LEARNING OUTCOME #2: "an ability to analyze and design combinational logic circuits."

Multiple Choice – select the single most appropriate response for each question.

Note that "none of the above" MAY be a VALID ANSWER.

- If the function F(X,Y,Z) is represented by the ON SET ∑x,Y,Z(0,3,5,6), then the complement of this function F'(X,Y,Z) is represented by the ON SET:
 - (A) $\sum x, y, z(0,3,5,6)$
 - (B) $\sum x, y, z(1,2,4,7)$
 - (C) $\sum x, y, z(1,2,4,6)$
 - (D) $\sum x, y, z(1,3,5,7)$
 - (E) none of the above
- 2. If the function F(X,Y,Z) is represented by the ON SET $\sum x,y,z(0,3,5,6)$, then the dual of this function $F^D(X,Y,Z)$ is represented by the ON SET:
 - (A) $\sum x, y, z(0,3,5,6)$
 - (B) $\sum x, y, z(1,2,4,7)$
 - (C) $\sum x, y, z(1,2,4,6)$
 - (D) $\sum x, y, z(1,3,5,7)$
 - (E) none of the above
- 3. The XOR property listed below that is NOT true is:
 - (A) $X \oplus 0 = X$
 - (B) $X \oplus 1 = X'$
 - (C) $X \oplus X = X$
 - (D) $X \oplus X' = 1$
 - (E) none of the above
- 4. A circuit consisting of a level of **NOR gates** followed by a level of **AND gates** is **logically equivalent** to:
 - (A) a multi-input OR gate
 - (B) a multi-input AND gate
 - (C) a multi-input NOR gate
 - (D) a multi-input NAND gate
 - (E) none of the above

- 3 1 2 3
- 5. The circuit shown exhibits the **following type of hazard** when its input, X, transitions from **low-to-high**:
 - (A) a static-zero hazard
 - (B) a static-one hazard
 - (C) a dynamic hazard
 - (D) a consensus hazard
 - (E) none of the above

The following K-map applies to questions 6 through 11:

	X	\'	X		
Z'	0	1	0	0	
Z	1	0	d	1	
•	Y'	Y		Y'	

6.	The cost of a minimal sum of products realization of this function (assuming both
	true and complemented variables are available) would be:

- (A) 10
- (B) 11 (C) 12
- (D) 13
- (E) none of the above

7. The **cost** of a **minimal product of sums** realization of this function (assuming **both** true and complemented variables are available) would be:

- (A) 10
- (B) 11
- (C) 12
- (D) 13
- (E) none of the above

8. Assuming the availability of only true input variables, the fewest number of **2-input NAND gates** that are needed to realize this function is:

- (A) 5
- (B) 6
- (C) 7
- (D) 8
- (E) none of the above

9. Assuming the availability of only true input variables, the fewest number of 2-input NOR gates that are needed to realize this function is:

- (A) 5
- (B) 6
- (C) 7
- (D) 8
- (E) none of the above

10. Assuming the availability of only true input variables, the fewest number of 2-input open-drain NAND gates that are needed to realize this function is:

- (A) 5
- (B) 6
- (C) 7
- (D) 8
- (E) none of the above

11. Assuming the availability of only true input variables, the number of pull-up resistors required to realize this function using 2-input open-drain NAND gates is:

- (A) 1
- (B) 2
- (C) 3
- (D) 4
 - (E) none of the above

The following K-map applies to question 12:

	W'		W		
Y'	0	d	1	0	Z'
Y	1	0	1	d	7
Y	d	1	0	1	Z
	0	1	1	0	Z'
	X'	X		X'	

12. Assuming the availability of **both true and complemented** variables, the **simplest** (lowest cost) realization of this function is depicted by the following circuit:

The following circuit applies to questions 13 through 16:

- 13. Expressed in a **minimum sum-of-products** form, the function realized by this circuit is:
 - (A) $X \cdot Y + X \cdot Z + X' \cdot Z$
 - (B) $X' \cdot Z' + Y' \cdot Z'$
 - (C) $Y \cdot Z' + Y' \cdot Z' + X' \cdot Y'$
 - (D) $Z + X \cdot Y$
 - (E) none of the above
- 14. The **ON-SET** of the function realized by this circuit is:
 - (A) $\sum x, y, z(0,2,4)$
 - (B) $\sum x, y, z(1,3,5,6,7)$
 - (C) $\sum_{X,Y,Z}$ (3,5,7)
 - (D) $\sum x, y, z(0,1,2,4,6)$
 - (E) none of the above
- 15. Expressed in **a minimum product-of-sums** form, the function realized by this circuit is:
 - (A) $(X+Z)\cdot(Y+Z)$
 - (B) $(X'+Y')\cdot(X+Y)\cdot(Y+Z')$
 - (C) $Z' \cdot (X' + Y')$
 - (D) $(X'+Z')\cdot(Y'+Z')$
 - (E) none of the above
- 16. Assuming the availability of **only true** variables, realization of this same function using **only 2-input NOR gates** would require:
 - (A) two (2-input NOR) gates
 - (B) three (2-input NOR) gates
 - (C) four (2-input NOR) gates
 - (D) five (2-input NOR) gates
 - (E) none of the above

The following circuit and timing chart apply to questions 17 and 18:

- 17. Steady-state (static) analysis of the function realized by this circuit predicts that the output F(X,Y) should:
 - (A) always be low
 - (B) always be high
 - (C) be equal to the input X
 - (D) be equal to the input Y
 - (E) none of the above
- 18. The dynamic behavior of the circuit (depicted in the timing chart) does **NOT** match the steady-state analysis of the function because:
 - (A) the circuit does not contain a complete sum
 - (B) a consensus term needs to be added
 - (C) more than one input changes simultaneously
 - (D) all of the above
 - (E) none of the above

