each
Pins	15	&	22	-	10	P-terms	each
Pins	16	&	21	_	12	P-terms	each
Pins	17	&	20	_	14	P-terms	each
Pins	18	&	19	-	16	P-terms	each

- 29. As expected, the Verilog program targeting a 22V10 doesn't fit (as written) because:
 - (A) the pin numbers are not specified
 - (B) there are an insufficient number of input pins
 - (C) there are an insufficient number of I/O (macrocell) pins
 - (D) there are an insufficient number of P-terms
 - (E) none of the above
- 30. The Verilog program shown could be **modified** to successfully realize the "Big XOR" function on a single 22V10 by:
 - (A) adding an explicit pin assignment for **BXOUT**
 - (B) adding explicit pin assignments for all the input and output variables
 - (C) **splitting the equation for BXOUT** into two 5-variable XOR functions (assigned to two specific macrocells), the **outputs of which** could then be XORed with the **other two inputs** using a third macrocell (i.e. using a total of 3 macrocells)
 - (D) changing their degree option, as there is no way to implement a 12-variable XOR function on a 22V10, and consequently there is no way to successfully modify the Verilog program!
 - (E) none of the above

© 2019 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

-9-