The following excerpt from an **ispLever Reduced Equation Report** applies to questions 19 through 21.

```
Title: 8-to-3 Priority Encoder
          Fan-in Fan-out
 P-Terms
                           Type Name (attributes)
   4/4
                           Pin
                                 E0
   4/3
             6
                      1
                           Pin
                                 F:1
   4/1
                                              ispLEVER operators:
                      1
                           Pin
                                E2
            8
  8/1
                           Pin
                                GS
                                              AND -
                                                      æ
                                                           OR
=======
  20/9
               Best P-Term Total: 9
                                              NOT - !
                                                           XOR - $
                      Total Pins: 12
                     Total Nodes: 0
           Average P-Term/Output: 2
Positive-Polarity Equations:
E0 = (!16 \& !14 \& !12 \& I1 # !16 \& !14 \& I3 # !16 \& I5 # I7);
E1 = (!I5 \& !I4 \& I2 # !I5 \& !I4 \& I3 # I6 # I7);
E2 = (I4 # I5 # I6 # I7);
GS = (I1 # I0 # I2 # I3 # I4 # I5 # I6 # I7);
Reverse-Polarity Equations:
!EO = (!I7 & !I5 & !I3 & !I1 # !I7 & !I5 & !I3 & I2 # !I7 & !I5 & I4 # !I7 & I6);
!E1 = (!I7 & !I6 & !I3 & !I2 # !I7 & !I6 & I4 # !I7 & !I6 & I5);
!E2 = (!I7 \& !I6 \& !I5 \& !I4);
!GS = (!I7 & !I6 & !I5 & !I4 & !I3 & !I2 & !I1 & !I0);
```

- 19. The **Best P-Term Total** shown in the report indicates:
 - (A) the minimum number of pins needed to implement the logic function
 - (B) the minimum number of macrocells needed to implement the logic function
 - (C) the minimum number of OR gates needed to implement the logic function
 - (D) the minimum number of AND gates needed to implement the logic function
 - (E) none of the above
- 20. The **number of P-Terms** needed to realize the **!E0** (reverse-polarity) equation is:
 - (A) 1 (B) 2 (C) 4 (D) 8 (E) none of these
- 21. The **number of P-Terms** needed to realize the **GS** (positive-polarity) equation is:
 - (A) 1 (B) 2 (C) 4 (D) 8 (E) none of these

The following Verilog module applies to guestions 22 through 24:

```
module diff_pri(A,B,C,D,EN,E0,E1,GS);
  input wire A,B,C,D,EN;
  output wire E0, E1;
  output wire GS;
 reg [2:0] EGS;
  always @ (A,B,C,D) begin
  casez (\{A,B,C,D\})
     4'b0000: EGS = 3'b000;
     4'b0001: EGS = 3'b111;
     4'b001?: EGS = 3'b101;
     4'b01??: EGS = 3'b011;
     4'b1???: EGS = 3'b001;
   endcase
  end
  assign E1 = EN ? EGS[2]:1'bz;
  assign E0 = EN ? EGS[1]:1'bz;
  assign GS = EGS[0];
endmodule
```

- 22. The highest priority input is:
 - (A) A
 - (B) B
 - (C) **C**
 - (D) **D**
 - (E) none of the above
- 23. If input **A** is asserted and input **EN** is negated, the outputs will be:
 - (A) E1=**0**, E0=**0**, GS=**0**
 - (B) E1=0, E0=0, GS=1
 - (C) E1=**Hi-Z**, E0=**Hi-Z**, GS=**1**
 - (D) E1=Hi-Z. E0=Hi-Z. GS=Hi-Z
 - (E) none of the above
- 24. When inputs **B** and **C** are **asserted simultaneously** (and EN is asserted), the **encoded output** will be:
 - (A) 00
 - (B) 01
 - (C) 10
 - (D) 11
 - (E) none of the above

The following Verilog module applies to questions 25 through 27:

- 25. The **number of equations** generated by this program (that would be burned into a PLD that realized this design) is:
 - (A) 2
 - (B) 8
 - (C) 9
 - (D) 16
 - (E) none of the above
- 26. When **EN=0**, **S1=1**, and **S0=1**, bits 0 through 7 of output **Y** will:
 - (A) all be Hi-Z
 - (B) all be zero
 - (C) all be one
 - (D) be equal to bits 0 through 7 of input **D**
 - (E) none of the above
- 27. When **EN=1**, **S1=1**, and **S0=1**, bits 0 through 7 of output **Y** will:
 - (A) all be Hi-Z
 - (B) all be zero
 - (C) all be one
 - (D) be equal to bits 0 through 7 of input **D**
 - (E) none of the above

The Macrocell Reference Figure below applies to questions 28 through 30.

- 28. If **D=1**, the **maximum number** of **product terms** that can be implemented by each macrocell is:
 - (A) 3
- (B) 4
- (C) 8
- (D) 32
- (E) none of these
- 29. To realize the **ON SET** of a function with an **active low** output, the following settings should be used:
 - (A) **C=0, B=0, A=1**
 - (B) **C=0, B=1, A=0**
 - (C) **C=1, B=0, A=1**
 - (D) **C=1, B=1, A=0**
 - (E) none of the above
- 30. The purpose of setting **B=0** and **A=1** is to:
 - (A) force the macrocell to use the PoS form of the logic equations
 - (B) enable one of the AND gates to be the source for the tri-state output enable
 - (C) make the OE pin the source for the tri-state enable
 - (D) enable the I/O pin to be used as an extra input
 - (E) none of the above